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| ABSTRACT
This study treats the longitudinal resonance of waves and

energetic electroms in the earth's maghetosfhere, and.the possible role
this Tesonance may play in generating various magnétospheric phenomena,
The first part of the study is concerned with the derivation of
time-averaged nonline.a;: equations of motion for enefgetic particles
longitudinally resonant with a whistlér mode wave propagating with
non-zero wave normal. It is shown that the wave magnetic forces can be
neglected at léwer particle pitch angles, while they become equal to or
larger than the wave electric forces for @>30°., The time-averaged
equations of motion were used in test particle simulations which were
done for a wide range of wave aﬁplitudes, wave-normals, particle pitch
angles, particle parallel velocities, and in an inhomogeneous médium
such as the magnetosphere. It was found that there are two classes of
particles, trapped and untr&pped, and that the scattering and energy
exchange for those two grqﬁps exhibit significantly different behavior.
The trapped particles are characterized by a bounded phase variation
(with respect to the wave) which is less then 27, whereas the phase
variation of untrapbed particles is unbounded. It is also found that
the trapping of the particles requires that the wave amplitude exceed a
certain threéhold value, and that the t;apped electrons become space
.bunched due to.the interaction. The full distribution simulaticons
indicate that the expected particle precipitation is ;onsiderably
smaller (one order of magnitude) compared to gyroresonénce—induced
precipitation for waves of comparable amplitude, which shows that the
scattering efficiency of the longitudinal resonance is small, The
amplitude threshold effect, together with the space bunching effect, wﬁs.
found to support one of the mechanisms suggested to explain whistler

Precursors.
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I. INTRODUCTION

A. ORGANIZATION OF MATERIAL

This study treats longitudinal resonance interactions between
eﬁergetic electrons and VLF waves in the earth's magnetosphere. The aim
was to derive suitable analytical methods for test particle studies, and
then to use those methods to iﬁvestigate various aspects of the
longitudinal resonance process.

The first part of the study is concerned with the derivation of
equations of motion and their applications to the longitudinal resonance
for a wide range of magnetospheric parameters. The second part gives
the results of the numerical simulation of wave-particle interactioms,
The numerical simulations.ére dene using a test particle apprqach to
determiﬁe the perturbations of pitch angle fbr various wave functions.
Also investigated are the perturbations of the full particle
distribution and the energy exchange process.

.In conclpsién the longitudinal resonance interaction is compared
to the cyclotron reéonance interaction, and is_related to phenomena -

observed in the magnetosphere.




B. WAVE-PARTICLE INTERACTTIONS IN THE MAGNETOSPHERE

The magnetosphere, a magnetized fegion extending fr&m about 1000
km altitude up to distance of roughly 100,000 km from the earth, is
filled wiﬁhlboth Teold' and 'hot'-plasma; the cold plasma consists of
electrons and protons with energies in the 0.1-1 eV range, while the hot
plasmé consists of energetic particles with*higher energies.in the range .
from 100 eV to'tgns of Mev; The cold plasmé together with the earth's
static magnetic field determines the wave propagation properties of the

'magnetosphere. The hot plasma is a source of energetic particles which
participate in the wave-particle interactions that result in radio ﬁéve
emissions. As seen from both ground and satellite observations the
magnetosphere supports numerous modes of ﬁéve propagation. It can be
showﬁ.that the hot plasma, due to its very iow density, d§e§ not affect
‘the ﬁave dispersion properties of the magnetosphere, i.e. the dispersion
of waves can be explained assuming that only cold plagma 1s present,

It is known that very-low-frequency waves can propagate in the
magnetosphere with phase velocities much smaller than the velocity of
light, and that those waves, called whistler-mode waves, can undergo
interactions with engrgetic particles both through iongitudinal
resonance and cyclotron (gyro) resonance. In longitudinal resoﬁance'the

.particie parallel velocity is matched to the wave phase velocity,
whereas in the eyclotron resonance the doppler-éhifted frequency of the
wave (shifted.due;to the par;iéle parallel velocity) matches the
gyrofrequency of the energetic particig; Both types of interactions may

induce perturbations of the energetic particle distribution through




pitch angle scattering, and may also result in different types of radio
wave emissions, wave amplification (growth) and wave attemuation. The
purpose of this study is to investigate the longitudinal resonance
interactions of energetic particles with whistler mode signals
propagating at an oblique angle to the static magnetic field. -The
approach taken ié to use a test particle analysis and to study how the
resonance process depends on various parameters. The particle
trajectories are then used to estimate other effects such as wave
growth/damping and particle trapping and precipitation. The trajectbry
calculations were done using a set of nonlinear equations of motion

which are averaged over one gyroperiod [Inan and Tkalcevic, 1982].
C; PREVIOUS WORK ON LONGITUDINAI RESONANCE

The longitudinal resonance process has been invoked by many
authors to explain various'magnétospheric wave phenomena., One of ;he
early works considered the traveling-wave-tube tjpe of process as a
generation mechanism for VLY emissions [Gallet and Helliwell, 1959], and
this process was also considered for amplification of whistler mode
signals [Brice, 1961]. The traveling-wave—tube meéhaﬁism was also
considered by Dowden [1962] as a péssible mechanism of hiss generation.
Bell [1964] defived linearized solutions for the trajectories of
longitudinally resonant particles, bﬁﬁ these héve.not been extended to
cover the nonlinear regime, The various emission—generation.theoriES
have been reviewed by Brice [1964], including both Cerenkov radiation

and- the traveling wave amplification hypothesiso The Cerenkov mechanism




is a process in which éharged particles radiate eleétromagnetic waves as
they travel through a medium. The necessary condition for the existence
of this type of radiation, called a coﬁerence condition, is easil&

found, and is the same as the condition required for the longitudinal
iﬁteraction betwéeﬁ the wave and.the'particle. Therefore; it is evidént _
that those two processes, the longitudinal resonance interactions and
_Cerenkov radiation, are based on the saﬁe physical principle,

The Cerenkov radlatlon mechanism has been suggested by many
authots [Ellls, 1959,1960; Dowden, 1960; McKenzie, 1963] in order to
explain VLF hiss. The problem of stability of whistler mode signals,
i.e. the possibility of wave growth, accounting both for longitudinal
and gyroresonance effects, was discussed by Kennel and Petschek [1966],
Kennel and Thqrne [1967], and also by Brinca [1972]., The work on
radiation from ﬁoving chafged‘pa;ticles,.which includes Cerenkov
radiation, includes the analysis done by Liemohn [1965], Mansfield [1967],
and Seshadri [1967]. a good review of work done on Cerenkov radiation,
along with additional analysis of the hiss power density spectrum, was
given by Taylor and Shawhan [1974]. Their work gives examples of the
power Spectral density of hiss, both measured [Gurnett, 1966; Gurnett
and Frank, 1972], and caiculated [Jorgenéen, 1968; Lim and Laaspere,"
19?2]. Swift and Kan [1975] showed that an electron beam can excite a
whistlef mode instability near the resonance cone. through the‘
longitudinal resonance interaction. Maggs [1976] and Kumagai at al.
[1980] investigated beam amplification due to Cerenkov radiation from
longitudinally resonant electrons, and considered this tjpe of_Beam

instability as a generating mechanism of VLF hiss. The whistlex




precursor ggneration mechanism of Park and Helliwell [1977] was based on
modifications of the particle distribution fumction achieved through
longitudinal interaction between whistlers and energetic electrons.

Most of the above studies were primarily concerned with wéve
growth calculations using the wave dispersion relation. On the other
hand, the detailed noplinear:mntion of longitudinally resonant particles
was studied only for the case of electrostatic waves [Nunn, 1971; 1973].
Palmadesso [1973] derived eqﬁations of motion for a casé of oblique
propagation, and used particle trajectories to estimate the nénlinear

time dependent Landau damping rate of the wave.

D. CONTRIBUTIONS OF THE PRESENT WORK

The motion of electrons longitudinally resonant with a whistler
mode wave propagating at an angle.to the static magnetic field is
represenfed by a simpl; set of equations motion which are averaged over
the cyclotron period. It is shown that these nonlinear equatioms ére a
very accurate representation of the electron motion fof a wide range of
magnetospheric parameters.

Using the time-~averaged nonlinear equations of motion in
numerical simulations involving whistler mode signals propagating in an
inhomogeneous médium it was found that the effects of wave magnetic
forces can be neglected for low pitech angles, high wave normal angle,
and/or high normalized wave frequency. At the higher pitch angles the

wave magnetic forces become very important and it is necessary to




include the additional force terms as derived.

The sample calculations indicate that’ there are.two classés of
electrons, distinguished by the behavior of their phases with respect to
the wave. In a case when the phase variation is bounded, i.e. less then
2%, the electron is said to be trapped; whereas unbounded phase
variation characterizes the untrapped electrons. The scattering and
correspoﬁding energy exchange for the trapped and untrapped electrons
exhibit significantly different characteristics.

It is also found that the tfabping of electrons is easier under
conditions of spatial amplitude variation 6f a narrowband signal rather
than for a constant amplitude. Analysis was done for a constant
amplitude CW signal, a CW sigﬁal amplified at the equator through
gyroresonance, and élso for a spatial amplitude variation of the pulse
formed by a nonducted signal.

It is also shown that the iongitudinal resonance process
involves a wave amplitude threshold effect, i.e, the trapping of
electrons is possible-only if the amplitude of the wave parallel
électric field Ea exceeds a certain value. The trapped eleétrons also
become space bunched.and temporarily increase the electron density over
a particular range of paréllel velocities.

The full distribution results show that the expected
‘precipitation is small when compared to gyroresonance-induced
precipitation for waves of comparable amplitﬁde. In géneral, the
results indicate that the longitudinal resonance scattering efficiency
{scattering vs. amplitude) is considerably smaller, i.e. the -

efficiencies of the two processes differ by as much as an order of




magﬁitude.

The amplitude threshold effect was tested on thstler
precursors, and it was found that the whiStler.amplitudés are well
:correlatéd with the occurrence of precursofs, i.e. only whistlers with
amplitudes above a certgin threshold ‘resulted in precursors. This
provides support for the whistler precursor generation mechaniém
Suggested by Park and Helliwell [1977], which involves longitudinal
resonance interactions, and therefore it Shquld exhibit a threshold f

effect as indicated by the measurements.







II. BASIC PHYSICS AND TIME AVERAGED EQUATIONS OF MOTION

A. MOTION OF CHARGED PARTICLES IN EARTH'S MAGNETIC FIELD

Motion of the charged energetic pafticles in the magnetosphere
is governed by the earth's magnetic field. The earth's field in the -
inner magnetosphere can be approximated by the dipole model with the

magnetic field'strength'B0 giﬁen as
. . - 1 :
B, = 0.312-10 "(R_/R)*+(1 + 3sin®)) 2 wmmt 2.1

where A is the geomagnetic latitude, R is geocehtric radius, and R0 is
tﬁe radius of the eafth. The axis of the magnetid dipole is inclined.
with respect to the rotation axis by 11°.

The motion of a particle in the magnetosphere is uniquely
described by either the parallel and perpendicular'velbcities of the
particle, v, and v, respectively, or by thg parallel (perpendicular)
velocity and pitcﬁ angle o = arctan(‘vL / v, ). Fig. 2.1 shows a
typical geometry with the definitions of v, , v, , and o .

| It can be shown that for a spatially changing'mégnetic fiéld;
such as the earth's magnetic field‘given by Eq.2.1, charged particles
will bounce forth énd‘back aiong-fhe field line between the mirror
.points [Northrop, 1963; Buneman 1980];' This is so because the particle

perpendicular velocity'must change in order to satisfy adiabatic




invariants, while the total kinetic energy of the particle must remain
constant. . The first adiabatic invariant is the invariance of the
orbital magnetic moment, given as

W,/B = constant . (2.2)

where W, is the perpendicular kinetic energy of the particle.

Mirror Points , Vv
a=90° V=0 1

FIGURE 2.1 DIPOLE GEOMETRY AND SYMBOLS USED FOR PARTICLE IDENTIFICATION. -
Note that the z-axis is aligned with the magnetic field line

and that both the wave and the particles travel in the +z direction.

Particle orbits are described in terms of equdtorial wvalues of v, and a. B




The second adiabatic invariant requires that the magnetic flux
through the circle described by the particle gyrating around the field
line remains constant, or

2

rH,x B

constant (2.3)
where Ty is the electron gyroradius.

. Thus if the magnetic field E; increases, the perpendiculér
kinetic energy W, must also increase according to Eq. 2,2, Furthermore,

the parallel energy W, of the particle must decrease so that the total

energy W, + W, remains constant.

a=arctan (\J 3" )

Therefore, the particle pitch angle

increases as B increases up to the point where

a = 90°. At this point the parallel #elocity of the particle has been
reduced to zero, and the particle begins to travel in the opposite

direction along the same field line. When the particle reaches the

conjugate point where again a = 90°, the process repeats. Hence the
particle bounces back and forth along the magnetic field line between

the two mirror points where v, = 0,

 Finally, the motion of a particle trapped along a field line can

be described by'thé following equations

, .
Y1 . dBo

dV.. = -
dt 2B dz (2.4)
dvy Yu Vi dBo

= + » 2-
dc 2B, dz 2.5

which can be derived from the first adiabatic invariant and the law of

10




[}

energy conservatiomn,

B. LONGITUDINAL RESONANCE

The bounce motion of the parti¢les can be affected by resonant
interactions between waves and the particles. The resoﬁanée condition
is satisfied whenever the doppler-shifted frequency of the wave seen by
‘the particle is equal to an integral multiple of the particle

gyrofrequency, i.e.

W= kv,m my, m=0,1,22,33,00. o (2.6)
where w is the wave frequency, k, is the wave number in the direction of
the static magnetic field, and mH "is the particle gyrofrequehcy.

The resonance condition given by Eq;_2.6 can be further divided
into three subgroups.according to diffefent values of the:parame;er M.
For m>0 we'have the resonance condition-for the m~th order
.gyroresonance; m<0 is the resonance condition for the m-th order
anomalous gyroresonance; m=0 yields the resonance condition for the

longitudinal or Landau resonance. The last condition is given as

w=-%k, v,= 0 ' : (2.7)
or

Vpu= Yy } . i » (2.8)




12

whgre vpl

, 1s the wave phase velocity measured in the direction of the

static magnetic field.

Before discussing the longitu&inal resonance we should note thét.
this resonance (m=0) is fully separable from the gyroresonances (m%O),
since the longitudinal resonance is possible only when the wave and the
particles travel in the same direction, while the gyroresonance
conditioﬁ is satisfied only if.the wa&e and the particles travel in the
opposite direction. This sepgrability of the different resonances makes
;heir analysis much simpler., It is still possible for the same particle
to interact simultaneoﬁsly in both resoﬁances with two different waves
that satisfy cqrrespondiﬁg resonant conditions. In this report we shall
limit ourselves to discussion of the longitudinal resonance, although a
comparison with the gyroresonance mechanism is given later in the text,

The condition given in Eq. 2.8 is the necessary condition for
the longitudinal resonance. However, in order for the particle and the
wave to exchange energy through the particle trapping process, the
parallel component of the wave electric field must have a non-zero
value, Therefore, even if the particle parallel velocity matcheé'the
wave phase velocity there wiil be no energ& exchangg between the
particle and the wave if Esw = 0. The direction of the energy ekchange
(whether wave or particle gains energy) depends on the initial velocity
of the particle v,. In.the ?ase when v, is initially less than the
phase velocity vp'I the particle will géin energy; 1if the initial v, is
larger than vp" the particle will lose some of its energy. We shall now
present a simple analytical model for the longitudinal resonance and

trapping process similar to that given by Seshadri [1973].
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Let us assume that the longitudinal component of the wave

electric field, propagéting in the homogeneous medium, is given by

E, (s,t) =7:Eu0 sin(k,*s = g-t) 2.9

where s is the space coordinate. Eq. 2.9 is written in the laboratory
coordinate system, but it is useful to do the analysis in the wave frame
which moves at the phase velocity v .. 1In this case a new space

coordinate z is defined as

z =5 - Vot S £2.10)

Now, Eq. 2.9 can be rewritten as

E, (5,t) = E, sin [k, (s - &L )] (2.11)
and using Eq. 2.10 and Vo~ 8 Eq. 2.1l simplifies to
N . K " .
Eu(z) = E,, sin(k, z) ‘ | (2.12)

The electric field given by the Eq. 2.12 is static in the wave
frame and it is possible to derive a cofresponding scélar potential
@(z),ﬁy_intégrating Ew(n) where n is a dummy variable.

. .
6(2) = - \E( - an | (2.13)

o
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4

P{(z) = = SE”DSiH(k“]’]) d]’] _ (2.133)
J _
Ello
= — (cos(k,z) - 1) (2.13b)

@(;)

Next we consider an electron (a similar derivation is possible for other

types of charged particles) and its potential energy Wp(z) which, in the

wave frame is given by

Wo(z) = - e+d(2) (2.14)
ek, :
-wp(z) == (1-—cos(k..z))==wp (1 - ecos(k,z)) (2.14a)

max

The constant of the integration is chosen such that the minimum
potential energy given by Eq. 2.l4a is zero. Thus, the.p0tential energy
of the electron is a periodic function, as shown in Fig. 2.2.

It can be shown that the possibility of an_electron being
trapped depeﬁds on the initial kinetic energy of that electronlmeasured
in the wave frame. Iﬁ a-caserwhen the ini;ial kinetic energy of an
electron, plabed at z at ﬁhe‘time t=0, is larger than the potential -
energy given by Eq. 2.l4a, Wppnay? CHere is no net interaction between
the wave and electron, regardless of the electron initial veloﬁity. Thé
electron simply slides up and down the potential well as it moves either
forward or backward through the wave, and there is no net energy
e#change when averaged over one wavelength,

Hovever, if the kinetic énergﬁ of the electron in the wave

frame, Wk(t=0),-is less than the potential emergy given by Eq. 2.14a,
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- frame moving at at the parallel phase velocity v
cates the bottom of the potential well.

a)
Ej(2)
A
\rr/2 . /
| KyZ
b) V;’p-

FIGURE 2.2  PARALLEL ELECTRIC FIELD AND THE CORRESPONDING POTENTIAL

ENERGY. Both the parallel electric field E, and poten-
tial energy Wp of the electron are periodic functioms in a reference
pu; In (b) zg indi-




WPmax as shown in Fig. 2.2 the electron is trapped in the potential

wéll. The tr.appiﬁg condition is then given as

%’ m (Vn-Vp")z < WP (2.15)
. max

1 " eE.,

E’ m (Vn - VP")Z < k"“O (2. 153)
ZEEIIlO

.|Vu - vp“ l< Tk, (2. 15b)

Rewriting the inequality of Eq. 2.15b as

) ' ZEEIFO ZeEIIQ .
Vou™ —ry <V, <V, — (2.16)

we have a range of velocities for which it is possible to trap an

electron. Therefore, all electrons with parallel velocities that

satisfy Eq. 2.16 are trapped in the wave potential well. The tfapping

velocity bandwidth v, is given as

2eEng
mk

(1]

vt' = (2.17)

Furthermore, it can be shown that the total energy, AW, exchanged

between the wave and electrons during the trapping 'process is

VP,;+Vt
AW = | £(v,) AE dv, (2.18)
V-pu ~ Ve

where £(v,) is the electron distribution function; AE is the amount of

- 16
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energy exchanged through trapping of a single electron, and it is

expressed as
m v ‘ (2.19)

AE

~ m, vp”(v“ -.vp“) (2.19a)

where ¥, is a time-varying periodic funetion describing the oscillation

of an electron at the bottom of the ﬁotential well. Expanding f(vﬁ) in

a Taylor series around v"‘=.vp" we obtain
Ev) = E) + (- v) ) (2.20)
Vi) = £(v,) no= V) =~ - .
. n " p"

and finally substituting Eq. 2,20 in Eq. 2.18 the total energy exchanged

in the trapping process, AW, is given as

AW = =24 v v £ (%) (2.21)

W

The fesult derived in Eq. 2.21 shows ﬁhat‘the net energy
exchanged between the trapped eleétrons and the wave depends on the
slope of the distfibution function at a point where the electron
velocity is equal to the phase velocity of the wave. In the case when
the number of electrons moving faéter is larger than the number of
‘electrons moving slower thaﬁ the phase vélocity, the wave gains energy
and its amﬁlitude grows. = Similarly, if the number of slow electrons is’

larger than the number of fast electrons, the amplitude of the wave is
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reduced.

The above analysis, using a longitudinal plasma wave and
cne—diménsional‘distribution function f£(v,), has demonstrated that it is
possible to have wave damping in the Aﬁsencé of collisions, also known
as Landau damping. It was also shown that the wéve amplitude grows if
the slope of the distribution function is positive. However, the
expressions for the energy exchange were derived assuming that the
farticles are already trapped. It was also assumed that the medium is
homogéneous, an& that both the wave and the distribution function are
" one-dimensional,

In the magnetosphere Eq. 2.18 isrstill valid, but the trapping
procesé is governed by the éarticle equations of motion. Thus in order
to find the energy exchanged between a wéﬁe and partic1e { AE in Eq.
_2.18) it is necessary to derive the equations of motion for é single
particle when it is ih longitudinal resonance with waves in the mag-

netosphere.

C. NONLINEAR EQUATIONS OF MOTION FOR LANDAU RESONANCE

INTERACTIONS WITH A WHISTLER MCODE WAVE

Now we consider an elliptically polarized wave propagating.in
the cold plasma of thelmagnetosphere with a static magneti; field ﬁ;-
Tﬁe wave.frequency f is assumed to be less than the electromn |
gyrofrequency fyg 3 in that case there is only one propagating wave

[Rateliffe, 1959; Budden, 19617, which is called a whistler wave.
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| In the most gemeral caée all Carteéian components of the wave
electric E@ and magnetic field ﬁ% have non-zero values. All of these
components can be expressed iﬁ terns of 62 through the cold-plasma
dispersion relation. Without any loss of generality the wave vector k
lis confined to the x-z plane, at an angle 8 ffom the static magnetic.

field. The coordinate system used is shown in Fig. 2.3,

x 4
‘g
AN k
: 8
! —
; 74 v B

Plane of Constaht
Wave Phase

— W T VI Srat —— — —

Y.

- FIGURE 2.3  COORDINATE SYSTEM FOR THE EQUATIONS OF MOTION. The wave
‘ vector k is at an angle g from the static magnetic field B,
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We also assume propagation as exp i(w t — ker). Using a plasma

dispersion relation [Stix, 1962]

€, = n’cos’ - i, n’sing cosh &
ie, £, = n? 0 & | =0 (2.22)
n’sing cos@ 0 €, - n'sin’g &,

all electric field components can be expressed in terms of éz as follows

&, = E, cos( wt - k+T) ' (2.23)
n?ginB-gn . - —
6x = — - E, cos ( wt - k1) (2.24)

n“sinfBcoss

nzsinB—Eu

&, = Ex E, sin ( wt - k-T) (2.25)
* n?-gin?sinBecosh

-2 2 ' 2
where €,= 1 - 923 g,=1 - —ER——, Ey= YB_ Y% . The refractive index

2 2 2 2
w W - w w -
H i

n can be derived from Eq. 2.22 as (QL appreximation)

2 . .
n= 1 + fp © (2.25a)
f(fHCDSG - £ )

Using Maxwell's equation V x E = - %%—the wave magnetic components are
" kcosd '
By = __-_TE"_'GY | - (2.26)
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k cosB k sinf

By = — & - _*75—__-62 . (2.27)
" k sinB
B, = ————— &y (2.28)

"which can be also expressed in terms of &, using Eqs. 2.23, 2.24, and
2.25,
The variation of the total electron velocity<; is governed by

the Lorentz force equation

dv - =

nl¥ =g E+v x B + 3, )] | (2.29)

dt

where m and q are electron mass and charge. For the case when
,BW|<< Iis |, the electron gyromotion can be assumed to be unaffected
by the wave to the first order, so that the Cartesian components of the

electron velocity vary as

- Vz SV, | (2.30)
w =v, cos (wyt + By) (2.31) .
W =w sin (gt + BO) ' ' (2.32)

where wy is the electromn gyrofrequency and g, is the initial cyclotron
phase. Furthermore, as long as the wave field is much smaller than the -
earth’s magnetic field, it is permissible first to derive the force

applied to an electron by the wave fields and then to superimpose the




adiabatic variation of v, and v,. Therefore, the perturbation of the

electron motion induced by the wave fields only is given by

m 5f = q[E, + v x B, ] ‘ S (2.33)

It is useful to examine each Cartesian component in Eq. 2.33 separately.

These three components are given as

qféx + vyB,- v,8] _ (2.34)

Fy =
Fy = q[éy + vzBy- Vx3,] ' (2.35)
Fz = q[&; + vay- Vyﬂk] ' (2.36)

Before investigating those equations we simplify coé('wt - i;;b, which

can be expressed as

cos(.wt - k cosfBes z - k s5inf+ x) | (2.37)
or letting Y= wt~kcost z in Eq. 2.37 we have

cos( Y - k sinf x) | | (2.38)
Eq. 2,38 can be further simplified using the fact that

X = aiinsin(wHt + Bo). : : (2.39)
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which is derived by integrating Eq. 2.3}. Finally, replaéing x in

Eq. 2.38 by (2.39)

cos( wt ~ E:;3'= cos(y - n sing ) _ (2.40)

v,k 5infd
LDI{ -

Now, using the result derived in {2.40) we can rewrite three

where ¢ = wygt + B and n=
Cartesian components of the Lorentz force as

Fx= q [Eysin(Y - N sin$ ) + v, sin¢ By sin(Y - N -sin¢ )

= v B, cos(Yy - n sin¢ )] , (2.41)

Fy= q [Eysin(Y - N sind ) + vu By sin(Y - N sind )

- v,cos9 B, sin(Y - N sind )j (2.42)

Fr=q [Ezcos(Y - Nsind ) + v, cos¢ By cos(Y - N sind )

- v,sin$¢ By sin(y - N sin¢ )] (2.43)

Note that Ex, Ey , Ez , Bx , By , and Bz are the real
‘magnitudes of the fields, with the phase differences taken separately

sin

cos ( Y -Nsing ) terms.

into account through
At this point we have three equations which can be used to
describe the motion of particles in resonance with a whistler wave.

However, it is desirable to reduce the number of required equations to

simplify numerical simulations. In this case it is useful to combine




~the x and y components of the Lorentz force in one perpendicular

component. This is done by taking the time derivative of the square

of the perpendicular velocity vi = v; +

V2=v2+

2 ,d.
L x v& /HE

dv_,_

dvy
Vit

= Y e

dvx
Xdr v

ydt

and multiplying it by m/v,

dv, o vy dvg L dvy
dt v, dt v, dt
However 7% - cos ¢ 4 sin ¢ , m dv, _
4 > vi ‘v, 7 ae
V.
m iﬁ? = Fy, and (2.45) reduces to

Fi = cosp Fy + sing F

y

Now, combining Eqs. 2.46, 2.41,.and 2.42

F;= cos¢.{q [Egsinfy -nsind ) + v,sing
- Vi
+ sind {q [Eysin(y -nsing ) + v, By

- v, cosp B

v2
7

24

{2.44)
(2.44a)
(2.45)
dv
s dé‘ = Fy, and
(2.46)

the perpendicular force term is

By sin(y ~nsin¢ )

B, cos(y -nsind )1}

sin(y -nsind )

sin(y -nsind )]} (2.47)

The motion of a particle is now deseribed in terms of the

parallel and perpendicular forces, given respectively by Eqs. 2.43 and
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2.47. If thg_iiz (YV-_n sin ¢ ) terns in thegé quations are egpanded
(Appendiﬁ A), the result is an infinite series of harmonics at
f;equencies nw, with aﬁplitﬁdes given by Jn(n). In a general
formulation all terms must be kept and Eqgs. 2.43 and 2.47 must be used
as they stand. However, the equations can be considerably simplified
when time averaged over one cyclotrqﬁ period, TH » because the higher
order force terms (n 2 2).vaniéh. Also; qualitatively, the'vx.‘By term
should average out to zero since wave pﬁase does nof vary in the
y-~direction. _In.tﬁe next sectioﬁ we preseht the necessary conditions

for the averaging to be valid, along with the time averaged equations of

motiom.

D. TIME AVERAGING OF EQUATIONS OF MOTION

Before averaging Eqs. 2.43 and 2.47 over one gyroperiod we have
to make sure that the wave phase vériations, as seen by the particles
during one gyroperiod, are negligible. For the small field case this
- condition can be stated as
w - kev << wy : (2.48)

which would certainly be the case for the Landau resonance described By_

w=-kev =0 - o (2.49)
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Note that Eq. 2.49 is the quivalent of Eq..2.8.

We have stated condition (2.48) assuming small amplitude waves.
This requires that the wave field be small enough thét it cannot move.
the particle by a substantial fraction of a wavelength during a

gyropericd. This condition can be stated as

1 | c ‘ o '
a_ [—— <¢ —— 2.50
ol << | (2.50)
H

where ap is the peak ﬁarallel acceleration,. ¢ is the speed of light, n
is the refractive index, f = ?F is the wave frequency and £ = %E is
the electron gyrofrequency. The peak value of the parallel acceleration

%)during a gyroperiod can be taken to be that for d = %E-and

Y - 1nsing = g'._ From Eq. 2.43 we have
lapl = 12 (B, - w30 (2.51)
In a order to éxpress E, in‘termé of B., we have from Eq. 2.25

Ex nz sinB-gx _ 6?

: . Substituting Eq. 2,52 in Eq. 2.26
n’~¢ n?sinbcosb &, '

where p,= i

B, = - _Em£§§§; 0,E, ' (2.53)

or




By W
E = e ———— 2. 4
z pz kcosd (2.54)
Furthermore, for the near resonant particles —u __ -y = vy, and
keosB Bu .
Eq. 2.54 yields
E; = - Bx v, (2.55)

Replacing the E; in Eq. 2.51 with the above expression the peak

acceleration [api'iS'

lap[=[% (- 'gx; Vo= ViBe)|  (2.56)
lapl= — By va (1 + AR (.2.5661)
where tan o = A% .
Vau

The final step is to substitute (2.56a) in (2.50) in order to
get the condition on wave intensity for.which the averaging of equations

(2.43) and (2.47) is valid;

mfﬁc |pz|tana
gv,nf l+|pz|tana

Thus- B, represents the upper limit on wave magnetic field intensity.
Note that By is equal to the total transverse By for circularly
polarized whistler waves. Assuming By to have a value much higher
( > 100 times ) than the typical field intensities for whistler mode

waves in the magnetosphere [Burtis and Helliwéll, 1975], as shown later.
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in the text, we shall now time average Eqs. 2.43 and 2.47 over one

gyroperiod. .In doing so we use the identities derived in Appendix A,

The averaged equations of motion become

de .

<m EE_ >=<q 6z >~ <qvyBx > {2.58)
dv, 3. >

<m at > = < q gy o= < q vz Oy | (2.59)

or
dwva V. Ccosg Jl(n) .
mo=q EZJO(n) 1 - o Pz ) ] sin{( wt - k z cose 3 (2.60)
d "~ vn kcos8 .
m e = - a0z B2 J1(w (1= =T sin( ut - k 2 coss) (2.61)
' dv, dv,
Since the brackets on the left hand sides are dropped, EE—-and it

should.be understood to be the average rates of change of v, aand v, ,
respectively.

Finally, for an inhomogeneous medium wifh E; variable as in the
magnetosphere, the adiabatic variations of v. and v. can be superposed
on the wave-induced perturbations as long as the variation of 3; inrone
wavelength is ﬁegligible. Thus the complete averaged nonlinear
equations of motion become

dw, .vlkcosa J1(n

= 4 - v, dBy
&t " EzJo(m) [1 -- @ pZJo(ﬂ

2Bo dz

;]sin (wt-kzcosg ) -

(2.62)




dv, = 4 Tw XCOSY kcos® . ., Wy vy dBg
ic o P,E,J1 (1) f1 Jsin (wt kzcgse ) + —EE;_.E;_
(2.63)

We shall discuss the relative importance of the different terms

in Egqs. 2,62 and 2.63 in the next sectiom.

E. .DISCUSSION OF FORCE EQUATIONS

Two terms of the parallel force are:
<q §,> = q E;J,(n) siny | | (2.64) .
<q vy By> = - q Equ(n) pztan o sin vy .(2.65)

Also note that using (2.49)

in® Kk cosb -
n=vy ksl @ tané ———ESE—'V; (2.66)
) Wy wy : W :
o , _ _
n =— tan § tan G _ (2.66a)
Wy

for near-resonant particles.
The term in (2.64) proportional to qE,Jo(n) is similar to the

- qE, term that would be present in the case of electrostatic waves. The



Jo(n) represents the fact that the E; field seen by the particle at

different points in its transverse orbit is changing since E, has a
transverse phase variation giveq by k x sin 8 . The term in {2.65)
represents the effect of the q vxB force, and the fact that since thé
plane of rétation_of the particle and the wave polarization ellipse-are
at an angle { g-- 8), there is a net longitudinal acceleration even
after averaging over one gyroperiod. For cases in which (2.64) is the
dominant term, the.equations of motion for interaction with whistler
mode waves are much the same as those for eiectrostatic waves [Nunn
1971, 1973].

Befdre comparing the relative magnitudes of (2.64) and (2.65) .

for the range of the parameters in the magnetosphere it should be noted
dv

that —Ei-, given by Eq. 2.61, becomes very small for near-resonant
_ vakeosB Vaoo
particles with va = vp, . In this case 1 - ——— =1 - = 0,
’ ’ w Vp n

and the perpendicular motion of the particles is primarily governed by
the adiabatic term of Eq. 2.63. In the following figures we present the
magnitudes of (2.64) and (2}65), as well as the longitudinal
polarization P, as a function of different parameters.’

| Figure 2.4 shows a plot of the longitudinal polarization P, as a
function of the wave normal angle © , for different values of normalized
frequency EE «  The resﬁlté are computed by using.the cold plasma
dispersioh relation [Stix, 19627, Thé Jongitudinal poiarization is
Py = gf , as defined in (2.52). A plasma frequency fp = 180 kHz,
corresﬁonding to 400 el/ce¢ at the magnetic equator at L = 4, along with

the equatorial gyrofrequency fﬁ = 13.65 kHz, were used in computing p, .

-~ For fp >> fy the value of p,is not strongly dependent oh'fp. Note from
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10

fo=180 kHz
f,= 13.65 kHz

1(5'3- ] ] ! 1l 1
1B 30 . 45 60 75 90

g (degrees)

FIGURE 2.4  MAGNITUDE OF THE WAVE LONGITUDINAL POLAR-
IZATION |pg| = |&y/8,| AS A FUNCTION OF

WAVE NORMAL ANGLE ©. [p,| is shown for three different

‘normalized frequencies, - :
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Fig. 2.4 that p, is in general higher at lower frequencies and decreases
with increasing § . Also recall that for longitudinal propagation,
i.e., 8 = 0°, Ez = 0 and there is no interaction between the particles

and the waves, -

Figures 2.5,72;6 and 2,7 compare the peak magnitudes of the ‘two

terms as given by (2.64) and (2.65) for various parameters. Figure 2.5

shows variation of both terms with pitch angle ¢ , for various wave

normal angles © and £ = 0.5 fg. It can be seen that the <qvyBx> term is

negligible for lower pitch angles, while it becomes equal to or larger

than the <q&z> term for o>30°. As long @<30°, the <q&,;> term alomne can
be used to compute the motion of the Landau resonant particles with less

than 107 error.

Figure 2.6 shows the dependence on the wave normal angle for:
various pitch angles o and for £ = 0.5 fy. The resonance cone'angle for
this frequency is =606 as shown., This result indicates that for any
pitch angle o , the <qu$x> term is more important at lower wave normal
angles, but that there is a strong aependence on pitch aﬁgle as was also
indicated in Figure 2.5, For 6 approaching zero Ji(n) goes to zefo and
Pz approaches infinity. As a result, the <qu$x> term.will go to zero
-and may be approximated By ;éEzsinytanza(l - f/fH)/(Z + 2f/fy) for small

‘valueS'of 8 (Appendix A), | |

7 Finally, Figure 2.7 shows the wvariation of'the terms with
'normalized frequency f/fH, The curveé are for o = 40° and three
different values of wave normal aﬁgle @. It can be seen that the
magnetic field term is more important at lower frequencies, qlthough'the

dependence on frequency is not as strong as that on 6 and o .
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FIGURE 2.5  NORMALIZED PEAK MAGNITUDES OF THE <qvyBy>
- AND <q&,> TERMS AS FUNCTIONS OF PITCH AN-

GLE . The results shown are for f = 0.5 fy, and for
three different wave normal angles € .
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FIGURE 2.6  NORMALIZED PEAK MAGNITUDES OF THE <qv v B>
_ AND <q&,> TERMS AS FUNCTIONS OF WAVE NOR-

MAL ANGLE ©. Both terms are calculated for three dif-

ferent pitch angles. The resonance cone angle for

f = 0.5 fy is =60° as shown.
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We can élso use Fig.72.4 to show- that the ﬁpper limit on wave
magnetic field'intensity is really satisfied, as it was assumed when
avéraging the equations of motion. For the parameters of Fig. 2.4, and
£ =5KkHz, @ = 45° , and § = 30°, By = 1.3x 10% pT, a value much
larger than the ﬁypical field intensities in the 0.1 to 100 pT range for
whistler mode waves, Therefore, the required small wave condition for
the averaging over one gyroperiod is easily achieved in most cases.

We have presented a simple set of equations desﬁribing éyclotron
aﬁeraged motion of Landau rescnant particles in a whistler mode wave
propagating at an angle to the static magnetie field. We have argued.
that for the parameters of the earth's magnetosphere and for f <« fH., as
it is ﬁhe case for the whistler mode waves, this would be a very
accurate description of the near resonant particles., The fact thét the
equations are-compact and simple makes them suitablg for analyticai as
well as test particle computer simulation studigs presented in the next

chapters.
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ITI. ANALYTICAL STUDY OF LONGITUDINAL ﬁESONANCE INTERACTIONS

A. INTRODUCTION

In the preceding thaptér we derived a set of equations of motion

(Egs.2.62, 2,63) for an electron interacting with a whistler mode wavel

through a longitudinal resonance process. Before using those eqﬁations

in numerical simulations it is useful to have a semi-quantitative 2

analysis of that interaction process, the purpose of which is to:
a) Determine, qualitatively, the effects of different
parameters on the resonance process, and to
b) Provide a reference for the testing and explaining of -
pumerical results.
From the equations of motion and the resomance condition it is
evident that the most important factors that affect the interaction

Process are:

1) The magnitude of the wave parallel electric field E,
2) The magnitudes of Bessel terms in the equations of motion

. 3) The wave phase velocity v,

4) The electron parallel velocity v,
The variations of Bessel terms have already been discussed in Section

II.E.

In the following text we discuss the remaining parameters
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starting with calculations of éxpected magnitudes of E, in the
magnetosphere, - ﬁext we caleculate the wave phase velocity Vpn and

. analyze the resonance condition Vpu= Vu for a wide range.of
magnetospheric parameters. We also stress the importance of the phase
betwéén a wave and_the interacting electrons and examine'its.variations.
Fiﬁélly, we discuss the energy exchange between the wave and ele;trons
through the longitudinal resonance interaétion in an inhomogenecus

medium such as the mégnetosphere.

B. RELATION OF E. TO B, AND MAGNITUDE OF E. FOR

WHISTLER MODE WAVES

~ Two equations ofrmotion of an electron {(Eqs.2.62, 2.63) are
given.in terms of the wave parallel electric field Eu (E,). However, it
is useful to relate E, to the wave perpendicular magnetic field B, (By)
because most often wave amplitudes are given and referred to in terms of
ﬁ;. We proceed now with a derivation of the quantitative relationship .
between EQ and B, .

Using the plasma dispersion relatibn (Eq. 2.22) it follows that

n® sinf cos@ Ex-+ (Eu-nzsinze )E, =0 (3.1)
or

‘ . w ? : '

n? sinfg cosé Ex:= - (1 - —%;-- n®sin?g ) E, (3.1a)

w




Furthefmore, from Maxwell's equation V X E = —gg- we have
‘ t

k cos@ Ex_- k sing E‘.z = wBy ) (3.2)

Note that we use only amplitudes of gz and gy, Ez and By, because
both 52 and $y vary as cos{wt - k*1).

Now, substituting Ex from (3,2) in (3.1a) we have

_ . T V] ) '
n’sing cosg ( ngt_EEEEEEg_) = =(1- £ _ n’sin’y) E (3.3)
-k cosf w? z
or
2 . - '
n“sind wB w,2
"——————““—z'+ (nzsin28.+ i- £ nzsinze ) Ez =0 - (3.4)
k w
Finally,
n%sind w :
E, = —-—7353——————- gy _ (3.5)
k(:—r iy
or
c ind - ..
Eu = 211 =28 Bs (3.6)
: £, J£2 -1

Equation 3.6 relates E, to B, for whistler mode waves, and it
can be further simplified if fp2>> f+fy when it becomes possible to use

the QL approximation for the refractive index. The refractive index is
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then given as

fZ
_ P
" F(E, cosé = D) (3.7}

and substituting (3.7) for n in Eq. 3.6 the final result is

: 5inb .
(fH/f) cosd - 1 Bue (?.8)

c
E = —
" 1

Eq. 3.8 was also derived by Helliwell [1965]. It relates Eu to B, for
whistler mode signals assuming that QL approximation for a refractive
index is wvalid.

Equation 3.6 can be applied to any whistler mode signal,

although it is possible to derive similar equations for some special

cases of propagation. One such special case is a whistler mode signal

propagating in the Gendrin mode, This mode of propagation is
characterized by the Gendrin angle BG which can be found by setting

é%- (n cos6 ) = 0, The resulting wave normal angle BG is

cosf, = 2¢- ' ' (3.9)

It clearly follows from Eg. 3.9 that the propagation in the

Gendrin mode 1is possible only if f < fH/Z and that GG varies f;om 0° to

90° as f/f, decreases from 0.5 to 0. The interesting properties of
g d4ec .

propagation at the Gendrin angle are summarized as follows:

" 1) Substituting (3.9) in (3.7) the refractive index is




£
g (0) = F | _ (3.10)

ii) The phase velocity in the direction of'ﬁs is

pt = co: 8. %_;E_' (3.11)
G .G P

iii) The group refractive index and velocity are

. f
ngo(8g) = 0, 6 = _fE (3.12)
_ _ - . £
X VgG(GG) =V, =c¢c fp . (3.13)

iv) The group ray refractive index and velocity are.

f .
ng. (6.) = ng (8.) cos, = 2 -& (3.14)
ng G . gG G e fH '
£
¢c H
v = v = = — (3.15)

Figure 3.1 illustrates the shape of the refractive index curve
for £/f < 0.5, and also shows the Gendrin angle BG . The second angle
is the resonance cone angle where the

indicated in Fig.3.1,6 ,

refractive index becomes infinite.
- Thus, waves propagating at the Gendrin angle have their wave

packets traveling in the direction of E; with the velocity v s which

8%

. is identieal to the phase velocity in that direction Vpn > and both
' G




%2

velocities are independent of ﬁhe wave frequency. This property makes
Gendrin mode waves rather interesting for longitudinal resonance
_interactioné since electrons in resonance with those waves, i.e.
Vi = Vpu = Vgr.’ do not drift through the wave packet during the

interaction as they do in the most general case when the wave phase and

ray group velocities along the magnetic field line are.different.

- OOI

RAY

FIGURE 3.1. REFRACTIVE INDEX SURFACE FOR f<fyp/2. ek indicates the
resonance cone where n?®, B¢ is the Gendrin angle, for
which the ray is aligned with the static magnetic field.

Returning to the derivation of the parallel electric field for

the Cendrin mode waves we can substitute n(BG), coseG and
sinGG' = 1'-'coszeG for n, cos6 and sin@d in Eq. 3.8 assuming that

fpsz-fH << 1 is wvalid. The final result is then

Eag = ¢+ By - & (3.16)

P

Note that Eq. 3.8 represents_ﬁhe most general expression for E,



(allowing for the QL approximation) and can also be used to compute

Ewg » whereas Eq. 3.16 is valid only for the Gendrin mode, At this
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point we can use Eqs. 3.8 and 3.16 td plot the magnitude of the parallel

electric field E. as a function of frequency. Three curves shown in
Figure 3.2 are calculated for different values of the wave normal angle
(30°, 50° and 70°), while the wave perpendicular magnetic field B, is

taken to be 10 pT. This figure clearly shows the resonance cone effect;

for a fixed wave frequency f the parallel electric field E, increaseé as

thé wave normal angle increases and E, approaches infinity as 9 -+ GR .
The resoﬁance cone angle GR can be found ffom Eq. 3.7 which yields (for
ﬁhe QL approximation) cosBR ='fi_ and BR as a function of frequency
is.illustrated by the dashed line in Fig. 3.2. At this point we recall
tﬁat an upper limit on the magnitﬁde of E, was already set during the
derivation of equations of motion when they were time-averaged.

Although this limiﬁ is not exceeded in mostlpracticai cases it is
possible that those equations become invalid in a.éituation when

8 - 9R<50.5°. In such a case it would be necessary to use the éomplete
.equations_of motion (Egqs, 2,41, 2.42 and 2.43).

Figure 3.3 shows the wave parallel electric field E. as a
function of frequency and parametric in Bi (10, 20 and 30 pT), while the
wave normal angle 6 for all curves is 30°. Figure 3.4 sghows the wave
parallel elect;ic.field Eug for the.Gendrin'mode propagation as a
function of frequency and parametric in B,. Tﬁe dashed curves show-GG
and BR as functions of frequen;y. By setting -:?.EIHG(BG): 0 it can be
shown that E"G reaches a maximum at the frequency-f = 0.354 fH at which.

BG = 45°,_ This result is inﬁeresting in the light of data on chorus
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actiyity obtained by Burtis [1974]. It was found that in the equatorial
region there are often observed two narrow bands of chorué. Thé upper
band is commonly centered just above half the electron gyreofrequency,
0.5 fy, while the lower band is centered near (.35 fjy. Therefpre, it
may be speculated that the chorus lower band is made up of waves
propagating in the Gendrin mode and that those waves are amplified
through the stromng longitudinal resocnance due to their maximum E“G .
This wave growth could then actount‘for the observed peak of chorus
activity. |

Finally, Figure 3.5 shows E, as a function of wave-normal aqgle
8 ; different curves in that figure correspond to different'wave
frequencies, while the B, is 10 pT; Again we see the resonance cone
effect where E, *® as 9‘*9R .

All.of the above calculations were done at the equator of the
the magnetic field line gijen by L = 4 and assuming Dog™ 400 el/ce.
Similar calculétions can be carried out for different L values and
corresponding values of neq. Figurg 3.6 shows the results of such
calculatiqns for a range of L values; corresponding values of Bag used
iﬁ those calculations are shown in Figure 3.7, with a plasmapause,
characterized by the sharp decrease of electron density, located at
L=4, Thé wave parallel electric field Ea is also normalizea by B: and
given in yV/m/pT. From this figure it is evident that Ea for a given L
value inc;eases as the frequency of the signal increases, as already
féund before‘(see Fig. 3.2). Furthermore Eu is larger outside Ehanr

inside the plasmapause, a fact which is directly related to lower

electron density outside fhe plasmapause.




438

104

L =13 kHz
.12 .

10

L=4
Meq = 400 el/cc
freq = 13.65 kHz
foeq = 180 kHz

1 L 1

0 20 40 60 - 80
®[°]
FIGURE 3.5  PARALLEL ELECTRIC FIELD E, AS A FUNCTION OF WAVE NORMAL

ANGLE @. Different curves correspond to different wave
frequencies. Note that E, + = as 8 » GR. '
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E, /By [pV/m/pT]

@=30°

&;E”‘C'rPSin@'
By, B, ig--i
f
——PLASMAPAUSE
0.1 1 L .
3 4 5

L

FIGURE 3.6 | NORMALIZED PARALLEL ELECTRIC FIELD E,/B. AS A FUNCTION
OF L VALUE. The normalized parallel electric field
Eu/B; is computed for different wave frequencies and the equatorial N

density profile shown in Fig. 3.7,
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Summarizing, a stronger E, (for a given B,) can be achieved by

increasing the wave frequency, or by raising the wave-normal angle, or

both.

1000
300
100+
< 50k j=—PLASMAPAUSE
o
3 .
o
&
c
0
S
. — v ] I
3 4 5 . B
L

FIGURE 3.7 .EQUATORIAL ELECTRON DENSITY AS A FUNCTION OF L VALUE.
: The plasmapause is located at L = 4,




An additional increase in E, is also possible for waves
propagating outside the plasmapause. However, waves with high

wave-normal angles are usually associated with a non-ducted mode of wave

prdpagation which in general is not field aligned, whereas in the ducted

mode the wave normals are very nearly aligned with.the magnetic field
[smith et al, 1960]. In the latter case guiding is based on the
presence of linear field-aligned enhancement (or depression) of
ionization referred to as a duct. Therefore, the effects of the
longitudinal rescnance involving duéted waves are limited by the low
7 wave-normal 'angles- of propagation at which magnitudes of the parallel
electric field are low (see Fig. 3.2). There are other possibilities

for wave guiding along the field line not limited to low wave~-normal

angle waves, such as when the plasmapause acts as.a one-sided duct [Inan
and Bell, 1978]. Still another possibility is to have a non—-ducted wave
which propagates in a field-aligned mode over a portion of the
;agnetospheric path. Alﬁhough those waves usually remain field aligned.
only for a short period of time, tbeir large E, may be sufficient to
cause a strong longitudinal resonance interac;ion.

The importance of figld.aligned propagation arises from the fact
that electrons in the magnetosphere follow the earth's magnetic field as
explained in Section II,A, Thus, if the ray path is not field aligned,

or is only partially aligned, the interaction may be relatively weak.
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C. RESONANCE CONDITION wu = vpu

Beside the equations of motion another important factor to Be
considered is the resomnance condition v, = vﬁu (Eq.2.8). . As discussed
above, fhis condition requires that the wave phase veloeity in the
direction of ﬁ; match the ﬁarticle velocity in that difection. However,
for an inhomogeneoﬁs medium such is the magnetosphefe, bﬁth the phase
veldcity Vpu and the electron parallel velocity v, are ﬁafiable and
their variations depend on the magnetospheric model. Hence, in a case
when the resonance condition is satisfied for a given wave and electron
at éome location in the magnetosphere, it will not in genera} hold at
some otﬁer 1ocation. For.that reason it is necessary‘to study how Vpu
depends on different models used to represent electron density along the
field line. It is also essential to examine variations of‘both phasé
and'parallel velocities with latitude and to study variations of v, for
different pitch angles.

First, let us consider the phase velocity in the direction of E;

which is given as

c ' ’
Vpu = o - coso ) (3.17)
where n is the refractive index given by Eq. 3.7. Using Eq. 3.17 it is
a'simple task to.calculate the phase velocity of a whistler mode wave
for a wide range of parameters. Figure 3.8 shows the equatorial phase
velocity as a function of L value; values of neq used here are again

those of Fig. 3.6. Figures 3.9a,b show the phase velocity as a function
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FIGURE 3.8 ~EQUATORIAL PARALLEL PHASE VELOCITY AS A FUNCTION OF L

VALUE. Values of neq used to compute vp, are those

of Fig. 3.7.
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(a) Vo [km/s]
DE -1 Model
L= 4
ﬂeq=400 elfcc
CF f= 3000 Hz
30000 e = 30°
20000 ;-
10000 F
L ] 1 1 L
-40 -20 0 20 40
A9
{b) Vp” [kmls]
65000}
- R-4 Modet
60000 L=4
' Neq = 10 el/cc
f= 3000 Hz
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FIGURE 3.9  PARALLEL PHASE VELOCITY AS A FUNCTION OF LATITUDE FOR

' DIFFERENT MODELS OF THE DISTRIBUTION OF ELECTRON DEN-
SITY ALONG THE FIELD LINE. 1In (a) electron density along the field
line is represented by the diffusive equilibrium model DE-1, whereas
in (b) the electron density is calculated the collisionless model R-4.
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of latitude; Fig. 3.9a_shows_a typical shape éf vpn inside the
plasmapause, while Fig. 3.9b shows vpe outside the plasrﬁapause. The -
difference bétﬁeen Figs. 3.9a and 3.9b ;eflects not only the assumed
equatorial electron densities neq s bﬁt also the electron density
distribution along the field line. Figure 3.9a is calculated using a
dlffu51ve equilibrium model [Park 1972] which is usually used 1n51de
the plasmapguse., On the othgr hand, the electron density model of
Fig., 3.9b is a collisionless model [Park, 19721 with the electron

density along the field line approximated by

) (3.18)

where A is the latitude.

Evidently, from Fig. 3.9, the phase velocity of whistler mode
waves outside the plasmapause exceeds that fouﬁd inside. Therefore, the
parallel velocity of an electron, which has to match the phasé velocity
of the wave,‘ié also larger outside the plasmapause. Since the |
electrons are moving faster when interactions takg'a place outside the
plasmapause the corresponding interaction times dre shorter compared to
_intéractionrtiﬁes inside the plasmapause. Thus, the effects of a
stronger wave parallel electric field Eu ; related to propagation
outside the plasmapause, tends to be offset by a redqced interaction
;ime.

The parallel velocity as well as the wave phase velocity varies
with.latitude, as already shown in Section II.A, but the two variations

are generally different., By combining the first adiabatic invariant and
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the law of energy conservation we find that the parallel velocity is

given by
N 2
Ve = Vi eq 11+ taﬁzaeq - ""_4"'"_3298_)\ tanzaeq (3. 19) -

cos®)

where Vnéq is the electron equaterial parallel velocity,-deq is the

equatorial pitech angle and A is latitude.

Vi o eqo
. Vueq 10
1.271

Al
FIGURE 3.10 NORMALIZED ELECTRON PARALLEL VELOCITY AS A FUNCTION OF
LATITUDE. Different curves correspond to different
equatorial pitch angles. Note that the mirror point latitude, where
vu = 0, decreases as the equatorial pitch angle increases.

Figure 3.10 shows the normalized parallel velocity as a function

of latitude for different values of the equatorial pitéh angle, This
figure also shows mirror boint latitudes whére vy = 0, From Figs. 3.9
and 3.10 it is eﬁident that the resonance ceordition for a given wave and
electron may, or may not, be satisfied depending on the ratio of the

equatorial phase and parallel velocities. Typical examples shown in



Fig. 3.11 are for three different ratios of the equatorial velocities.
Note that the parallel velocities shown in Fig, 3.11 represent the
unperturbed motion of electrons, i.e. Fig. 3.11 shows onlﬁ adiabétic
variations of vs. Although the adiabatic motion of electrons is altered
by the wave-particle interaction, the electrons are identified in termé
of their initial unperfurbed equatorial parametéfs which sﬁmplifies.the
problem of comparing properties of different electroms.

Those different variations of Vpu and vy with létitude and their
effects on the interaction process, along with effects of other factors

are further discussed in the chapters on numerical results.

D, PHASE BETIWEEN WAVE AND ELECTRON IN LONGITUDINAL RESCNANCE

In Chapter II it was shown that the glectrons trapped in‘the
wave potential well execute an oscillatory motion around the bottom of
the potential well, 1In general the analytical solution of the equation
. of motion for that case is very complex, but it is possible to derive an

approximate solution if the maximum amplitude of the oscillation remains

relatively small. From Eq. 2.12 the parallel electric field Eu s as

seen by electrons in the wave frame, is given by

En = Eng sin(ku*z) (3.20)

‘Therefore, the force exerted on an electron is
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FIGURE 3.11  RELATION BETWEEN v, AND Vo, ALONG THE FIELD LINE.

Depending on the ratio of \'.r.,eq/vp q there may be
one (a), none (b}, or two {c) latitudes at which the longitudinal
resonance condition v, = vp- is satisfied.

. . N n




d?z . .
m 2 = q Eypsin(k,-z) : {3.21)
dr”® - :

which, for a small amplitude oscillation whare sin(k,+z) = k,.z, can be

written as

dzz.
de?

- Engknez C(3.22)

The solution of Eq. 3.22 is

z = sin(wt-t) : (3.23)

Zp

where z_ is the position of the bottom of the potential well as shown in

B
Fig. 2.2, 2z is the position of thé electron and w. is the period of
j/e E"O ku )
oscillation given as w, = ——-;r——‘ . It should be noted that although

this oscillation period 1s computed for a homogeneous medium, this
result can also be used in the case of a slowly varying medium such as
the magnetosphere. Now, dividing Eq. 3.23 by the wavelength, we obtain

the relative phase between the reference point at the potential well

bottom and the electron. This relative phase is

ZB _ ' )
O = Tnjw, Sinlw.t) (3.24)
o, = 0 sin(wrt) G2

The relative phase between the wave and the trapped electron is

also oscillatory in its nature and the phase variation is bounded such-
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that ¢B<<360°. It should also be noted that the smallest émplitude of
the phése.oscillation— corresponds ;0 the case of strongest trépping. On
the other hand the relative phase vériation for untrapped electrons is
represented by constaﬁtly increasing (vp" > vn) Or constantly decreasing
{v “_< vu) phase as‘those electrons drift backward or forward thrpugh
.the wave, respectiveiy.

All of.the above computations, as already pointed out, are
carried out in the wave frame which moves in the z direction at the
phase‘velocity Vpne In order to determine the tétal phase variation let
us again assume propagation as exp i(w-t ~-E;;). The instantaneous
ffequency w; can be found by taking the time derivative é% Gg't —-E;;)

‘which yields

~ |

Rl : T
o, =w-kgr (3.25)

where w, is actﬁally the Doppler shifted frequency of the wave as seen

i
by an electron placed at a location defined by radius vector r. It is
possible to rewrite Eq. 3.18 in the same form as that of Eq. 2.6 by
using‘gg = v, and substituting m Wy, for'wi. Equation 3.24 can now be
used tﬁ examine a behavior of the total phase between a wave and an

electron. First, rewriting (3.25) we have
w; = W= k, v, . (3.26)

If w, = 0 Egq. 3.26 reduces to Eq. 2.7, or




pu = Vn . (3.27)

which is the originalrlongitudinal resonance condition. Therefore,‘if
v; = vp“ the relative phase ¢r remains constant (Eq. 3.243)..

However, if an electron has a éarallel velocity which does not
_match the wafe phase velocity exactly the instantanecus (Doppler
shifted) frequency mi.has a non-zero value. In that case both the sign
and the magnitude of wi depend on the difference between the parallel
velocity and the phase velocity; whep v < Vous Wy is positive and its
magnitude increases as v,, decreases assuming that Vo is constant; in a
case when va > Vpn the inStantangous frequency wi is negative and its
magnitude incréases as v, increases; again assuming a constant Voue

When W; is known the total phase shift can be expressed as

¢ = [midt | (3.28)
: ‘
or as
. . (lJi . .
¢ = S_ ds ) ) (3.29)
Vou
]
. , ds
where we have used the identity dt = v
. 'P"

Finally, Table 3.1 summarizes qualitatively the behavior of the
total phase shifp as a function of fp“ - Vn. |

The phase between the wave and the.electron is a very important
facﬁor in the trapping process, Itris eventually the.phase that .

- determines if a given wave will trap any electrons, although all other
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resonance conditions may already be meﬁ, i,e the parallel velocity is
close to the phase velocity and the parallel electric field is strong
enough to pull the electron into the potential well. Thefe is no
trapping if the phasing‘is wr&ng, i.e, if electrons are accelerated when
trapping would require deceleration or vice ﬁersa. The numerical
results will show that a small difference in phése, less than 10°, can
make a large difference in the behavior of electrons for which the
resonance condition Qp“ = v, is satisfied. Furthermorg, the phase
directly translates into the position.of an electron within a‘wave
packet (Eq. 3.24) and if there is any space bunching of electrons there

must exist a corresponding phase bunching,

Velocity Conditions . Vpu = Vi >0 Vpu = Vu < O‘

ﬁagnitude of Total Positive and Negative and
Phase Shift . increases with time decreases with time
Rate of Phase increases as Vpu = Vu increases as Vpu =~ Vi

Change with Time increases : decreases

Table 3.1  PHASE SHIFT PROPERTIES OF LONGIDUTINALLY RESONANT
ELECTRON.- AS A FUNCTION OF PARALLEL VELOCITY CONDITIONS. '




E. ENERGY EXCHANGE

In Chapte: II we have discussed the energy exchange.between the
waﬁe and trapped electrons in a homogeneous medium. For the case of an
inhomogeneous medium the energy exchanged during a longitudinal
interaction can be computed in a similar fashion. However, we shall sée
later when presenting numerical results that the longitudinal resonance
in the magnetosphere may, or may not, involve trapping of electrons. It
will also be shown that electrons in both cases, whether ﬁhey are
trapped or not, exchange their energy with a wave. The energyAexchange
process is quite different in those two cases, but it is still possible
to use an equation similar to Eq.2.18 by using correct velocity limits
for integration and an adéquate value to represent the energy excﬁanged
through the interaction with a single electron, It is then also
essential to compare contributions from both groups of electrons
{trapped and untrgpped), and to determine whether there are situations
where the contribution from either group is negligible.

Here we recall that in the case of a homogéneous medium tﬁe
energy is exchanged only during the trapping process, i.e. only during
the period when the eiectrons are accelerated/decelerated by the wave in
order to métch the phase and parallel velocities, and there is no net’
energy exchange after that process is finished, or alternatively, an
electron-hés to be trapped in order to exchange its energy with a wave.:
There is still an instantaneous energy exchange after the trapping is
completed because z2lectrons oscillate af the bottom of the potential

well, but when this instantaneous energy is averaged over one trapping
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period there is-no net effect. This is so because the electron's
oscillatory motion is perfectly symmetrié around the bottom of the
potential well, shown by Eq..3.20, whereas in the magnetosphere or any
other inhomogeneous medium, the energy can also be exchanged after the
electrons are trapped. This can be explained as follows; after an
electron is trapped its parallel velocity is very close or equal to the
wave phase velocity and it follows the phase velocity variations as long
as that electron remains trapped. Thus, the perturbed parallel velociﬁy
is different from the parallel velocity that a particular electron would
have in the absence of the wave, This diffefence, dva, is directly
proporitional to the phase vélocity chénges [Brice, 1960] and it is given

as

Ay = (TSP-‘)f ds + (3F)_ (3.30)

where, in general, phasé velocity depends on both frequency and
position. For the positive sign of Aw, the electron gains energy,.while
for the negative sign the wave gains energy. We shall discuss further
various aspects of Eq. 3.30 later in the text.

In the next chapters we present results of a test particle
simulation of the wave-particle interaction and illustrate various

aspects of the interaction as they were discussed in the above analysis.




IV, DESCRIPTION OF THE-NUMERICAL STMULATION

A, INTRODUCTION

In this chapter we detail procedures used in numerical
simulations of the time-averaged equations of motion. The method used
in this report is a test particle simulation. This approach uses a

single particle to find wave induced perturbations of the particle

trajeétory, and it is feasible to test quantitatively the effects of

" various factors already consideredrin a qualitative analysis présented
in Chapter IIL. The test particle approach can be further expanded to
determine thg-perturbations of a full particle distribution by computing
the effects of the wave on an adequate number of particles that are
appropriately distributed in the phase-velocity space. Hoﬁever,'there
are restfictibns‘imposed on the full distribution'simulations because
there is ho feedback that should account for variations of the wave

amplitude as particles and the wave exchange their energies. This

feedback problem is-treated in more detail in a discussion of the
numerical results,

The actuél 1isting of the particle code used in all simulatipns
presented here is given in Appendix B. Next we outline the basic

operation of the program.
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B. COMPUTATION OF PROPAGATION AND ADIABATIC MOTION PARAMETERS

The representation of the static magnetic field along the field
line is based on a centered magnetic dipole model described by
Eq. 2.1. Valués of B, obtained from that equation are then used to
compute local values of the gyrofrequency fy, as well as to compute a

dB,
normalized gradient of the magnetic field é;-——— . At the same time a

dz
o
cold plasma density variation along the field line can be calculated
using two different models, One model assumes diffusive equilibrium
{Angerami and Thomas, 1964) with the electron density along the field
line given as
1
Npg(r) = z §se (4.1)
i=1

where the Gi are the telaﬁive concentrations of the ionic species,ln is

" the number of species, G = rb[l - (rb/r)] » Ty is the geocentric

distance (in kilometers) to the base of the DE model,

8; = 1.506I(rb/7370)2(1/41_1), and T is temperature at the base of the

DE model (r = 1000 km). A second model is a collisionless model for which
the aensity is given by Eq. 3.18. The input parameters needed to uniquely
define the field line and propagation propérties are L value,_the
equatofial cold plasma density neq, the wave.frequency f, and the
wave~normal éngle 8. Given those parameters the program divides the
entire field line in_spatial segments 10 kilometers long and than

dB,

computes, and stores, values of vp“(z), k,(z), and B 4z for each
o

segment; z is a distance between the equator and a particular 10 km
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dBg
segment measured along the field line. The stored values of E%- =
- : ]

as seen from Eqs. 2.62, and 2.63, are used té compute adiabatic terms in
the equaticms of motion. All of the above computations can be done
either for a general whistler mode wave or for the Gendrin mode wave.

In the latter case the program also computes, and stores, values of
8g(z) and E"G(z). In addition the érogram also computes, and stores,
values of wave phase change given as Ikndz; In contrast to other

A
parameters the values of jkudz are not symmetric about the equator and

depend on the latitude where the particles are started. This starting
latitude, i.e location where particles start their motion along. the

field line, is also one of the input parameters.

C. NUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION

ﬁefore we start with simulations each'particle must be uniquely
- defined by.an appropriate set of parametefs.  Those parameters then

describe the particle's position in phase-velocity space. For partitles
in the magnetosphere the velocity coordinate is uniquely given by their

and equatoriai pitch angle, @ -

equatorial parallel velocity Vng eq

eq
. As particles move along the field line their corfeSpénding equatorial
parallel velocities can be computed with the help of Eq. 3.19. At the
same time the locai pitch angle is related to.the equatorial pitch angle
through | | |

‘sina _
. oeq_

(4.2)




where Bo(z) is the local value of the static magnetic field, and BOeq is . ;

the equatorial magnetic field,

In this report a given particle is aiways identified in terms of
the eQuatorial‘parameters which then simplifies the task of comparing
-properties of different particles. The conversion from local to
equatorial values is made on the assumption of unperturbed particle
motion,
In addition to the wvelocity wva and pitch angle o there .
- oeq oeq
is a third parameter, the initial phase ¢O » which determines the

position of a particle with respect to the wave packet at the beginning

of the interaction (this is a local, as opposed to an equatorial,

_quantity). In order to examine the dependence of the interaction

. teSults on the initial particle phase a simulation is actually done

using tﬁelve particles uniformly distributed in phase space; the | .3
parallel velocity and pitch angle are, however, identical for ali FWelve

particles. This assembly_of twelve particles uniformly distributed in

phase is called a test sheet and is illustrated in Figure 4.1. It

should be recalled.that, asealready_emphasized inlSection II1I.D, the

phase between‘a.partiele and a wave is‘directly related to the

particle'’s position in the z-axis direction. This is important because

if particles are distributed in phase, i.e. space, the starting time t

of the integration must be increased by At = from particle to ‘ _ 5

A
lZvP“
particle in order to maintain a correct phase separation between the
particles in the sheet, This is especially important in particle phase

(space) bunching calculations where particle positions determine the
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extent of bunching.

After particles are injected at a givén latitude their motiom ié
altered due to the wave force which is computed by numerical integration
of the équations of motion. A proper value of the starting latitude,
for interactions with a monochromatic CW signal as illustrated in
Fig. 4.2, was found experimentally by gradually incieasing the distance

between the first resonance location and the location of particle

injection, and finding a latitude where further increase of this

- distance caused no significant changes of the final results. The actual
.integration of the equation of motions is doﬁe using a simple |
predictor~corrector method using temporal steps with At = 0.001 msec.,
This time step size was also found expérimeﬁtally, and for smaller size
step there were only insignificant fluctuations of the final results in
all of the_examples presented later in the text., The integration'method.
itself consists in predicting ‘a position of a given particle after
elapse of one time increment using current values of force, i.e. using
those forces acting on the particle at the beginning of the time

increment. However, after the particle reaches a new position forces

acting on it are also different, and it is necessary to recompute
(correct) the particle's position by using the average force. This
average force is found as a mean value of two forces, one at the

beginning and one at the end of the time interval At. This newly

computed position of the particle is then taken as a new starting point,
and the whole process is repeated.
For a case of a monochromatic CW wave particles travel along the

field line and reach the first resonance point (Fig. 4.2) where the wave
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induced perturbations of particles trajectories.become stronger and
étronger. At this peoint further behavior of the particles is very
.dependént on the initial phase ¢, . Although all particles have thgir
motion altered by the wave forces only a certain class of particles
becomes trapped, i.e. only those with an appropriate phase, wﬁile other
particles remain'untrapped; However, in both cases the integration is
continuved until all.particles reach their second resonant point on the
other side of the equator. After that moment the wave induced
perturbations become smaller.and smaller as the difference between
particles paréllel velocities and the wave phase velocity increases.
Tﬁe end point of:the integration is then defined as the locatién where
the absolute.differenée-between the two velocities exceeds 10%. This
vaiue was-detérmined experimentally,'and the particular latitude where
.the ébove condition occurs is called the dgtrapping latitude.

As the particle moves along the field line from the starting
point toward a detrap point it has its adiabatip pitch angle variatibn
modified by the wave. Finally, after.the particle reaches its detrap
point it will have certain dp and vay which are then transformed into
the corresponding equatorial wvalues OFeq and ﬁueq -by using (4.1) and
(3.19). The difference Upaq = Opeq 8ives the totai pitch angle
change, or scattering,‘while the difference Avy = Vigeq = ViFeq givés
the total energy exchange through 1/2.m.Avn2. The final scattering and
the amount of transferred energy are given.both.for each Individual
. particle and for a complete test particle sheet (mean value for 12
particles).

In the next chapters we study the scattering of particles and




the_energyrexchange process for different wave functions and a wide

range of particle initial parameters.
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V. NUMERICAL ANALYSIS OF THE INTERACTION

A, INTRODUCTION

In the previous chaptefs we have derived a set of equations of
motion for longifudinally resonant electrons, and.we have_studied
analytically various aspects of the resonance process. Those analytical
studies are now complemented by the results of the numerical simulation
analysis. Numerical results should further illuminate the physics of
the interaction process, and enable us to compare the effects of various
parameters on a quantitative basis, i.e.-in terms.of scattering and
energy exchange efficiencies. The behavior of individual eiectrons and

sheets is studied for a wide range of the parameters such as En, o, L,

q°
aeq’ ¢0, and for different wave functions, i.e. for different wave
amplitude variations along the field line. In our calculations we have
used three different types of wave functions as they are described
below:
-8) Monochromatic CW wave with a constant wave amplitude along
the field line,
b) One-sided wave function characterized by a verf weak wave on
bne'side of the equator and a stfong wave on the other side.
The transition région between the above regions is taken to

‘be 1000 km long and starting at the equator. Such a wave

function can be created through a gyroresonance process.
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c) Spatial amplitude pulse formed by a non—ductéd wave
when its ray path is partially field aligned.
In the following discussion we present results of the numerical

gimulations.

B. SCATTERING- OF A SINGLE SHEET INTERACTING WITH CW SIGNAL

For a case of monochromatic CW signal the interaction geometry

is already shown iIn Fig. 4.2, with electrons being injected at -150

latitude. All electrons are identified in terms of their equatorial

parameters, vneq and aeq s with the initial phase ¢0 being a third
parémeter. First, we consider scattering of a single sheet (12
electrons uniformly distributed in phase at the injection point) as a
function ofrthe initial equatorial parallel velocity v"eqo' Other

parameters for this example ave listed in Table 5.1 below.

Field Line . L=4

Equatoriﬁl Electron Density" : " 400 el/ec

Equatorial Gyrofrequency | ' £ = 13.65 kiz

Equatorial Plaémafrequency | fp = 180 kHz

Wave Amplitude ' B, = 10 pT

Wave Frequency | £ =3 kHz

Wave Normal Angle _ ‘ 6 = 30°

Equatorial Parallel Phase Velocity A v,,= 9.924 10° m/s
eq

Table 5.1  PARAMETER VALUES FOR THE EXAMPLE CASE
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At this point we should note that we have used two
approximations in numerical computations. First, it is assumed that the
‘wave-normal angle is fixed, and second, the wave ampli;ﬂde is also
treated as though it has a constant value. However, it is well known
that in the magnetosphere both wave-normal angle and wave amplitude
change with location. The ﬁave—normal.angle'changes as dictated by the
guiding mechanisms [Helliwell, 1965] which is true for ducted'wéves,
whereas wave-normals of nonducted waves can be found using ray-tracing
analysis [Kimura, 1966, Burtis, 1974]. The wave amplitude variation
arises from the inhomogeneity of the-magnetosﬁhere, and it is feasible
to use a slowly-varying medium analysis to calculate those variations
[Budden, 1961]. From ray-tracing aﬁd'amplitude calculations it is
obvious that both the wave-normal angle and the wave amplitude may
change significantly along the field line, and affect the longitﬁdinal
resonanée interaction. Nevertheless, if the interaction regioﬁ is
relatively small, the changes of wave properties are also small, and it
is permissible to .assume as a first order approximation that the
wave-normal angle and wave amplitude are constant quantities. If there
is a need for evén more accurate analysis it is feasible to use
ray-tracing along with WKB‘solution to derive exact solutions for.both ]
and B , and then incorporate those results in the longitudinal
resonance calculations,
The mean scattering, <Aaeq> (< S denotes averéging over the 7

initial phases), of a single sheet of electrons as a function of sheet

equatorial parallel velocity is illustrated in Figure 5.1. The wave
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intensity B, = 10 pT corresponds to E,= 15 u¥/m. A solid curve shown in
that figure indicates the mean final scattering of a sheet at the end
poiﬁt'of the integration of equations of moﬁion tas defined in Fig,
4.2), while the dashed curve represents.the mean scattering of a sheet
computed at the equator, Comparing fhe equatorial, i.e. cumﬁlative
scattering when electrons_réach the equator, and the final scattering it
is obvious that the final scattering is, on average, one order of
magnitude smaller than the eqﬁatorial scattering. It is also clear from
Fig. 5.1 that the equatorial scattering is negative, i.e. the mean
equatorial pitch aﬁgle of twelve electrons forming a sheet is lowered.
To explain those results shown in Fig., 5.1 it is useful to study
trajectories of individual electrons. TFor example Figure 5.2
illustrates typical electron trajectories and energy variations
calculated for interaétions with a ﬁonochromatic CW signal. Four
electrons shown in Fig. 5.1 belong to a test sheet specified by

eqq vpn eq? andéleq = 10°. A main difference between those electrons
are their initial phases ¢0 as indicated in Fig. 5.1 and defined in
Fig. 4.1. The left column of Fig. 5.2 shows energies of the four
" -electrons as a function of interaction time, while the right column of
the same figure illustrates variations of both parallel and phase
velocities as a2 function of latitude. Note that the time scale and the
lafitude scale cover fhe same portion of the field line, Next consider
Fig. 5.2a where, as the electron approaches the equator, the parallel
velocity becomes better matched to the wave phase velocity, and fhe wave
effects become more cumulative. Those wave effects cause the

oscillations of vy and E, and as the électron comes closer to the
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FIGURE 5.2  SINGLE ELECTRON TRAJECTORIES FOR B, = 10 pT. The electron
energy and parallel velocity are shown as a function of

latitude as it interacts with CW wave. The initial parallel velocity

. Vagpq = Vpueq, and a = 10° for all electrons. The initial phase ¢, is

- 30° in (a), 90° in (b), 120° in (c), and 270° in (d).




equator the amplitudes of the oscillations increase. At the point

t =I0.52 sec (A= -3.,5°) the pérallel velocity of the electron equals
the phase velocity, and that point is called the first resonancé point.
Electrons shown in Figs. 5.2b, 5.2¢c, and 5.2d exhibit similar behavior
before they reach the first resonance point. waever, ;fter electrons
travel beyond the first resonance only the top three electrons shown in
Fig. 5.2 areAaccelerated by the wave in such a manner that their
parallel velocities become larger than the phase velocity, It is also
cleaf from Figs. 5.2a, S.Zb; and 5.2c that this increése of the parallel
velocity is accompanied by an increase of the total energy of the
electrons.'_After those electrons have traveled beyond the first
resonance their motion, as they travel across the equator, ié still
affected by the wave, but the parallel velocity femains larger than the
phase velocity. However, on the other side of the equator the phase
Qelocity again starts to increase and the electrons approach their
second resonance point. At this second resonance point the electrons
are decelerated by the wave and consequently thgir energy is also
decreased. Thus the electrons shown in Figs. 5.2a, 5.2b, and 5.2¢c are
" being accelerated at the first reéonance point and then.decelerated'at
the second resconance point, The amount of acceleration and deceleration
in general depends on the actual phase between a given electron and the
wave, and as a final result électron eriergy can be unchanged (Fig.
5.2a), increased (Fig. 5.2b) of decreased (Fig. 5.2c). Compared to
those top thrée cases (Figs. S.Za, 5.2b, 5.2¢) a fourth electron
trajectory illustrated in Fig. 5,2d is quite differeﬁt. This electron

became trapped after the first resonance interaction and its parallel
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veloeity, as well as the total energy, shows osecillatory behavior whiéh
is Characteristic éf the trapped electroné.
Figure 5.3 is a time expanded view of the electron's behavior

during a 400 msec window centered around the first resonance point at
t = 0 msec. This figure shows both parallél velocity and electrcn_pgase.
behavior. From the phase diagrams it follows that the phase is
increasing before &he first reSoﬁance, with thé rate of iﬁcfeasg
-decreasing as electrons approach the first resonance point. This type
of phase variation is consigtent with that found analytically in Chapter
ITT. At the resbnance point the phase does not change, i.e. iﬁ becomes
constant, énd the first derivative is equal to zero, as indicated in
Fig, 5.3. After the first resonance untrappéd and trapped electrons
undergo different phase variations. Untrapped electrons are associated
with a constantly decreasing phaée as a result of v, > Vo while
trapped electrons exﬁibit an oscillatory phase behavior as they |
oscillﬁte aﬁ the bottom of the potential well. ©Note that an electron is
considered to be trapped if it executes at least one complete phase
oscillarion, Figure 5.3 also clearly illustrates significance of the
phase between electrons and a wave, By comparing the phase behavior of
thg electrons shown in Figs. 5.3c¢c and 5.3d, we see that the difference
in their phases at the resonance point (t = 0 msec) is less_then 5
degrees, but the electron of Fig.5.2¢c is not trappe&, whereas the
electron of Fig., 5.2d is trapped.

‘Those four sample trajectories are representative of typical
perturbations of electron motion induced by the wave forces. Finally,

to explain the results of Fig, 5.1 where the equatorial 'scattering is
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lafger than the final scattering, the energies of all 12 electrons are
édded together and plotted as a function of latitude in Figure 5.4.

From this figure it immediately follows that there is a region around
the equator where the normalized total energy of the electron sheet is
increased, This energy increase is on average about 27 of the initial
total energy, and it is limited to latitudes between -4° and 4°, The
jump in the energy 'is caused by the acceleration of untrapped electrons
such as those shown in Figs. 5.2a, 5.2b, 5.2c, while tﬁe energy envelope
oscillations are caused by trapped electrons such as that of Fig. 5.2d.
In the particular example there were 7 untrapped electrons and 5 trépped
electrons, Beyond ) = 4° the total energy of the sheet returns almost
to ;he initial level. Here we reéall that an increase of the electron
energy yields a decrease of the pitch angle, while a decrease of the
electron energy yields an increase of the pitch angle. Bearing this -
relation in mind it is then easy to explain the results of Fig; 5.1 by
translating energy variations shown in Fig. 5.4 into pitch angle
variations, This transformation immedigtely reveals that the equétorial . g

scattering is negative and larger than the final scattering, again as

indicated in Fig. 5.1. It also explains why the final scattering can be
both positive or negative because the final energy can be either larger
or smaller than the initial energy. The final scattering appears, &ue
to its randomness, as though it resulted from an incoherent interaction.
On the other hand the equatorial scaftering appears to bé much less
random implying a larger degree of coherence, This indicates that
coherence of this particular type of longitpdinal interaction is

position dependent, and it is necessary to examine electron trajectories
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rather than to rely only on scattering results.
The energy gained by the electrons is extracted from the wave
- which means that the wave amplitude must be reduced around the equator.
For test parficle studies involving only twelve particles this
attenuation of the wave amplitude is negligible, but it should be
considered in full distribution computations where significant loss of
the wave energy will cause a strong wave attenuation and consequently
weaken the interaction process.
Froﬁ Fig. 5.3d it feollows that the trapping period is about 82
msec. .Because the medium inhomoéeneity is very Small_around ;he equator
this trapping period can be also computed using a relation derived for

the homogeneous medium

_,L/L :
Tt T oom ek, k, g (5.1)

Using'(S.l) with k, = 1.9 10 *and E, = 15 uV/m, the trapping period is
computed to be 81;5 msec, which is in very good agreement with the
numerical result. It is also easy to check the oscillation period of v,
for untrapped electrons. For example consider the electron shoﬁn in
Fig. 5.2b and its parallel velocity at t = 100 msec. The period of
parallel velocity oscillation at that point is about 20 msec, which may
also be found by qomputing the doppler shifted frequency of the wave

' W= w - kwu. .Taking w = 27+ 3660 rad/sgé, ko= 1,9 10 °, and v =
10100 km/sec yields w, = 331 rad/sec; the equivalent oscillation period

is of about 19 msec which is in a good agreement with numerical results.

As mentioned earlier results shown in Figs. 5.2, 5.3, and 5.4
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are calculated for a sheet with initial equatorial parallel velocity

plleq

purposes of compariéon, Figure 5.5 shows the parallel velccity behavior

Vieq, equal to the.equatorial phase velocity w of a wave. For

of four electrbns, from a sheet with'v"'eqo %.1,050 Vpneq> énd again as
.a function of latitude. The motion of the electrons is similar to that
shown in Fig. 5.2. Tﬁe possibility of trapping, or not trapping,
~ depends on the initial phase ¢o of each individual electron; and thg
final scattering can be both positive and negative.

The above results suggést that the longitudinal resonance
interaction with a monochromatic CW signal is confined to a relatively
small region around fhe equatér. _The éontrolling factor in the

interaction is the variation of phase ¢ which determines if electrons

become trapped or not, and affects the amount of exchanged energy.

C. SCATITERING OF A SINGLE SHEET INTERACTING WITH CW WAVES

AMPLIFIED AT THE EQUATOR THROUGH THE CYCLOTRON RESONANCE

Next we considef the séattering-of single electron sheet

"~ interacting with a monoch;omatic CW wave whose amplitude is increased

.through'the gyroresonance process. The aﬁplification process of_CW

waves takes place close to the eéuator [Helliwell, 1967],.ana in our

calculations the growth region is taken to be 1000 km long. The wave

amplitﬁde, before it reaches the equatorial growth region, is (0,1 pT.
Figures 5.6 and S.f illustrate the scattering of a single sheet

as a;function_of the initial parallel wvelocity Vﬁeqo . In all
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computations the wave amplitude is B, = 10 pf, or E, = 15 uV/ﬁ, while
the equatorial pitch angle is taken to be 10°, 30°, 50°, and 70°, The
total sheet scattering is computgd twice.for each parallel velocity
increﬁent;'onée it is computed using complete averaged equations of

. motion, and once using only the qE term of Eq.2.61 as though the wave is
electrostatic, i.e. it is assumed that Jo(h) = 1 and Jl(T})..= 0. As
~discussed earlier, the effects of the_Bessel terms, i.e., the effects of
the wave magnetic field fcrﬁes,rshbuld become significant at larger
pitch angles, while at lower pitch angies the difference between the twa
computational methods is expected to be small. From Fig. 5.6a, which is
calculatgd using %q = 10°, it is evident that the two methods prodﬁce
very similar results, as expected.  On the other hand, as the pitch
angle increases ﬁhe difference between the results becomes much large;

and for 0, . = 70° there is almost no scattering if we exclude the Bessel

q
terms from the equaticons of motion (Fig. 5.7b), whereas the scattering
calculated ﬁsing the complete equations is about -6° at Vieq = Vpueg®
Thoéé examples confirm the results of Chapter II, where it was found
that the Bessel terms will be a very important facﬁof in governing the-
motion of electrons with high pitch angles. This is especially true for
‘the J1(n) ferm, which represents effects of the wave magnetic force, as
already indicated in Figs. 2.5, 2.6 and 2.7.

| As discussed eaflier the longitudinal resonance interaction
depends strongly on the wave amplitude. This wave amplitude dependence
is depicted in Figure 5.8. Three different curves shown in that figure

represent scattering of sheets with three different initial parallel

velocities Vueq, - A sheet with Viweq, = Vpreq has the bptimal parallel
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velocity as required by the resonance condition. Two other‘sheets.with
Vieqy T 0.995 Voneq and Veeq, = 1,005 Vpmeq are slightly off the
resonance when they encounter the wave growth region at the equator; the
first is slower and the second is faster than the phase fronr of the
wave, respectively. The effects of different sheet velocities are best
'111ustrated by con51der1ng the amount of pitch angle scattering for a
given wave amplitude, The particle sheet with‘v”eqf=vp"eq is scattered
about - 0,1° when interacting with a relatively weak wave with Balé 5
pT. On the other haﬁa, the other two sheets require a wave with 3Ll= 18
pT to achieve the same amount of scattering. Below B, = 18 pT |
scattering of the sheet with Vugq = 0.995 Vpueq is.small and negative,
whereas scattering of the sheet with Vigg = 1.605 Vpiteq is also small,
but positive. We reczall from Section III.E that the direction of energy
exchange depends on the relative magnitudes of the parallel and phase
velocities; if an electron is faster than a wave it is decelerated and
loses its kinetic energy, if an electron is slower than a wave it is
accelerated and gains klnetlcrenergy. An increase, or decrease, of the
" kinetic energy is accomplished by chenging the parallel velocity of the
electron through the resonance procees. If the parallel velocity of an
electron is increased, its equatoriel pitch angle becomes smaller, or
equivalently, if the parallel velocity of an electron is decreased, its
equatorial pitch engle becomes larger. It is this type of process that
explains the behavior of the two sheets with Vieq, = 0.995 Vpueq and
Vueq,= 1.005 Vpreq for B, < 18 pT. It may be wondered why a sheet with
Vieq, = Vpueg does not show similar behavior, and what is happening when

B, >18 pT in the other two cases, The answers may be found by
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ekamining trajectories of individua; test electrons, From those results
it was found ;hat for weak waves all electroﬁs remain uﬁtrapped
regardless of their initial parallel velbcities; As long as the electron
is not trapped, i.e és long as the electron parallel velocityrdoes not
follow the phase velocity variation, the longitudinal interaction is
generally limited to two relatively small regions around the two
‘rescnance points. In our case the intefaction is further limited to
only one side of the equator where the wave amplitude is sufficiently
strong. Next, as the wavg amplitude increéses beyond the equator the
iﬁteractioﬂ becomes strdﬁger, and from the trajéctory calcﬁlations, it
is evident that some electrons become'trapped. This transition between
the untrapped and trapﬁed mode of the 1ongitudinﬁl interaction is
characterized by a significant increase inlthe scattering. The
amplitude threshold at which the trapped mode scattering o?ertakes the
untrapped mode scattering.depends on the initial parallel velocity Vieq,
.as.shown‘in_Fig. 5.8. The threshold amplitude for Vigq, = vp"eq-is'as
low as B, = 3 pT, with a relatively smooth transition between the two
interaction regimes._ The amplitude threshold in the two other cases is
about B, = 18 pT with a much sharper'transiﬁion between two interaction
regimes.

The individual particle ﬁr;jectories are illustrated in Figures
5.9, 5.10, and 5.11. Figure 5;9_shows parallel velocities and phases of
four electrons with V"eqd = Vpngqr o 7 10° , and diffe;ent initial
phases ¢0 » as functions of latitude and timé, reépectively. The wavg
amplitude is B = 10 pT. As in the case for a CW signal the parallel

velocity variation of those electrons is controlled by the phase
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FIGURE 5.9  SINGLE ELECTRON TRAJECTORIES FOR By = 10 pT. Paral-

. : lel velocity and phase behavior for electrons with
Vueq =Vpeq and @ = 10°interacting with variable amplitude CW.
signal. The initial electron phase is 0° in (a), 120° in (b),
150° in (e}, and 300° in (d).




95

(A) : :obao

{km/sec)

9840 :
=200 [+] 200
e (msec)
Vikm/sec)

(B) 10240[

9860

200 Q 200
t(msec)
V.{km/sec)
(C) 10220
vasok :
=200 0 200
: t (maec)
Vikm/see)
(D) 102201
8900
X =200 Q 200

. timsec)

FIGURE 5.10  SINGLE ELECTRON TRAJECTORIES.FDR B, = 10 pT. Shown here
are the parallel velocity and phase variations around the
Other parameters are same as those in

first resonance point at t=0.
Fig. 5.9.
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ﬁariation. For example, the electron trajectory of Fig. 5.9a indicates
absence of trapping because of an impropér phase, whereas the numbef

of oscillations for trapped electrons in the other threé cases also
depends on the phase at the moment when.the parailel velocity equals the
wave phase velocity. Figure 5.10 depicts a time expanded wview of.the
‘electron trajectories aroﬁnd the first resonance point, Before
analysing those trajectories we recall from section I;;B that the
variation of E, is described, in the wave ffame, as cos kaz, and that
the bottom of the potential well is at ZB as shown imn Figure 2.2, In
Figure 5.10 the time t = 0 indicates the first resonance where

v".= vp" +« The phase at this péint is a crucial factor governing the
further motion of a partiéular glectron. For example, the phase of -
electron shown in Fig. 5.10a is such that it is strongly decelerated and
by the time of phase reversal, i.,e. electron acceleration, the paral}el
and wave phase velocity are.too different for trapping to be possible.
Observing the phase of tge electron in Fig. 5.10b at t = 0 we find this
phase to be significantly smaller than the phase in Fig, 5.10a. Due to
this different'phase the second electron is less decelerated, eventuall&
bécomes trapped, énd executes one oscillation at the bottom of the
potential well. For the next two electrons shown in Figs. 5.10c and
5.10d4 the phases af t = 0 are even smaller resulting in an increasing
nﬁmber of oscillations. We note that the amplitudes of both velocity
and phase oscillations decrease as the phase at t = 0 decreases. In the
ex&mple shown in Fig. 5.10d the phase at t = 0 is very close to the.
op;imal 90° which ;hen results in the strongest trapping. As discussed

'gaflier the 90° phase indicates that an electron is exactly at the.
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FIGURE 5.11  SINGLE ELECTRON TRAJECTORIES FOR'B = 30 pT. The electrom

parameters are same as those in Fig. 5.9.
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bottém of ﬁhe potential well. To illustrate the effects of wave
amplitude.Figure 5.11 shows the same four electrons, but the wave
émplitude is increased to ﬁi = 30 pT. In this case even the first
electron becomes trapped, and the other three electréns now remain
trapped for longer periods of time,

Figure 5,12 shows_the scattering of individual electroms as a
function of their initial-phases qa for three aifferent wave amplitudes,
This figure confirms the importance of phase as.a controlling factor in
the longitudinal resonance‘interaction. Figure 5.12 shows that it is
possible teo achieve a significant iﬁcrease of the scattering efficiency
by changing the inital phase q) from 0° to 180°, We summarize the
results of the above analysis in Figﬁre 5.13 which shows the normélized
total energy of a single sheet as a function of latitude. The initial
équatorial parallel velcocity equals the equaﬁorial phase velocity and
wave amplitude is B, = 10 pT, Before electrons reach the equator the
wave'amplitude is very small and fhere are no-significant changes of the
sheet energy. After the equator croséing the wave amplitude starts to
increase and electrons become trapped. As long as thosg electrons
remain trapped their parallel velocities increase and so does the total
energy of the electron sheet, As the electrons mo#e away from the
equator some of them_become detrapped, but thé enefgy increase continues
up to the point where the last electron.becomes detrapped. At that
point the energy of a sheet has reached its maximum an& remains
constant. From Figure 5.13 we see that the particular sheet has gained
about 4.62 over the initial energy. The energy gain region is between

A=1°and A = 7°. Recall that this energy inérease must be accompanied'
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FIGURE 5.12  TOTAL SCATTERING, Aceq, VERSUS INITIAL PHASE FOR DIFFERENT
WAVE AMPLITUDES. The initial pitch angle is cgq= 10°.
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FIGURE 5.14  MEAN SCATTERING AS A FUNCTION OF WAVE NORMAL ANGLE.
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by wave attenuation which is not considered in the test particle
studies, i.e there is no feedback to account for wave amplitude changeé.
The feedback effects can be neglected in a test partiéle-simulation
ﬁhere the number of electrons is small, but they must be considered in a
full distribution analysis.

Next we take into.account the scattering efficiency deéendencer
oﬁ the wave-normal angie. Figure 5.14 shows <bdaqg> vs. B8 for B, = 10
pT,u@q = 10° gnd v“eqo = Vplgq- The wave function corresponds to one
given in Fig. 5.3. Also shown are the initial energy of the sheet, <E >
and the final energy‘<ES>. We have found earlier tﬁat the main effect
of the wave-normal angle increase is seen through an increase-of En o
Thus, as the wave normal increases the longitudinal interactions become

more effective, as indicated in Fig, 5.14, Furthermore, when the

wave-normal approaches the resonance cone electrons are scattered by as

much as ~5.5°, and the sheet energy is increased about five times. For
such a strong interaction the wave amplitude would most likely be
heavily attenuated, although to find the exact solution it is necessary

to include a previously discussed feedback term. The inclusion of the

feedback term would than probably diminish the scattering effects as the

wave amplitude becomes smaller with the inecreasing scattering.

In Chaptef II we discussed the possibility of space bunching of
electrons through the longitudinal resonance process, Figure 5.15 shows
the phases of nine electrons from a sheet with Vieq, = Vpueqs Ceq = 10°
and interacting with a 30 pT wave. Three remaining electrons are

omitted from this figure because they are very weakly trapped as already

illustrated in Fig. 5.12. Initially all electroms are uniformly
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' distributed in phase space and maintain this phase separation as they
approach the equator. . At the equator-they reach a.wafe growth region
and trapping takes plaée. As electromns become trabped around t = 0,21
sec théir maximum phase separation is reduced to about 150°, and can be
as small as 50° at the moment when all electrons reach the bottom °£,
potential well néarly simultanecusly at t=0.21, t=0.24, and t=0.27 sec.
Thus the original spacing between the electrons is reduced and we have
a case of space bunching. In this particular example 9 outrof 12
electrons are bunched in about a hﬁlf of the original separation. Thus,
the density increase is roughly 9/12 x 360/150, or about 180% of the |
initial density for Vueqo =.vpueq. For other velocities the demsity
increase is sﬁaller because the resonance condition is not satisfied
exactly at the equator. Note that after a few iﬁitial oscillation
périods electrons go out_of phasg and start to reach the bottom of the
potential well at different times. It is possible to have a new
synchronization.later in time, as occurs at t = 0.54 and t = 0.565 sec
(Fig. 5.15). This problem may be understood as though we have 9
harmonic oscillatofs with slightly different pericds of os;illation
caused‘by different phases at the moment those-elgctrons entered the
trap. |
figure 5.16 shows <ACag> wvs. vu ,and <AE>ws. v, for

interactions taking place inside and outside the plasmapause. Those
results clearly show that interactions outside the plasmapause result.in
less scattering, but in more energy_exchange, than those interactions
inside the plasﬁapauée. This interesting result may be explained as

follows: as neq'drops outside the plasmapause‘the wave phase velocity
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increases and the parallei resonant energy becomes higher. Higher
energy elegtrons move faster through the wave and hence have a shorter
time to be scattered. Note that although the resonant energy is about
288 eV for Ngq = 400 el/ce it.is 11529 eV for Nog = 10 el/cc. Because
of that difference in resonant energies even a felatively smail
scatteriﬁg outside the plasmapause results in energ§ changés ;ha; are
larger compared to those found inside the plasmapause.

| This concludes our discussion of single sheet scattering

interacting with a one-sided. wave function. In the next section we

present results involving sheet scattering by a spatial pulse.

D. SCATYERING OF A SINGLE SHEET INTERACTING WITH A SPATIAL PULSE

In this section we examine the scattering of a single electron
sheet as it moves through a-spatial amplitude pulse formed by a
non~ducted wa§e‘when'its fay direction stays field aligned for a certain
portion of fhe wave path. As depicted in Figure 5.17althe ray direction
is field aligned between A = - 10° and X = - 7°, which is equivalent
to 1000 km in length. Other interaction parameters are speqified in the

same figure. The interaction is studied for a wide range of initial

parallel velocities, Av,, as illustrated in Figure 5.17b. The minimum
parallel-velocity is 1.012 Vplaqg s the maximum parallel velocity.is 1,106
Vpreqs and the parallel velocity increment is 0.601 Vpieq. The wave
amplitude is assumed to be zero everywhere except for - 10° < A< -7°,

The scattering results are shown in Figure 5,17, To explain those
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results we can use Figure 5.17b as follows; when the initial parallel

velocity is small, for example v, = 1.012 v

npeq. the lat'iltude of the

preq?
first resonanée'point is also small, i.e. it is close to the equator.
Hence, as those electrons travel up the field line toward the eqﬁator
they eﬁcounfer the spatial amplitude pulse but parallel and phase
velocities are rather different resulting in a very weak inteéraction.
As the initial parallel velocity of a sheet is increased fhe first

resonance point moves away from the equator and closer to the amplitude

pulse, and the two velocities become better matched. This better

‘velocity match results in a stronger interaction and a negative

scattering <Aueq>'. A negative sign of <A0bq> means that electrons are

. accelerated, This acceleration is consistent with the relative ratio of

fwb velocities; namely, before electrons reach the first resonance point
their velocity is less than the wave phase velocity in which case

electrons are accelerated in order to match the phase wvelocity,
| waever,'further increase of the parallel velocity beyond 1.082 Vhueq

results in a change of sign of the effective scattering; This occurs

when the first resconance poiﬁt falls within approximately #0.5° of the
- pulse front.edge at - 10°. The principal difference is that electrons
.become trapped as they interact with the pulse, whefeas fof‘IOWEr
parallel velocities there were no trapped electrons. When traﬁping
takes place the parallel velocity follows the phase velocity, which
Vdecrgases as electrons approach the equator, and this results in a

. positive sigﬁ of scattering <Aa,.> in Fig} 5.18. Furthermore,'as the

q

parallel veloeity is increaséd beyond 1.094 the first resonance

Vpneq

moves even further down the field line and interactions become small
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EXTENDING BETWEEN A=-10° AND A=-7°. Shown
in (a) is the position of spatial pulse on the field line.

The range of affected initial parallel velocities is shown
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FIGURE 5.19  INTERACTION WITH SPATIAL AMPLITUDE PULSE EXTENDING

_ BETWEEN A=7° AND A=10°. The format is the same as
that of Fig. 5.18. SR
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again.- The shaded area in Fig. 5.17a indicates the trapping velocity

bandwidth Aiﬁ: which is also indicated in Fig. 13. When comparing

areas of positive and negative scattering in Fig. 5.18 they turn out to

be approximate;y the same which means that the enérgy exchange is small.

This example is a good illustration of the different features of
the longitudinal resonance interaction. We see ﬁhat the eleétron
behavior is very dissimilar in cases with and without trapping.
Untrapped electrons change their velocity depending on the relative
ratio of phase.and parallel velocities, while trapped electrons become
space bunched and thei; ﬁarallel velocity follows the wave pﬁase

velocity.

12

Figure 5.19 illustrates a similar type of interaction as the one

discuséed above, only the spatial amplitude pulse is on the other side :
of the equator. The corresponding scattering resulté are shown in
Figure 5,20. Those results may be explained using the same analysis as
the one used in the previéus example. The trapping occurs when the
first resonance point is close to the pulse front edge at A = 7°;
although the trapped electron scattering is now negative as the phase
‘velocity increases, The untrapped particle scattering.is bositive

- because the phase velocity is smaller than the parallel velocity before

the resonance point is reached.







VI, FULL DISTRIBUTION SIMULATIONS

A. INTRODUCTION

In Chapter V we have presented results of single sheet
'simulations. The purpose of that analysis was to clarify various
aspects of the lbngitudinal resonance process. In this chapter we carry

those calculations one step further by increasing the number of test

electrons in order to simulate a full distribution. Such calculations .
are interesting for fwo reasons:
1) It is possible to calculate a precipitated flux, and
2) It is feasible to estimate wave amplitude changes due
to the energy eﬁchgnge.
In the following ekamples of full distribution calculations
electrons are assumed to intéract'with a one-sided wave function. As it
was already shown in Chapter V, this type‘of wave function may produce a

significant amount of scattering, whereas interactions with narrowband

signals (not amplified through gyroresonance) may result in a very small
final scattering. Therefore, based on those results, it appears that
the constant amplitude CW signals represent a ﬁery weak source of

precipitation, although those CW waves still may have some amplitude

variations around the equator as a consequence of the interaction with

electrons.

The energetic electron population is readily described in terms
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of an eq_uatorial distribution funétion feq (v"eq ,aeq). From this point
on we drop the subscript 'eq', and all quantities represent equatoriél
values unless specified otherwise. The distribution function is given
in v, - o space because it is a convenient representation which directly
shows the pitch angle scattering, &z , and it is easy'to:determine a
.normalized velocity v"/vp" which is one of the prime factors affecting
the interaction process. The #elocity space volume element is then

given as vﬁ-ﬁigi-dudv“d¢ [Inan, 1977].

cos o . 7
Now we recall results of Figures 5.6 and 5.7 showing the mean

scattering of a single sheet as a function of the sheet initial parallel
_vélocity. From those figures it is evident that the trapping velocity
range considered is limited to a narrow strip around v, ='vpﬁ , while

the pitch angle range extends from fo o . The value of Qo ax DAY

ax
be as large as 90°, and specifically in our calculations it may be
limited to a slightly lower value due to time averaging in the equations

of motion. The angle ay,.= 5.5° is the nominal loss cone angle for the

dipole field line L = 4, i.e, all electrons with pitch aﬁgles lower than

5.5° have mirror points at ionospheric heights (h < 200 km) and are
assumed to be lost through precipitation. As already shown in Figs. 5.6
and 5.7, the trapping velocity bandwidth increasés.ﬁith increasing piteh
angle due to ;he effects of the wave magnetic field forces. This |
.tfapping velqcity badeidth Aﬁnt is aﬁoqt 0.4% of vp"eqfor a = 10°, and
about 1% of vp"eqfor‘a = 70°, Again, it should be noted.that-this
velocity bandwidth refers to the trapped electrons only. The untrapped
electrons have a quite different behavior; if the initial parallel |

veloéity is smaller than the lower trapping velocity limit the



scatteriﬁg is negligible because the wave phase velocity and the
parallel velocity of the electron are never matched along the field
line. Oﬁ the other hand, if the initial parallel velocity of an
untrapped electron is larger than the upper trapping velocity limit
there are always two resonances; at the first resonance scatteriqg is
negligible because thé wave amplitude is véry small, whereas at the
second resonance point, where the electron parallel velocity exceeds the
wave phase velocity, the untrépped electrons are decelerated. All of
‘the above mentioned classes of eleétrons are illustrated in Figure 6.1,
The scattering of untrapped electrons is much smaller than it is for.the
trapped electrons, but the interaction velocity range for untrapped
electrons is 1afger than the trapping velocity bandwidth._ The effects
of trapped and untrapped electrons on the wave amplitude are exactly
opposite; the trapped electrons are accelerated and the wave loses
energy, whereas the untrapped electrons are decelerated and the wave
gains enmergy. This dissimilar behavior of trapped and untrapped
electroné indicates that, in order to calqulate a net transfer, it is
necessary to consider a wide range of initial parallel velocities of
electrons which then requires a very 1argé number of test electrons.
While the wave amplitude variation calculations require a large number .
of test electroms tﬁe precipitation calculationé may Be carried out by
considering a significéntly smaller number of electrons, because 6nly a
certain clgss of electrons can be scattered‘into the loss cone, i.e.
only trapped electrons with sufficiently small initial pitch angles are
precipitated. in the ionosphere.

From Fig. 6.1 it is obvious that there is always an amax< w/2
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FIGURE 6.1  GENERAL DISTRIBUTION FUNCTION. Differently shaded areas
: indicate the various behavior of electrons as they inter-
act with the variable amplitude wave. '
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such that elec-trons.witha:>amax cannot be scattered into the loss come.

As noted above those scattered electrons must have been trapped, i.e

only trapped electrons may have their pitch angles decreased by the

amount required for preci#itation. Based on the above.limits fof Ty
and o it is feasible to define a region in v, - a space (cross—shaded in
Fig. 6.1) containing electrons that ecan be scattered into the loss cone.
This region in the v, - o space is further divided into a number of mesh
points identified by their v, and o , and this mesh then represents the
initial distribution. The number of electroms at each mesh point is
equal to twelve, refleéting’the fact that electrons are uniformly

distributed in phase, Figure 6.2a illustrates the unperturbed

distribution function; note that we use the number density of electrons

NE rather than f(vn » % ). The number density and f(v. ,Q) are related

through [Inan, 1977]:

Ny = 21 f(v,a) vi 22 Ay, aq (6.1)

cos

Using Eq. 6.1 it is also possible to find the actual number of

electrons represented by a single'test electron.
During the interactions the initial distribution of electroms
(Fig., 6.2a) is perturbed by the wave, and the final distribution is

shown in Figure 6,2b. Note that the velocity mesh size is different in

Figs. 6.2a and 6.2b, since the energy of the electrons. tends to be
significantly increased through the interaction process. Beside an
overall increase in electron energies, three electrons are scattered

into the loss conme. In the next section precipitation fluxes are
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FIGURE 6.2  SIMULATION OF THE DISTRIBUTION FUNCTION. (A) The

electrons.

unperturbed distribution.
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{B) Perturbed distribution.
The numbers in each individual cell indicate the number density of
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computed for three particular cases.

B. PRECIPITATED ELECTRON FLUX

Here we compute the precipitated electron fluxes iﬁvoiving a
one-sided wave functiop, ;nd for three different maximum wave
intensities (E, = 50, 150 and 250 uV/m). The maximum initial pitch
angle considered in-ﬁhese calculations is 10°, since there are no
electrons-with o > 10° scattered into the loss cone even when the
eiectrons.interact with a very strong wave, i.e. E, = 250 uv/m. Thé
initial unperturbed number density function is the same in all three
examples, and was already shown in Fig. 6.2a; Furthermore, the
distribution function is taken as

£v,a) = & gl) - (6.2)

vllv

where A is a constant and g(0) is some function of pitch angle. In our

calcﬁlations_gﬁa)'is assumed to be an isotropic function given by

gla) = g1(a) = 1 @ > oy (6.3)

"0 ey

The following analysis is similar to that presented by Inan.

[1977], although in his work electron scattering was due to
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-gyroresonance interactions. First, before computing the precipitation,
it ié feasible to compute the wéve induced pitch angle perturbatibns
given by f{a) which is obtained by integrating f(vn,a) over the velocity
range of interest, In our examples, involving a 5 kHz wave, it is found
that the maximum paréllel velocity afﬁer the interaction is |
v"max;=l.8vp“, whereas the ﬁinimum paréliel velocity is v"mi#==0.98 Vone
The equatorial phase velocity vp". for a 5 kHz wave is 11,23 10 m/sec.

Thus the pitch angle distribution is given by

vy = 1.8 Vpa

fla) = 2n f(v,,a) V%d\?" (6.4)
Vo = 0.98VP||

remembering_that electrons are uniformly distributed in initial phase,
which results iﬁ the factor 27 in Eg. 6.4,

Figure 6.3 shows the normalized pitch angle distribution f(o) as
a function of o for different wave intensities; The dashed curves show
the initial uﬁperturbed distributioﬁs, whereas the solid curves indicate
the final distribﬁtions. These results show that the longitudinal
resonance interaction requires rather strbng waves in order to scatter
eiectrons into the loss cone. fof a wave with E, =.50 W/m (ﬁ;= lé_pT)
" the perturbétions are very small, and only a few electrons are scattered

below o When the wave amplitude is increased the loss cone starts to

1c”
fill with electrons, and alsc electrons with higher pitch angles are
scattered down teo lower pitch angles. This process is best illustrated

in the case of a 250 WV/m wave, where the loss cone is filled with
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- FIGURE 6.3 NORMALIZED ELECTRON DISTRIBUTION f(a). The dashed
_ lines represent the unperturbed distribution. The
solid curves represent the perturbed distribution.
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electrons having a wider range of initial pitch angles than the
electrons reaching the loss cone in the two other cases.
The total number density of electrons precipitated in the

velocit& range 0.98 Vpn to 1.8 Vpn is given by

alc l.SVP"
2 sinn . 1/2
N =27 £(vu,a) vi ——— dv,da L¥(1+3sin? A ) © (6.5)
cos ' d : .
0 0.98v.,

: 1
where the factor L3(1+351n23.)/2accounts for the convergence of the
field line going from the equator'to ionospheric heights. The

precipitated energy deposition rate is computed in similar fashion by

including the energy weighting factor L m AL in (6.5) which then
' cos?a’

yields

Otk l.SVP..

v2 2 . R !
Q= 2n £(v,,a) v2——1/2m—t o dv,da L? (1+3sin? 32 (6.6)
' cosa cos?a
0 0.98vpu

.The integrals in Eqs. 6.5 and 6.6 are easily evaluated by a numerical
integration. For the three examples considered the nofmalized energy

deposition rate, defined as QN = Q/A where A is defined in Eg. 6.2, are:

Ex = 50 uv/m Qq = 0.9652+10"" erg/cm?/sec
E, = 150 uV/m Qq = 0.8129-107" erg/cm?/sec
Ey = 250 uV/m O = 0.3565-107! erg/cm?/sec
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To compute the total energy deposition it is necessary to
evaluate the constant A. This can be done by computing the total number

density NE in el/cc in the specific velocity range (0.98-1.8 Vpu » In

phis case
bl 1.3vp"
A 2 .
NE = 27 Sr Vo sina dv do _ (6.7)
0‘0.98vp"

- The above integral vields

A = 2x1082 N, (6.8)

Finally, to compute A it is necessary to estimate NE from the
reported measurements. From Schield and Frank [1970] we find that N = 1
el/cc in the 1-2 KeV range and that the numﬁér density varies as v~ *with
velocity (E~2 with energy). In our case the electron energies are
300-1000 eV which resul;s in Né = 10 el/cc, since thg number density
increases with decreasing electron energy. Substituting NE = 10 el/ce
in Eq. 6.8 we find that A = 2x10°,

The next step is to compute the absolute eﬁergy deposition rates
by multiplying the normalized rates QN by the constant A, The results

are shown below:

E, = 50 uV/m . Q = 1.94x107%erg/cm?/sec
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1.66x10_3erg/cm2/sec

o]
il

s = 150 uV/m Q

250 uV/m Q

m
I

7.40X10_3erg/cm2/sec

The above values indicate that the fluxes precipitated by a 5
kHz wave, which is amplified at the equator through the gyrorésonance

interaction, are rather small, especially when compared to those

computed for gyrdrésonance interactions. Results for the gyroresonance
process calculated by Inan [1977] indicate flux levels of O.CI—O.Z‘
erg/cmzlséc for a 10 pT wave. Note that 10 pT corresponds to Ew = 30
ﬁV/m for 6 = 30° and £ =‘5 kHz. Thus, the scattering efficiency is
considerably higher for tﬁe gyroresonance than it is fér the

longitudinal resonance,

C.. ENERGY EXCHANGE AND BALANCE

From the analytical and numerical studies it is evident that the
scattering of electrons is always associated with energy transfer, i,e.
if electroms gain energy then the wave is attenuated, of if electrons
lose energy then the wave is amplified, Also, a large scattering is
.always associated with a large energy exchange., Such behavior
constitutes another major difference between the lbngitudinal and the
gyroresonance processes; namely, electroﬁs can be scattered
.significantly through tﬁe gyroresonance interactions with a very small
amount of energy transfer. This is explained by therfact that in

gyroresonance it is the momentum transfer that causes pitch angle
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changes, whereas the energy remains almost unchanged [ Inan, 1977].

The total energy balanqe calculations for the longitudinal
‘resonance process are extremely complicated.as they involve a large
number of electrons. As indicated in Fig. 6.1 the electroms with
parailel~velocities closé to the wavé'phase velocity become trapped
which then results in scattering from -0.2° up to -6° for pitch angles
from 10° to 70°, respectively. The Qcattering'of untrapped electrons is
smaller and positive, about 0.05-0.1° on the average. However, only a
fraction of the electron population becomes trapped, while the ﬁumber of
untrapped electrons_is much larger, °~ From the sample calculatioms it
was estimated that the upper velocity limit for untrapped electrons can
be as high as 1,30 Vpu » i.e. even if the initial parallel velocitﬁ of
the electrom is v, = l.30 Vpus the electron is still scattgred more than
+0.005°. The scattering of +0,005° represents a practical threshold of
resolution for the. numerical integration method used in our simulations,
This resolution limit was found by setting E, = 0 uW/m, i.e. computing
only the adiabatic motion of the electrons and comparing the initial and
the final pitch angles. —Theqretically, the difference between these two
pitch angles should bé zero, whereas thé numerical results have shown
4}.,005 fluctuations; which are than used as the limit of accuracy
(resolution). These fluctuations are primariiy due to the integratiom
scheme, which uses linear interpolation. ﬁetﬁrning to the energy
exchange proBlem, it is evident that both trapped and untrapped
electrons play important roles, and it is rather difficult to find an
exact solution to this problem as the number of electrbns involved is

very large,
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Hoﬁever, it is possible to estimate the energy transfer és
follows; let us ﬁonéider the example of Fig. 5;7a (sélid curve) showing
scattering as a function of the initial parallel veldcity for a fixed
iﬁitial pitch angle a = 10°., This curve can be replotted substitutingn
eqeréy changes for pitch angle changes and also.expanding the velocity
range, Note that these results must be weighted by an appropriate
function to account forjdiffefent number densities at different
2

velocities. This weighting function is assumed to have a v

characteristic (Eq. 6.1), Figure 6.4 shows both unweighted and weighted

energy.transfer, i.e. the average enérgy gain (loss) per electron with a
given initial parallel wvelocity, as ﬁell as the weighting function
(dashed éurve). Now it is possible to use a numerical integration to
estimate the total energy balance for this particular case,

The total -energy exchange is given as

E2(1'03VPII) .
8E =\ aE | (6.9)

E1(0.99vy0)

where AE represents the total energy exchanged through the longitudinal
interaction with electrons whose initial parallel velocities are in

0,99-1.03 vpn'range, and all those electrons have the same pitch angle

a = 10°. The quantity dE gives the weighted amount of energy exchanged
 per electron -at a particular parallel velocity, and it is shown in Fig.
6.4. The final result of the above integration is AE = (.03 eV, Though

 this number is obtained using only twelve electrons it is evident that



127

*£8a2u2 ay3z uted sucilos[s Jeyl SIIBOTPUT <IY> aTITsod pue

,.Mu..nu:.._..mb.am.:dumm 10130972 JO UOLIUNI B SB UMOYS ST I3Isueil ATaaua oyl
"NOILIVY3AINI WNDIS MO IHL Y04 SNOY1IIVA 0L JAVM HOYd dIASNYHEL A9y3IN3

¥°9 J¥n9ld

‘wari g1 = '3
ZH 000€ =}

U3JSNVYHL ADY3INT GI1HOIIM x
HIASNVHL AQYIANT QILHOIIMNITe

1 _ :
A
NI_-_ ~ NOILONNZ ONILHOIZ

e r— — gva—
T e e e e . ey e
— e ——




128

the total energy exchange at the particular pitch angle is very smali
even when the actual number of electrons is much larger.

To compute the overall energy'balance similar calculations
should be done for other pitch angles., A rough estimate using Figs. 5.6
and 5.7 indicates that the total energy transfer is very small,.since
the positive and negative ;cattering cancels out,.i.e._the to;al area
underneath <Aaeq> curve is approximately zefo.

Summarizing, it appears that both the precipitation and wave
amplitude amplification (attenuatioﬁ) for our-samplé case are small.
Thus, it may be very difficult to observe the presence of this type of ‘
longitudinal interaction using ground observations. Another possibility
for detection would be to use satellite borne particle detectors and
to‘measure a relatively sharp depletion of electron deﬂsity around
Vu = Vpu . However, the problem is that pérticle detectors measure
energies and pitch angles rather then parallel velocities and pitch
angles. Note that the problem arises from the fact that the narrow
range of parallel velocities which are affected (and wide range of pitch
angles) maps into a wide range of eneigies {and pitéh angles).

For example, if the parallel velocity equals the phase velocity,
Vs = Vpu, and pitch angles vary from 5° to 70°, the corresponding
electron energies vary from E_ to E0(1+tan270°)/(1+tan25°) = 8,48 Eo’
where Eo is the.energy of the electrons with 5° pitch angle. Beside the
above mentioned spreading effect, which tends to dilute the effects of
fhe longitudinal resonance when measured on an energy basis, the

particle detector resolution itself may pose a problem. The typical




DEPLETION OF
ELECTRONS DUE
TO LONGITUDINAL
'RESONANCE

a=45°

RESOLUTION
CELL

/\/\I\.

AE~15%Eq,

Voil 141V,

i

FIGURE 6.5 PARTICLE DETECTOR RESOLUTION AND DETECTION OF

LONGITUDINAL RESONANCE EFFECTS. The effects
of the resonance interactions are best seen as a depletion
of electrons around Vu V.

129




130

resolution of particle detectors is about 2,5°- 5° in pitch angle, and
about 15% in Eo’ where'Eo is the energy of interest., For example, if we

want to measure the density of electrons with energy E_ = 2E_, and pitch

o*
angle O = 45°, the cbrresponding resolution cell wnqld be as shown in.
Figure 6.5. On the other hand, the longitudinal resonance will tend to
'remoﬁé electrons from a narrow velocity band around Vpt, leéving a

: depletion region in the distribution (Fig. 6.5). The width of the
depletion region is very small, so that it occupies only about 30% of
the resolution cell, as indicated in Fig. 6.5, Therefore, even if we .
remove.all of the electrons from this'depletion region, the particle
detector would see only # 30% decrease inlthe number of eiectréns within
the resolution cell, We recall from Chapter V that longitudinal
resonarnce iﬁteractions,_involving moderate amplitude waves, fesult in
trapping of only about 30% of the electrons that satisfy the resonance
condi£ion (we considered only the trapped electroms, because only those
electrons vndergo sufficient change iﬁ vn to be mﬁved from one
resolution ecell to another);' Thus the maximom total depletion factor
for the resolution cell is estimated to be‘about 10%Z. On the other
hand, typical.particle detector measurements (e.g. Kimura at al., 1982)
indicate large temporal variations of the electron flux, approaching an
order of magnitude in intervals as short as 50 sec. For that feason'the
particlé detector seqsitivity is reduced, because-it becoméé very
_difficult to distinguish between variations due to spatial-changes in
particle distribution and wave induced variatioms. Thus, present
particle detectors are probably not capable of detecting perturbétions

of the electron distribution due to longitudinal resonance interactions.




VIE. APPLICATIONS TO MAGNETOSPHERIC PHENOMENA

Although it was found that the scattering efficiency of the
longitudinal resonance process is small, it is possible that the
bunching effects of the process may have important magnetospheric
applications. In ﬁhis chapter ﬁe consider applications of the
iongitudinal resonance to the generation of whistler precursors and to
the generation of broadband VLF hiss. .We also discuss the size of the

internal electric field created in the bunching process.

A. GENERATION OF WHISTLER PRECURSORS

Whistler precursors are discrete rising tone emissions that
precede two-hop whistlers, starting shortly (0.1-0.3 sec) after the
one-hop delay. The precursor may consist of one or more discrete

emissions. For the particular measurements of August 2, 1973, the

number of emissions varied from one to seven. Figure 7.1 illustrates
three typical cases of precursors showing both one~hop whistlers

(recorded at Siple, Antarctica), and precursors with corresponding

two-hop whistlers (recorded at Roberval, Canada). There is no precursor
in Fig. 7.1b, illustrating the fact that not all whistlers propagating
on the same path trigger a precursor. Figure 7.1d depicts a single

emission precursor, while Fig. 7.1f shows a multi-emission precursor.
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FIGURE 7.1 SPECTROGRAMS OF WHISTLER PRECURSOR EVENTS: RECORDED AT

SIPLE/ROBERVAL CONJUGATE STATIONS. The causative spheric
is marked with an arrow, and the whistler component which triggers the
precursor is marked by a W. (b) shows no precursor, (d) shows a single
‘ em1351on precursor, and (£) shows a multi—em1551on precursor event.
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FIGURE 7.2 EXPANDED SPECTROGRAM OF THE PRECURSOR AT 1400 UT FROM

FIGURE 7.1. (b) shows the corresponding amplitude
variation in a 300 Hz bandwidth, and {c¢) indicates the rate of
frequency change of the frequency-tracking filter used.
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These particular data were analyzed by Park and Helliwell [1977], and it
was found that the precursors were triggered only by the whistlers
propagating in ome particular duct, and that the precursors themselves
prdpagated in the same duct. The duct parameters were L = 3.6 and
equa;orial.electron density Rgq = 440 el/cc. The cénter of the
plasmapause was located at about L = 4,2 where the equatorial electron
density dropped by factor of ten. Figure 7.2 shows én expanded
frequency-time spectrogram of the precursor at 1400:03 UT, along with
amplitude and frequency changes_meésured using a frequency-tracking
filter, The growth rate deduﬁed from that figure is about 105 dB/sec,
- and the rate of frequency change is about 6.5 kHz/sec,

Park and Helliwell [1977] have reviewed different proposad
generating mechanisms for precursofs, including the hybrid mechanism
suggested by Helliwell [1965]} and Dowden [1972]. This is based on the
presence of hybrid whistlers, which first propagate in the earth- |
ionosphere waveguide to the conjugate hemisphere and ﬁhan-feturﬁ through
the magnetosphere and trigger precursor emissions. Other mechanisms
include one propesed by Reeve and Rycroft [1976] in which the nonducted
. whistler is reflected in the conjugate hemisphere at the lower hybrid
Vrgsonance (LHR) frequency, and is then deflected byrthe plasmapause such
that it enters the duct near the equator, triggers thé precursor through
the gyroresonance, and then leaves the duct. A third mechanism
involving a nonlinear multiple wave interaction known as parametric
decay has been suggested by Reeve.and Boswell f1976].

Considering various precursor mechanisms for the Aug. 2, 1973

case, the hybrid-whistler hypothesis can be iﬁmediately excluded because
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.there was no evidence of hybrid whistlers. The mechanism suggested by

. Reeve and Rycroft [1976] requires special propagation conditions which
are difficult to apply to multi~component precursors with a wide range
of starting frequencies ({(~1 kHz for the example shown in Figure 7.1f).
Furthermore, the L—sheli values of the duct and the plasmapause differed
by more thén the 0.15 required by their model. Finally, the parametric

decay mechanism cannot explain the multicomponent precursors; hence Park

and Helliwell [1977] have suggested a new mechanism.
The new mechanism is illustrated in Figure 7.3 and its time

sequence is described below:

a) A lightning impulse in the northern hemisphere produces a
whistler propagating toward the eguator.

b) The whistler wave tréin signal and the energetic electrons
streaming toward the equator interact with one another thrOugh the
longitudinal resonance process.

¢) Due to the longitudinal interaction, electrons becomé space

bunched, which then temporarily increases the electron flux within a

certain range of parallel velocities.

d) This enhanced eleqtron.flﬁx reaches the equator while the
whiStlér signal that caused the bunching continues to travel toward the
southern hemisphere,

£) After crossing the equator the enhanced electron flux

interacts with northward traveling power line harmonic (PLH) waves
through the gyroresonance process. The enhancement of the electron flux

is sufficient to lower the threshold of this interaction below the level

required for triggering of an emission by one or more lines of PLH
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waves. These emissions travel toward the.northern hemisphere..

g) While the triggered emission (precursor) travels toward thé
northern hemisphere, the one-hop whistler reaches the conjugate point in
the southern hemisphere, where it is reflected. It then travels back to
the northern hemiéphere.

h) The precursor reaches the northern hemisphere followed by a
two—hop whistler, resulting in a frequency-time spectrbgrams similar to

those depicted in Fig. 7.1.

The detailed timing of this process was worked out by Park and
Helliwell [1977] and it was shown that this mechanism can explain
different pfoperties of the Aug.2, 1973 precursors-such as variable
starting fréquency, multicomponent emissions and variable starting timé;
However, there are some‘épecial requirements that have to be met in
order for this mechanism to work. First, the enhancement of tﬁe
electron flux achieﬁed throﬁgh longitudinal resonance mustrbe_large
‘enough and should last abouﬁ 200 ms, so as to provide both the threshold
for triggering through gyrorésonance as well as the temporal growth time

required for emission generation., Second, the PLE waves {(which

obviously must be present for this mechanism to work) must have
amplitudes such that they approach the triggering threshold level,

. PLH activity appeared from time to time in the August 2, 1973

case; dufing'some intervals.it dominated the VLF spectrum.: Pafk and
Helliwell [1977] found that the PLH propagated in the same duct with the
precursor; this suggests that PLH waves were present at thé time of the
precursor observations and, when not detected, were probably close to

- the threshold for triggering emissions through cyclotron resonance.
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As already stated the gyroreéonance triggering mechanism will
work only if the electromn denéity perturbations échieved through the
longitudinal resonance result in an electron flux increase which lasts
af least ~200 ms. The 200 msec requirement is associated with a typical
temporal growth time [stiles and Helliwell, 1977], i.e. a typical delay
_from onset of temporal growth to emission triggering. This flux
increase can be échieved, in prineciple, through electron buﬁching. We
have shown in Chapter V that the longitudinal resonance interaction
results-in significant space bunching, ﬁhich in our particular case of a
monochromatic sigpél was about-lSOZ,ri.e. the electron density was

,» with the density

enhanced roughly by factor of two at vy, = Vou

enhanceﬁent decreasing for other parallel velocities.

However, in order to explain multi-component ?recursors i; is
necessary to increase the electron flux over a relatively wide range of
parallel velocities. At each velocity the fiux increase éhould lasﬁ for

about 200 msec; -To illustrate this process we consider a multi-
component precursor consisting of two emissions with starting
frequencies f; = 2 kHz and f, = 3 kHz, and assume that those emissions
are triggered at the-equator;_although the triggering location must be
sligﬁtly off the équator to account for the rising frequency—time
characteristics. .From'the gyrorésonancé condition at the equatof

£(1+ V“eq/v = fg the pérallel velocities at which the flux must be

Pueq)

incréased are Vugqy = 76.6 10° m/s and v. = 57.1 10° m/s, where we

eq2

used fHeq= 18;7 kHz and f q = 188.8 kHz. Thus the whistier interacting

pe

with the energetic electrons must be able to produce an Increased flux

at those two velocities for 200 msec. We also recall from Chapter III
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that the parallel velocities vuy and vuy vary along the field line és
indicated in Fig. 3.11, and that the electromns with higher piteh angles
mirror cloger to the equator.

Next weArecall that the lonéitudinal resonance condition is

1 1
Vo, = ¢ £ &(fH - £) &/fp s which yields the resonance

given as wva

frequen;y £=1/2 (%Hi[fﬁ -.4(V"fp/0fﬂye) (the plus sign gives f >fy/2,
where the waves become undﬁcted, $0 we can disregard that solution), .
The resonance frequency chénges as we change the pa;allel velocity.

For example, if we consider elecﬁrons with V"eql and V“qu and assume
o = 10°, their parallel velocities at 50° latitude are Vi = 0.30 vugq =
22.9 10° m/s and_vﬁz= 0.30 Viaq,™ 17.1 10° m/s, and the corresponding
resonant frequencies are f} = 2;65 kiiz and f5 = 2 kHz. Thus a whistler
train of appropriate frequency range can int;ract with eiectrons with |
different parallel wvelocities, such thét when those velocifies are
mapped back to the equator they satisfy the gyroresonance condition at
different frequencies, If the perturbations of the.electron flux at
those different velocities are large enough and last long enough (“200‘
msec), tﬁey could result inremission t;iggering‘at those frequencies,
This would then provide a basis for explaining the generation of
multi-emission preécursors. |

We want first to illustrate that the flux perturbation at a

given parallel velocity (actually in a narrow range of about 1% around
that velocity) can last ionger than 200 msec. In order to do that we
recall the results for the interaction with a spatial puise from Chapter
V. From Figs. -5.17, 5.18, 5.19, and 5.20 we see that a 1000-km-long -

spatial pulse can trap electrons in a narrow band of velocities (=2%),
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an& that those electrbns beside being trapped, i.e. space bunched,
undergo pitch angle scattering on the order of a few tenths of a.degree.
Although this spatial pulse is statioﬁgry and monochromatic, the results
from that analysis can be related to the whistler train if we consider
the whistler train to be composed of segments of approximately constant
frequency., We consider one of those segments with frequéncy £f = 2 kHz;
the group veiocity of that segment at 50° latitude (L = 3.6).is‘about

30 10° m/s , and if it interacts with electrons for about 2000 km (this
is comparable to the length of the épatial pulse considered in Chapter
V) the total interaction time is about 70 msec. On the other hand, as
long as an electron is trapped it does not mattef if the trapping signal
.is a stationary amplitude pulse  (not moving along the fiel& line) or a
moving segment of a whistler. If the length of the interaction region
in the two cases is comparable, the trapping and scattering effects
should also be comparable;

Thié segment of the whistlef is therefore capable of increasing
the flux in a narrow band of parallel velocities, but this increased
flux should last at least 200 msec at the equator in ordér_to provide
the basis for.emission triggering. The total duration of the flux
pefturbatiou depends on the latitude at which the resonance takes place,
and on the pitch angle of the electrons involved. TFor ekample, if we
want the triggered emission to start at 3 kHz it is necessary to
increase the electron flux in 4 narrow band of wvelocities arouﬁd
v, = Y"eqz’ as noted above. Hoﬁever, electrons with v~ V“eqz will have

different pitch angles at the equator, and will thus mirror at different

"_ latitudes (see Fig. 3.10). For o = 10° the mirror point is at 53°
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1atitude, while for o = 50° thg mirror point is at 20° latitude. Thus
our whistler segment at 2 kHz, as it travéls.toward the equator (from
higher latitudes towafd lower latitudes),‘first encounters electrons
with a= 10° at about 50° latitude (the time of this encounter is the
reference time t = 0). As noted earlier, if the interaction lasts for
about 70 msec, it should be sufficiently long time to bunch the
electrons. During those 70 msec both wave and electrons move from about
50° to about 48° latitude. “After the interaction is over it takes about
0.43 sec for the bunched electrons to reach the equator, or eséentially
the travel time from 48° latitude to the equator. When the electrons
drrive at the equator they have v, = V"eqz {we have neglected the
parallel velocity changes due to the interaction, as it is assumed that
the scattering is small). Furthermoré, as our whistler segment gets
closer to the equator it interacts with_electroﬁs with progressively
highér pitch angles. The arrival time at the equator for those
electrons with higher pitch angles can be calculated using the above
described method. For o = 50° the interaction occurs at 20° latitude,
and those electrons arrive at the equator at t = 0;69 sec (0.5 sec for
whistler travel time from 50° to 20°.latitude, ~0.1 sec for the
interac?ion, and 0.18 for particle transit from 20° to the equator).
Thus the perturbation at the equator would last about t ='0.69 ~ 0,43 =
0.26 sec, ﬁhich is sufficient for the develqpment of emission
triggering. Computations for ﬁhe-whistler segment with £ = 2,65 kHz
indicate that the corresponding flux pertprbation lasts about 210 msec.
Therefore it is found ﬁhat the electron flux perturbation may last long

enough and may cover a sufficiently wide range of parallel frequencies.
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_Note that similar computations were done by Park énd Helliwell [1977],
but without consideration of the iﬁteraction pime.

As noted earlier in Chapter V, this perturbation (space
buﬁching) is associated with an.ampiitude threshold of the waves driving
the longitudinal resdnande. This suggests that one could measure the
amplitudes (on the ground) of whistlers with and withoﬁt pfecursors, and
therefore test for the presence of the threshold. Such #mplitude :
measurements were made on one-hop whistlers recorded at Siple,
Antarctica, and propagating at L = 3.6.0n August 2, 1973. The data were
taken at two frequéncies, 4000 Hz and 4600 Hz, using a bandpass filter
with Af = 300 Hz. This provided.the‘temporal resolution needed to
distingﬁish a particular whistler component connected with precursor
generation from other multipath componenté. The results of those
measurements are shown in Figure 7.4 as amplitude vs, tiﬁe diagrams.

The whisﬁlers without precursors are indicated by crosses, the whistlers
with single emission precursors are indicated by circles, and the
whistlers with mnlticomponent precursors are indicated by sqﬁares, where
the numbers above the squares represent the number of individual
emissions forming a single preéursor event,

Figure 7.4 shows that the amplitudes qf thé one-hop whistlers
decreased, on average, from -15 dB (b dB level corresponds to 100 uV/m)
to about -22 dB for £ =.4600 Hz. For £f = 4000 Hz the average amplitﬁde
decreased from -13 4B to about -17 dB in the same period of time between
1335 UT and 1415 ﬁT} This ovefall decrease of the whistler amplitudes
is most likely a result of increased absorption in the ionosphere

because of transition from nighttime to daytime conditions (sunrise time




143

100 T T — ] i I .
N fg= 4000 Hz ]
- s - Af= 300 Hz -
3 2 - 3 ]
o o xxo ° x g cg h
° o x 2 3
XX X0 » -] o <] a
- X x 2 2 =
° x xx * ° o U° [~ gb o -]
x x : z x x x *x ] g ® X oo
10: = x x »e ) °x‘ -] .':
[T BACKGROUND NOISE LEVEL - |
w L fo= 4600 Hz ;
‘ i -Af= 300 Hz .
R 2
oa 3 1
x 20 x ° °
P~ a 9 o ] x : -
x xxx ° °X x g g
s L R & R T
e T T L -
- x x x o O ox Q -
3 a x o x X xx °° ° -] °4
2 x %oc
_____ §E5K_GEBDEB'NBT§E_EEVEC T
1 ] 4 . ! I 1 i 1

1335 1340 1345 1350 1355 1400 1405 1410 1415 UT

FIGURE 7.4

AMPLITUDE OF WHISTLER COMPONENTS ASSOCIATED WITH
THE PRECURSOR ACTIVITY OF AUGUST 2, 1973. For

symbol explanation see the text.
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was afound 1400 UT). Helliwell [1965] has shown that there is a
significant increase iﬁ the ioﬁospheric absorﬁtion'at VLF for the
night-day transition, and that the amount of the absorption increases
rapidly with increasing frequency. This prediction is congistent with
the above observations; the amplitude level at 4000 Hz drops about 4 ds,
wﬁereas the amplitude level at 4600 Hz drops about 7 dB. If we further
- assume that the maximum-ionospheric absorptioﬁ occurs in the D region at
about 100 km altitude [Helliwell, 1965] it is possible to estimate the
duct exit point using the path L value as one ﬁoordinaté and sunrise
time at 100 km altitude as the SECOHd—CDéfdinﬂtE; From Fig. 7.4 we see
that the amplitudes of the whistlers start to decrease around 1355 UT
which is ‘thtran assumed to indicate the beginning of sunrise e:‘?fects. . On
the other hand_calculations show that for sunrise times of 1355 UT and
1405 UT at 100 km altitude, the terminétor reaches the latitudes of 7168
and 7268, respectively. This period of time (1355—1405 UT) is the time
when the whistler amplitudes are rapidly decreasing (Fig. 7.4), |
suggesting that the latitude of the whistler duct exit point was between
71°S and 72°S. Because the whistler &uct was on L = 3.6, we can find
where tﬁis line intercepts the above latitudes; the result is shown in
Figure 7.5. The estimated location of thé duct exit point lies in the
north-west direction from Siple Station, at a distance of about 490 .km
for 71°S latitude, and about 530 km for 72°5 latitude.

| A more imbortant feature of Fig. 7.4 is the presence of a
threshold level that a whistler amplitude must exceed in order to
tfigger a precursor. This amplitude threshold is most clearly éeen

between 1335 and 1350 UT. As found earlier in Chapter V, such behavior
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is one of the -characte.ristics of the longitudinal resonance interaction,
which then supports the precursor generation mechanism suggésted by Park
and Helliwell [1977]. We note that the appérent gap:in ﬁhe precursor
activity between 1350 and 1400 UT is artificial. At least five
precursor eyénts weré observed at Roberval, but it was not possible to
measure the correspdnding amplitudes of the one~hop whistlers due to the
pperatioﬁ of a VLF transmitter at Siple (receivér preamplifier mutéd).

In the next period of time, between 1400 and 1415 UT, the
pfecursor activity still exhibited a threshold, although not as clearly
as before, The presence of many multiqomponent precursors indicates
favorable triggering conditions for the gyroresonance interaction
between electrons and PLH waves, This is supported by the l.evel of
.spbntaneous magnetospheric emissions, which increased sharply around
1400 UT, and strong PLR (power line radiation) whiéh was observed for a
period of a few minutes. .

_The data show that the precursor generation was associated with
.an amplitude tﬁreshold in the driving whistler, but the model suggested
by Park and Helliwell [1977] also requires that the space bunching
.produced by the one-hop whistler be'sufficiént for triggering emissions. -
As it was found earlier, the space bunching process can roughly'doﬁble
the electron density (flux). According to Helliwell and Inan [1982] who
" proposed a feedback model to explain VLF g;owth and discrete emission
triggering in the magnetosphere (through gyroresonance), a doubling of
~ the electron flux is usual;y sufficient to result in the triggering of
emissions, In.their_model the loqp gain G is directly proportibnal to

the electron flux. For G<1 the system acts like an amplifier, while for




G>1 the system becomes unstable and can generacte emissions. Therefdre,
a doubling of the flux could easily boost the loop gain G to a value
larger than uﬁity and thus résult'in triggering,
Thus the precursor generating mechanism suggested by Park and
Helliwell [1977] appears ro be supported by the results found for the
.1qugitudipal resonance, including both'the‘amplitude threshold and the
level of the density bunching.
In the next section we discuss some other aspects of the
longitudinal resonance interaction that may be important in'othef

magnetospheric processes.

B, VLF HISS

One of many magnetospheric processes for which the generating -
mechanism is not certain is VLF hiss, mosf often observed on the ground
as relatively 5road band (sevefal kilohertz) noise. “VLF hiss often
'shows no discrete structure, having the appearance on. a spectrogram of
band—limiteq white noise. This type of spectrum is characteristic of
auroral and plasmaspheric hiss, whefeés mid=-latitude hiSS‘usually-shows
some kind of discrete structure; Theréfore, the hiss generating.
mechanism must be such that it can explain the generation of relatively
wideband signals, and also account for the observed amplitudes.of sgch
signalg.

An electron propagating in a dielectric medium does not radiate

as long as its velocity remains less than the phase velocity in that
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medium; if the electron Qelocity is larger than the phase velocity we
have a case of Cerenkov radiation. The two situation are depicted in
Figure 7.6, and we note that the electron radiates at only one angle
when v, > c/jE;. However, in the case of a dispersive medium different
freqﬁencies are radiated in different directions, as sﬁown in Figuré
7+7. In the magnetosphere the radiated frequencies are within the VLF -
range., Thus if the amplitude of the Cerenkov radiation is large enough.
it could account for the hiss generation. It should be noted that the
condition for Cerenkov radiation is exactly the same as the cdgdition

for longitudinal resonance, i.e. the electron velocity must match the

phase velocity (in the direction of electron travel) im a particular

medium,

In the magnetospheric case it can be shown that there are in
general two Cerenkov frequencies :adiated at each angle, and that thg.
radiation conditioﬁ is ﬁot met when the'paraliel vélocity exceeds the
criticallvelocity vgc [Brice, 1964]. THe critical velocity corresponds

to propagation in the Gendrin mode, which was defined in Section III.B.

As noted earlier, the broadband nature of Cerenkov radiation makes it
interesting as a possible source of VLF hiss, and it was considered by
many authors [Ellis, 1959,1960; Dowden, 1960; McKenzie, 1963; Liemohﬁ,
1965; Mansfield, 1967; Seshadri,1967;‘Jorgenson, 1968: Lim and Laaspere,
1972; Taylor and Shaﬁhan, 1974]; However, all of the power density
calculations fell shdrt of explaining the observgd power density of VLF
hiss, indicating that incoherent Cerenkov radiation is not sufficiently
strong to account for VLF hiss. For this reason other mechanisms were

suggested which are still based on the Cerenkov'radiatidn, but in which
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radiation is either coherent [ Taylor and Shawhan, 1974], or amplified-
through interaction with an electron beam [Swift and Kan, 1975; Maggs,
1976}. In the case of the cpherént radiation it is assumed that the
radiation from n electrons is in phase, resultigg in P = nzP, where P is
the power radiated by each elect;én. On the other hand, if all n
electrons fadiate iﬁcdherently (random phase) the total radiate& power.
is given by P = nP. |

Due to the n® dependence, a relatively small number of electrons
radiating coherently could produce power levels which are in agreemént
with the measurements. Thus the problem is to identify a process that
could result in electron bunching such that thé bunch dimensions are
much less than arwavelength (smaller dimensions mean greater ccherence).
As already shown, the longitudinal resonance interactions may produce
such bunches of electrons, and it may be speculated that the radiation
ccherence needed to explain VLF hiss is created in the fqllowing way:
(i) first a strong signal bunches a significant number 5f electrons
(stronger waves would produce.better coherence), and (ii) the bunched
electrons bgcome detached from the bun;hing waﬁe. ‘The detachment may be
due to difference in phase and group velocity, as is the case for the
whistler mode where the phase and the group velocity are always
different (except for f = fy/2). For example, consider a pulse with.
f <fy/2 so that Vg > Vp,. Electroﬁs trapped by ;his pulse will have

v,

w ® Vp,» but because the wave energy propagates with Vg > Vi, those

electrons slide backwards through the pulse, and eventually emerge from
the tail end of the wave packet. Such a blob of electrons could radiate

coherent Cerenkov radiatiom.
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However, it remains to be seen how long this blob of electrons
remains.bunched, because it may contain electrons with different pitch
angles and different'parallel velocities, For the moment lef us assume
that_éll electrons have the samé parallel velocity, but different pitch
angleé which means that they have different Qariations.of pérallel'
velocity as-required by their adiabatié motion. Thus, for a given_
spread in pitch angle it may be determined how leng it takes the-
separation between the low and high pitch_angle electroﬁs to become
larger than the wavelength, which than destroys the radiation cohereﬁce.r
The sémple calculations have shown that the coherence time for-a given
initial spread in pitch angles depends strongly on the latitude where
the electrons become detached from the Eunching wave, i.e. on the
latitude at which their motion begins to be ehtirely governed by the
static-mégnetic field. For example, assuming the initial range of pitch
angles to be from a = 10° to o = 20°, and detachment at 20° latitude
(electrons afe_moﬁing toward the eqﬁétor), it takes only about 1lmsec
before the separation between 10° and 20° electrons becomes larger than
one wavelength. On the other hand, if the detachment occurs at 1°
latitude (for.the séﬁg initial range of pitch angles).it takes about 0f2
sec for the éame process to éccur. " Note that after 0.2 sec the
electrons reach 4° latitude, but on the other side of the equator.

A blob of electrons.created_through the ioﬁgitudinal resonance
interaction and with a spread in pitch angle only could radiate
coherently for a substantial perioed 6f time (few tenths of second).
However, the electrons within a blob have slightly different parallel

velocitieé, e.g. a typical spread in parallel velocity is about 400
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km/sec (Figs. 5.10 and 5.15). Thus it will take only about t ; 2/400 =
5 msec for those electrons to become separated more than a wavelength at
the equator, assuming the wavelength to be 2 km at the equator. From
this result it is evident that spreading due to the finite range of
parallel velocities occurs much faster than the spreading due to a
finite range of pitch angles, and that the life time of the blob is
about one hundredth of a second. We also noté,that the blob of
electrons c0uld further be dispersed due to interaction with other
waves,
Thus it is possible that the short life time during which the
_blob can radiate éoherently, together with the fact that there may not
~ be many electrons within a single Biob, makes the radiated power level
insufficient to account for the observations. However, there could be
more than one blob formed through the above described process, which
could further enhapce the radiation (as long as the radiation from
different bloﬁs does not interfere)., Even stronger radiation effects
could probably be achieved if the velocity of the electron blob equalé
thé critical veloecity, because in that case all radiated frequencies
éatisfy the ngdrin condition given iq Chapter II. The enhancement éf
radiation is expected because for the Gendrin mode the ray direction is
field aligned forlall radiated frequencies, and the group velocity is
indgpendent of the waﬁe frequency so that ﬁave packets radiated at
different frequencies trével together [Helliwell, private cqmmunication]-
Another explanation for VLF hiss generation is based on

amplification of incoherent Cerenkov radiation through the wave-beam

interaction where the beam provides for the 'bump-on-tail' distribution.
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As mentioned earlier, a distribution function which has a positive
slope, as is the case for the bump-on~tail distribution, may result in

Landau growth,

C. COMMENTS ON THE INTERNAL FIFLDS OF THE BUNCH

At this point we should note that space bunching always gives
rise to an internal electric field through the Poisson equation, This
electric field will then act to debunch the electrons, as 1t opposes the
.wave bunching field. Altho@gh this effect can be neglected in test
particle simulations where the number of electrons is small, it may
become important depending on the actual flux of parti;les. We havé
sttMtﬂ@ﬁkmtMMM%ommshramﬁndehuﬁcﬁﬂd
~around 50 pV/m and higher, so that we choose 5 pV/m as the limit for the-
internal field, i.e. we assume.that internal fields up to 5 pV/m do not
significantly affect the bunching process, Using the 5 uV/m field we
can find an electron density ¥ that is needed to-produce that field., 1In
Chapter IV we showea how the . twelve test electrons are uniformly
distributed in phase before the interaction, and in Chapter V (Fig.

_ 5.15) we showed that the same eléctrons are compréssed.in phase space,
i.e. space bunched. The typical compression is about 90° in phase, or
500 m éssuming A= 2 km.

At the same time each single test electron actually represents a

larée number of electrons in-the real distribution, i.e. each test.

electron represents a sheet of electrons. Thus the question is, if we
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.have twelve initially equidistgnt sheets of electrons, and we displace
those sheets so that the total displacement is 500 m, what is the
maximm electron density for which the interﬁal field'(due to the
compression of the sheets) does not exceed 5 uV/m? It turns out that
this computation is rather simple, and the electron density is given as

[Buneman, 1980]

EqE

N = - (7.1)

EAS

where E is our maximum allowable internal field (negative), and As the

total displacement of the sheets. Using E = 5 yV/m, As = 500 m, and

E,= 8.854 10 P we find N = 0.55 el/m® which is the maximum aliowable
deﬁsity, i.e. densities larger than this produce internal fields
stronger than 5 {V/m, which can reduce the bunching éffects. When the
density of the electrons is known wé can relate it to the electron flux
as discussed below,

-It was shown that trépping occurs in a narrow range of parallel

velocities centered around the wave phase velocity, so we use 1% as a

typical value., The next step is to compute the actual number of
electrons in that velocity range, and then to éompare with the
previously computed N = 0.55 el/m’ . The electrons are assumed to have

. an initial enmergy of 300 eV and o = 10° » 80 that the corresponding

parallel velocity is v, = 9.654 10° m/s. 1In that case the total number
of'electrons, within 1% velocity range around v,, is given as {assuming

an isotropic distribution in pitch angle)
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where A is a constant that can be deduced from the flux. It can be
shown [Inan, 1977] that for E = lkeV and a= 90°, A = 2 ¢, where ¢ is
the differential energy spectrum for 1 keV electrons with a= 90°, Note

that this relationship between ® and A holds only for a vt distribution,

v
A
: v? sina dv do
v

(7.2

" and it is necessary to use a different relation for other distributions.

Thus, substituting for A in Eq. 7.2, and integrating we have (n # 3)

: o2+l V2
N =47mA (- —///——
' n—-2-1
whereas for n = 3 we have

N =4TA Inv

and Table 7.1 shows the results for various values of the differential
flux ¢ (1 keV, a= 90°) and various values of n (the éonstant A is given

2
as mT[—nzl—]nlch where m i3 the electron mass).

vl'

(7.3)

(7.3g)

Thus, from Table 7.1 we can find the values of n and ¢ for which

the electron density is lower than 0.55 el/m 3, i.e., we see when it is

possible to have bunching without creating a strong internal electric

field which may significantly decrease the bunching effects. Also ‘note

that only the trapped electrons contribute to the internal field.
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Flux n A N (el/ma)
(el cm %sr s lkev)

10 ' 31,3107 1.3 107
10® 4 2 10 21658
108 5 2.9 10%3 3.1 10°
108 6 . 4.4 10%° 6.8 10'°
10% 3 1.3 107'' 1.3 1077
104 4 2 10* 2.17
10* 5 2.9 10'° 31
10* 6 4.6 10%" 6.7 10°
10° _ 3 1.3 10719 1.3 107°
10% 4 2 10 0.02
102 5 2,9 10'7 0.31
102 6 4.4 10°2 6.7 10"

TABLE 7.1 Total number of electrons within 1% velocity
bandwidth for 300 eV electrons as a function of flux and
various distribution functions.

Because most of the flux measurements are made at higher energies the
exact fluxes and‘distributions at lower energies are uncertain, but as
those data become aﬁailable Table 7.1 can be used as a guide to
determine if the bunching of the electrons is affected by the internal
fields. Present measurements indicate that the flux gaﬁ be on the ofder
of 10° t0‘109 s and the exponent n can vary between 3 and 5 fKimura,
1982; Shield and Frank, 1970]. |

We have presented two examples in which longitudinal rescnance
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interactions may play an important role, along with an analysis of the
limiting electron flux for the bunching. We conclude our discussion

with a summary and suggestions for future work.




VIII. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

A, SUMMARY

We have anaiyzed the nonlinear longitudinal resocnance
interactions between energetic electrons and cohgrent VLF waves in the
nagnetosphere. The longitudinal resonance; which may result either in
wave growth or wave damping, and aléo causes space bunching of energetic
electrons, was numerically simulated using time‘averaged nonlinear
equations of motion. The simulations were done for single electrons,
shee;s of élegtrons, gnd a full distribution of electroms. Those
stu&ies, done for different types of wave functions, have shown how the
the wave forces modify the electron trajectories, and that the
trajectory perturbations result in nonlinear pitch angle scattering.

The nonlinear pitch angle scattering variations have been studied for a
wide range of the initial pitch angles,rwave amplitudes, cold plasma
densities and wave normal -angles, It was found that there are two basic
groups of electroné, trapped and untrapped; where the trapped electrons,
in contrast to the untrapped electrons, are trapped in the potential
well formed by tﬁe'wave. The trapped electrons cause the space bunching
whiéh increases the electron flux at certain parallel velocities.

The nonlinear scattering for the longitudinal resonance is found
to be much smaller compared to that for the gyroresonance interactions,

indicating a higher efficiency for the gyroresonance process. This is
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so .because the scattering for gyroresonance is achieved th:ough the
conversion of perpendicular momentum of the electron into parallel-
momentum with very small energy exchange Setween the wave and électrons,
while Fhe scattering for the longitudinal resonance is solely based on
the énergy exchange. Due to tﬁe smaller scattering efficiency a full
distribﬁtion simulation produced only small precipitated fluxes, i.e.
for moderate strength VLF waves the precipitation due to the
loﬁgitudinal interactions ié beloﬁ.;he detectable level of about 0.01
Vergs/cmzléec.

In a study of magnetopsheric applications we found support for.a
mechanism proposed by Park and Helliwell [1977] to explain whistler
precursors. We conclude that the longitudinal resonance is a like1§
candidate.té drive a process in which a whistler wave perturbs ;hg
particles along a field.line through longituﬁinal resonant bunching.
This bunching has the effect of creating an énhancement, near the
equator, of particle flux in a particular parallel velocity range. The
enhancément is of sufficient amplitude and duration to permit a
gyroresonance interaction with wave activity such as power line
harmonics, We find that the longitudinal resonance 1is qbt at first look
a likely process for creating coherence in Ceremkov process of hiss
gene:ation, but that features of the longitudiﬁal resonance may merit
further study in this direction. Also presented was an analysis of the
limiting électronrflux fof the bunching, i.e. we estimated the electrom
density at whicb the internal fields of ;he bunch may become large

‘enough to affect the bunching process.




B. SUGGESTIONS FOR FUTURE WORK

In oﬁr.presentation we have shown the results of computer
simulation of the nbnlinear longitudinal rescnance interactions with
constant frequency whistler mode waves in the magnetosphere. This work
could be further extended as described below:-

i) We have indicated in Chapter V that both the wave amplitude
(E;) and the wave normal angle are treated as thbugh they are constant
quantities. It was said that this approximation will be valid as long
as ﬁhe interaction region is sﬁall, but there may be cases where it is
necessary to include effects due to the variation of those quantities.
The wave amplitude can be computed as a function of position using a
standard WKB appfoach, while the wave normal angle variations can be
_calcuiated using a ray tracing analysis. Those additional computations
could either be done separately and entered as data, or they Eould be
added to the existing code.

ii)._Another extension of‘the'present work could deal with CW
pulse signals propagating along the field line. 1In this case it should
be realized that the wave group and parallel_velocities have in'genéral
different values (except for the Gendrin mode) which poses additional
problems. It can be easily visualized that an electron trapped in the
wave potential well, i.e..an electron whose parallelrvelocity is'very
'close to the wave phase velocity, has to slide either backward or
forward through the wave packet when-the group veloéity is edither

smaller or larger than the phase velocity, respectively; for f< fH/Z
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the whistlee‘ mode group v_elocity always exceeds the pﬁase velocity., In
the case of -a CW pulse signal it would also be possible.for- electrons to
enter the wave packet from both ends; depending oe the ratic of their
parallel velocities and the group velccity of the pulse.

From ehe above diecuesion it is obvious that this problem weuld
require.significant changes in the present program, but could also
lreveal some additional features of the longitudinai resonance.

:iii) Another extension of the work presented here would be to
investigate the iongitudinal interaction for the case of variable
frequency pulee signalsf In this case the calculations would have to
teke iﬁto the account the fact that different frequencies of the signal.
interact With‘different electrons, and also at different locations aleng
. the fiel& line. Tt should be feasible to investigate the behavior of
whistlers jnteracting with energetic electrons by approximating the
whistlers ﬁith an appropriate number of segﬁents of 1inearly changing
frequency, as was done in the discussion of the precursor.

‘iv} It was noted earlier that ;he wave amplitude may be
significantly changed due to the interaction, especially in a full
distribqtien simulation, Al;hough in our particular case in Chapter VI
it was found that the total energy exchange is small, it will change for
other distribution functions. For example, if we assumed a v~® instead
of av™® depernidence, there would be many fewer eleeerons at higher
parallei velocities, as the weighting function would change from v to’
v ¥ (see Fig. 6.4). In this case there would be more energy transfer;ed
from the wave to the trapped electrons compafed to the energy

transferred from the untrapped electrons to the wave, and the final
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result would be wave attenuation., Thus in cases like this it may become
necessary to include an energy feedback term that accounts for the
amplitude changes. However, for a single particle simulation this

feedback effect is very small and can be omitted.







‘Below is the list of identities used in the derivation of time averaged

"APPENDIX A: USEFUL IDENTITIES

equations of motiom, ‘as well as the derivation of an approximation for.

the <qu3x> term for small 8.

It

cos(y - psing) = cos yeos(nsing) + siny sin(nsing)

]

sin(y - nsin¢) siny cos(nsin¢} - cosy sin{nsing)

Jo(n) + 2 Ja(n) cos(29) + 2 Ju(N) cos(4d) + ...

cos{Nsing) =
sin(nsind) = 2 Ji(M) sin(9) + 2 Ja(n) sin(3) + 2 Js(0) sin (59) + ...
2m '

S cos(Y - Nsind) dp = Jo (M) cosY

o]

21

sing cbs Gy - n.sind)) dp = J, () siny

1]
=]

cos $ cos(y ~ nsing) d¢

sin$ sin(y - nsing) d¢ = - J (M) cosy

o

S

27 . ,

S sin(Y - nsing) d¢ = Jo(N) siny
o

S cos® sin(y - nsing) do = 0

(8]
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The <qu53x> term (Eq. 2.62) is given as

v, k cost

u

<qu$x> = —unJl(n) SinY Pz

For small § sin 6=6, cosp = 1, and tanf=§ so that n = cui tang tangy,

as already found in Section II.C. Furthermore, we note that
, _

' nw
v, k cosB v v,
= cosd = —
W w Vpn

and that near the resonance vpu =v, 80 that

v, k cosd V.
= - = tani.
w VP"

’

Therefore, <qu53y> = —qE..sinYtanapzjl(n), and for small 6

' 8 tana .

Also, for small 6,. pzis given as

1 L o-wley

w/wg 1 + m[wH

- 1
pz - e -

S_ub'stituting for J; (n) and p, in the expression for <qv g >, the final
: yox

result is

1 - w/w
< 5 o s 1 ________ji__
qufﬁx qEssinytan’a 201 + w/w};i)
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APPENDIX B: PROGRAM LISTING

ANGLES ARE IN RADIANS EXCEPT IN INPUT AND QUTPUT

DIMENSICN Z{3@003),PHI(3534),BZ{3935),WN(3054),VYP(3557)
DIMENSION FDAT{ZE),ENDAT(1ZY,ALPDATIIO) ,KTEMPLAG)

DIMENSION BESEL(2),ETA(359%),8MULT( 3655

DIMENSION RKDZ{3883),RKDZL{3305),CTHG{I0ZT)

DIMENSION AMPLOW(28GY) ,AMPLHI(3308)

COMMON DVPA,EQALD,ALGRD,VPA,FVPA(423),SDIST.ALEQ,A.SVPA,FDIST(13
5.435).EQAL.FPDIST(185).?1.EM.EL.RPHI,VPE.E.EV,KMAX.VMIN.VPMAK,
ALMIN,ALMAX,ALDC(12),R,RO,VPAEQ,EPA,EVDC(12),16,ERPAGI3008)
COMMON/BLOCK1/ KFDIST(18¢,499),IFDIST(180,29)

COMMON/BLOCK2/ SFDIST(1841),11AS, ITAF ,NVG,ALFALOD,ALFAHI
yALFA(351},JL0, JHI

COMMON/BLOCKS/ TC(4@@,12),CARGULAEH,12),VPHA(ADE,12)

s VPARA( 400, 12),ENER(85H,12),PBCARGU(585,12),P3VPH(505,12),
PBVPA(535,12),TMIN,TMAX,TR(lZ).TTRACE(12).INDEX(IZ).

MLO,MHI MSTEP,TEN{(BSZ), TPB(545),DISTAN(853),DISTANI{505)

Z=ARC LENGTH, PHI=INVARIANT LATITUDE,
BZ={1/B)=D8/DZ, WN=WAVE NUMBER K, VP= PHASE VELOCITY

IREAD IN ALL MECESSARY DATA

CHOGOSE GENDRIN MODE OR NOT (IG=1 OR IG=g)
READ(5,358) 16 .
FORMAT{I2)

READ(5,358) ICONTY99

READ{(5,358) ICONTS8S

COLLISIONLESS MODEL OR DIFUSSION MODEL (ICLM=1 OR ICiM=2)
GET MODzlL PARAMETERS TE,XIO,XIH,XIHE,ENZQ

READ(S,351) ICLM,POVER, TEMP,XIO,XIH,XIHE ,ENEQ
FORMAT(I2,6F19.5)}

' THE WAVE AMPLITUDE IS DIFFERENT IN THE CASE OF GENDRIN MODE

THAN IT IS IN NON-GEMDRIN CASE. GENDRIN MODE WAVE INTENSITY IS
BW WHILE NON-GEMDRIN MODE WAVE INTENSITY IS LABELED EPA.

THE PROPER SETTING OF WAVE INTENSITIES IS DONE 1IN FOLLOWING WAY:
1) GENDRIN MODE - : :

WAVE INTENSITY IS BW=CONST*2**[BW WHERE IBWLOSIBWC IBWHI .

1BWLO AND IBWHI. ARE READ FROM INPUT CARD DECK. AT THE SAME TIME
EPA IS NOT USED WHICH 1S ACCOMPLISHED SETTING IELO=IEHI=1

2) NON-GENDRIN MODE
WAVE INTENSITY IS EPA=CONST*2*¥IE WHERE IELOCIECIEHI.
AT THE SAME TIME GENDRIN MODE IS SUPPRESED USING IBWLO=IBWHI=1

READ(S,352) IBWLO,IBWHI,IELC,IEHI
FORMAT( 412}

FREQUENCY ITERATION i _
ENTER THE MUMBER OF DIFFERENT WAVE FREQUENCIIS AND THEY WILL BE READ
FROM INPUT CARD DECK i

READ(5,358) INFREGQ

DO 1813 ICNT=1,INFREQ
READ{5,353) FDAT{ICHNT)
CONTINUE

FORMAT(F12.5}

READ L VALUE AND ANGLE BETWEEN K&34 (THETA)

READ(5,354) EL,THETA
FORMAT(2F1¥.5)
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C
c
C
c
C
C
c
c
c
c
c
c
c
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
C
c
c
c

00

oo OO0

355

1214
1615

341
1916

363

(2]
we
&«

DEFIME DIRECTION OF PROPAGATION
IvD=1 - -=-> POSITIVE DIRECTION
IvD=-1 =-> NEGATIVE DIRECTION

READ(5,358) WD

PARAMETERS ALONG FIELD LINE PRINTED IF ICONTI=1

READ(5,350) ICONT!

FULL DISTRIBUTION USED IF IFULL=1, ADIABATIC APPROXIMATION USED
BEVOND RESONANCE POINT IF IADIA=1, DIFFUSION COEFFICIENTS
COMPUTED IF IDIFF=1

PROGRAM CAN TRACE EITHER A SINGLE PARTICLE OR GIVEN DISTRIBUTION
GIVYEN BY THE DISTRIBUTION FUNCTION FDIST(VPARALEL,ALFAEQ),

1) SINGLE PARTICLES TRACING

TO DO SINGLE PARTICLE TRACING IT IS NECCESSARV TO SPECIFY ITS
PARALLEL VELOCITY AND EQUATORIAL PI1TCH ANGLE.

THIS IS DONE DEFINING TWO PARAMETERS- IV (LOOP 296)

AND TA (LOOP 294).

GIVEN RANGE IVLIVS,IVF] PARTICLE VELOCITY IS GIVEN AS
VPAI=VMIN*{(1+{IV~ l)llﬂ)*l #5 AMD PITCH ANGLE IS READ FROM
INPUT CARD. DECK USING IA AS POINTER WITH RANGE EIAS,IAF].

2) FULL DISTRIBUTLON TRACING

IN THE CASE OF FULL DISTRIBUTION ALL DATA CONCERNIG SINGLE PARTICLE
WILL BE NEGLEGCTED. THE INITIAL DISTRIBUTIOM IS GIVEN BY THE NUMBER
OF BIMS IN VELOCITY AND PITCH ANGLE RANGE.

MUMBER OF VELOCITY BINS IS READ AS INPUT DATA (NVG) SAME AS PITCH AN
RANGE C(ITAS,IIAF].

READ(5,355) IADIA, IFULL IDIFF
FORMAE(BIZ)

IF{IFYLL.EQ.1) 60 TC 1315
READ{5,352)1VS,IVF,IAS, IAF
DO 1814 ICNT1=IAS,IAF
READ(5,353) ALPDAT(ICNTI}
CONTINUE

GO TG 1416

READ(S,341) NVG,11AS, IIAF VRANGE ,VINITL
FDRMAT(3IZ 2F1g.5)
CONTINUE

IF{IFULL.EQ.1) IVS=l
IF{IFULL.EG.1) IVF=1
IF{IFULL.EQ.1) IAS=1
IF{IFULL.EQ,1) IAF=1

PRINT PHASE ANGLE YES=1l, NO=#&
READ{(5,363) ICONT2,MLO,MHI ,MSTEP,TMIN, TMAX
FORMAT(dIZ 2F18.5)

READ THE STARTING LATITUDE WHERE TRACING SHOULD BEGIN
READ{(S,353) SRPHID

READ WAVE AMPLITUDE INFORMATIGON
READ{5,358) IGROW

" READ(5,3%8) XPHIOD,.XLEN,XAMPL -

FORMAT(3F1H.8}
READ(S5.358) ICONTS
READ{5,358) ICONT2S
READ(5,253) XMAX
READ(5,353F VDELTA



135
136
137
138
139
1:3
141
142
143
144
148
145

147
148

149
158
151
152
153
154
165
156
157
168
159
169
161
162
183
154
165
186
167
168
"169
179

171 .

172
173
174
175
1786
177
178
179

188

189

154
191
192
193
154
195
196
i97
198
189
4]
221
2@z

[p Xy Ny

O OO0 0O0000

7637
7643
75599
70918

L T T R R A o . WP AR R e A T A WY R e T L e o

3558

3956

713

ITERATE FOR BW IN GENDRIN MODE. IF.GM IS NOT USED SET IBW=1,1

WRITE(S,78097) IG,ICLM,TEMP,HI0,XIH,XIHE,EREQ
FORMAT(2I3.5F15.5)

WRITE(6,7008) IBWLO,IBWHI,IELOIEHI,INFREQ,FDAT()
FORMAT(SIB.FIH.S)

WRITE(S,7029) EL,THETA,IWD,ICONT1,IADIA, IFULL IBIFF
FORMAT(ZFIH 5,813}

WRITE(6,7018) IVS,IVF,IAS, IAF ,ICONT2,SRPHID,ALPDATI( L)

FORMAT{SIS 2F18.5)

b0 216 IBW=IBWLO, IBWHI
Bw=3.75E-12*2“*IBW

DO 2@8 IEF=1,INFREQ
F=FDAT({IEF)

DEFIHE ALL NEEDED CONSTANTS

E=1.6921E-19
C=2.9978E8

PI=3.1416

RO=6.37EB )
PHIO=ATAN(SQRT{(EL-1.)})
A=3.1415927/184.
EM=9.10B6E-31

DZ=1.E4

R1=7.37E6
CTH=COS(THETA=A)
STH=SIN{THETA*A)
OM=2.*PI*F
BOLTZ=1.3805E-16
EMI=S.1066E~28*1837.
G1=98%.67*RO*RO/R1/R1
QMsSs= (PI/12 /364G )**2

TEST PROGRAM FOR FULL DISTRIBUTION
IF{ICONTB88.EQ.2) GOTO 713
WRITE{(6,3958)

FORMAT(//!/ TEST BESSEL FUNCTION COMPUTATIONS'//)
ARG=8.

CALL BESJR{ARG,!,BESEL,IER}
WRITE(6,3956) ARG,BESEL(1),BESEL{2)
FORMAT{3F12.4)

ARG=1}.

CALL BESJR(ARG,1,BESEL,IER)
WRITE(6,3956) ARG,BESEL{1),BESEL(2}

CORTINUE

DENSITY MODEL DATA ARE READ FROM IMPUT CARD DECK

168

COMPUTE PF(PLASMA FREQUENCY), FH (GYROFREQ.) AND RIND(REFRACTIVE

INDEX )} ALONG GIVEN FIELD LINE USING QL APPROXIMATION,

ALSO COMPUTE WN{WAVE NUMBER IN MAG., FIELD DIRECTION) AND VP{PHASE

VELOCITY IN MAG. FIELD DIRECTION).
Z{N) AND PHI(N} GIVE POSITION ALONG THE LINE.

WN AND VP ARE DIFFERENT FOR GENDRIN AND NOM-GENDRIN MODES.

HH=BOLTZ*TEMP/EMI/G1*] ,E-2 .
SCALE HEIGHTS ARE CONVERTED TO METERS
HHE=HH/4.

HO=HH/16.

GPHEQ=R1-RI*R]1/RO/EL-OMS/2./G1/RO/EL*({RO¥EL })**3~R1%%3}
- ENFAC=XIH*EXP{-CPHE Q/Hd)+K£HE*E¥P(’hPHEQ/HHE)+XIO*'XP(*C?HEQ/H0)

ENFAC= ENEO/SQRT{ENFAC)
N=1




293
284
255
205
287
58
259
218
211
212
213
214
215
216
217
218
219
2249
221
222
223
224
225
226
227
228
229
237
231
232
233
234
235
236
237
238
239
244
241

© 242

243
244
245
. 246
247
248
249
258
251
252
253
254
255
255
287
258
259
269
261
262
263
264
ﬂss
288
Z267

169

c
c
c
c

aaooo

11
12

12

i4

ZI{NI=0.
PHI(N}=#.
R=RO*EL

CDel=1.

BZ(N}=g.

FP=SQRT{BOH.G"ENEQ*1.E6}

FH=8.73BES/EL**3

RIND=FP/SQRT(F*{FH*CTH=F 1)}

VP{N) IS FHASE VELOCITY IM MAG FIELD DIRECTION

IF GENDRIN MODE USED THAN NEXT LIWES EXECUTED, OTHERWISE
GO TO 11 .

IF{ IG .NE. 1 )} GO TQ 11l
VPENY=C/2.*FH/FP

"CTHG(N)=2Z.*F/FH

WNCN)=2. *PI*F/VP(N}/CTHG(N)
EPAG(N }=C*BW*F /FRP*SQRT(1.~4 . *F*F/FH/FH)
G0 TO 12 '
VP{N)=C/RIND/CTH

WNUH)=RIND/C*2.*PI*F

RKDZ(H)=5.

NERT LOOP (LABEL 143 COMPUTES ALL MEDIUM PARAMETERS ALONG GIVEN
FIELD LINE

N=N+1

ZIN)=2(N-1)+D2Z

PHI(N)=PHI(W-1)+DZ*CDEL/R

CPHI=COS{PHI(N)}

SPHI=SIMN{PEI{N)}

R=RC*EL*CPHI=*=*2

SRF=SORT(1.+32*SPHI**2}

CDEL=CPHI/SRF

SDEL=2.*SPHI/SRF
BZ(N)}=3./R*(SPHI*CPHI*CDEL/SRF/SRF+SDEL)

BZ IS DELTA B OVER DELTA Z DIVIDED BY B .
Z(N}=RO/2./SORT(3.}/COS{PHIOI**2*(ALOG(SART(3.)*SPHI+SRF)
+SQRT(3.)*SPHI*3RF )
GPH=RI1-R1*R1/R-OMS/2./CG1/RQ/EL*(R**3-R]1**3}
EN=XIH*EXP(-GPH/HH)}+XIHE*EXP(-CPH/HHE }+XI0*EXP(-GPH/HO)
EN=3QRT(ENI*ENFAC

IF{ICLM.EQ.1) EN=ENEQ*{RO*EL/R)}**POWER
FP=SQRT{BF.6*EN*1.E6)
FH=8,736E5*{RO/R)**3I*SRF
RIND=FP/SQRT{F=*{(FH*CTH-F)}
FACTI=1~{FP/F)}**2
FACT2=1-FP**2/(F%*2-FH"#2)
FACT3=(FH/F)*FP**2/(F*=2-FH**2}

IF{IG.NE.1) GO TO 14

VPIN}=C/2.*FH/FP )

CTHG{N)=2.*F/FH

VORI =2.*PI*F/YP{N)/CTHG{N)

RINDZ=(FP/F)**2

STHG2=1-LTHG{N)=*2

STHG=SAQRT{ETHGZ)

EPAG(N)= C*BU*F/FP*SQRT(l.-d *F*F/FH/FH )
REKDZON)I={UNCNY+WN{N=-1))/2.*DZ*CTHG{ N }+RKDZ(N~1}

G0 TO 15

WN{N)I=RIND/C*2,*P1*F
VP{MN)=C/RIND/CTH
BKDZIN)I=(WN{NI+WN(N-1})/2.%DZ*CTH+ QKDh(V i)

" CTHG{H)}=CTH

RINDZ2=RIND=®*2
STHGZ=STH**2
STHG=3TH
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269 -

279
271
z72
273
274
27%
275
277
278
279
289
281
282
283

284
285
286
287
288
289
294
291
292
293
294
295
296
297
258
299
399
391
3g2
22
394
- 385
386
387
208
349
3y
311
312
313
314
a1s
316
317
218
219
329
221
322

o000

. 46

47

B@32

8233
8g61

IF (VP(ﬂ).GT.VP(N—l))'VPMAX;VP(N) .
BMULT(N)=FACT3/{RIND2*FACT2)*(RINDZ*STHGZ—FACTI)/RINDZ
/STHG/UTHGUN)

ETA{H)=WNI(N)=3THG/FH

HMAX=N

- IF {R.GT.RO) GO TO 19

AlLL PARAMETERS COMPUTED

H=g

RFHI=SRPHID=A

N=N+1

IF{ABS(RPHI}.GT.PHI(N)} GOTO 46
INOMAX=N

RKDZL(N)=g.

N=N-1 .
RKDZL(N)=(WN(N+1}+WN(N)}/2.*DZ*CTH+RKDZL(N+1)
IF(N.GT.1) GOTO 47

DO 48 N=1,NMAN
RKDZ{NY=RKDZ{N)+RKDZL(1)

TO PRINT PARAMETERS ALOMNG FIELD LINE ICONT1=1

IF(ICONTI.NE.1) GO TO 6099

I=g

H=I*10+]

IF(N.GT,NMAX} GO TO 6209

PHID=PHI(N)/A _ _
WRITE(G,6801) PHID,Z(N),EPAGIN),YPIN),CTHGIN),WN(N)
FORMAT(F158.2,5E12.4)

i=1+1

GO TO 6482

CONTINUE

THIS CODE WILL BE EXECUTED IF VARIABLE AMPLITUDE WAVE
15 USED PRCGRAM .

IF(IGROW.NE.1) GO TO 8051

XPHIO=XPHIOD®*A i )
XSTART=R0/2./SGRT(3.)/COS(PHIO)**Z*{ALOG(SQRT(3.)*SIN
(X?HIO)+SQRT(1.+3.*SIH(XPHIO)**2))+SQRT(3.}*SIN(XPHIO)*
SORT{1.+3.*SIN(XFHID)**2}) .
XEND=XSTART+XLEN*1034d.

DO 8832 I=1,3000

AMPLOW( I )=9,

CONTINUE

00 8833 1=1,30808

CAMPLHI(I)=4.
IF((PHI(I).GT.B.12217).AND.(PHI(L).LT.E.17453)) AMPLHI(])=45.E-6

CONTINUE
CONTINUE

AMPLITURE DATA STORED




323
324
225
32%
327
3zs

-~y
DL

339
331
332
333
334
335
336
337
338
339
340
341
342
243
344

355
357
‘358
359
359
361
362
363
364
365
366
367
369
359
379
371
372
373
374
375
376
377
378
379
389
38}
382
383
354
" 385
386
287

171

c
c
G
C
C
c
c
c
c
c
c

OoOOnOOooO0

aoo

43

41
42
43

.3:1:14

1716

1761
1717

1713
1718

INITIALIZE FINAL DISTRIBUTTON FUCTION 0 & IF FULL D?STRIBUTION
IS USED IN PROGRAM.

THE [MIVIAL DISTRIBUTICN IS SET UP ACCQRIDIRGLY TO NVG FOR VELC
BIN AND IIAS AMD TIAF FOR PITCH ANGLE 31il.

THE FINAL DISTRIBUTION BINS ARE COMPUTED FOR VELOCITY TO GIVSL
THE BEST RESOLUTION AND FIXED FOR PITCH ANGLE {(®.5 DEGREE IN
Z-94 RARNGE}

IF (IFULL.EQ.Z} GO TO 43

J FOR ALPHA GOES FROM 1-184

NVG IS NUMBER OF GRIDS IN VPARALLEL IN INITIAL DIST FUNCT
DVPA=VP (1 )*YRANGE/(NVG+1)

K=1

FVPA{1)=8.25*%VP{1}

K=K+1

FVPA{K)}=FVPA(K-1)}+DVPA*12
IF(FVPA(K). LT {VP(1)*3.241}) GOTO 48
KMAX=

DO 42 K=1,KMAX

CO 41 J=1,184

IF(K.LT.21) IFOIST{(J,K)=8
KFDIST(J,K}=8

FDIST{(J,.K}=4.

CONTINUE

COGNTINUE

" PARTICLE TRACING STARTS
- ITERATE FOR WAVE INTENSITY

FOR GENDRIN MODZ WAVE INTENSITY IS bPECIFIED BY
MAGMETIC COMPONENT NEAR BESINNING OF PROGRAM,

NEXT DO LOOP SHOULD HAVE ONLY ONE LOOP (IBWLO=IBWHI=1)
PO 287 IE=IELO,IEHI '
EPA=45.E-6

IF (ICONT25.EQ.3) GOTO 4982

EPA=1 . E-B*XMAX

IF(EPA.EQ.Z) IMAX=1

IF (CPA.NE.Z) IMAX=12

FOR GENDRIN MODE EPA IS REPLACED BY EPAG{1) FOR OUTPUT PRINTING
IF (IG.EQ.1) EPA= EPAG(I}

"VFMIN=1.E16

INITIALIZATION OF PLOTTIRG DATA ARRAYS

IF{ICONT2.EQ.8) GOTO 1721
00 1716 I=1,12
TR{I)=180.

PO 1717 1=1,858

00 1761 J=1,12
ENER(I,3)=-1.

CONTINUE

CONT ENUE

00 1718 I=1,12

DO 1719 J=1,585
1F(J.GT.405) GOTO 1728
TC(J,1)=1.E26
CARGU{(J,I)=1.£36

VPHA(J, 1 1=1.E36
VPAﬂA(J.I)=l E36
PBCARGU(J.I)=1.E36
PBVPH(J,I1)=1.E35
PBVPA(J,1)=1.E36
CONTINUE

CONTIMUE




385
389
354
391
392
393
394
395
396
397
398
399
404
431
492
493
484
483
496
427
408
429
- 418
411

412 -

413

414

415
416
417
418
419
423
421
422
423
424
425
426
427
428
429

433

431
432
433
434
435
436
437
438
439
448
441
442
443
444
445
445
447
448
449
4548
451
452
453
454

455

1763

1762
1721

4281

no 1762 I=1,859 :
IF{I.CT.585) GOQTO 1753
TPB(I)}=1.E3B
CISTAH1(1}=]1.E35
TEN{I}=1.E36
DISTAN(]I}=!.EZ6

CONTINUE

CONTIMUE

VFMAX=0,

VCOURT=2

EQOTOT=4.

EFTOT=4.

ALFALO=1.E18

ALFAIT=8.

IFCIFULL.EQ. @) VINITL=1.
VMIN=VINITL*VP{1)
ITERATE FOR PARTICLE VELOCITY

172

IVS AND IVF ARE VELOCITY RANGE DATA FOR SINGLE PARTICLE TRACING

IF (IFULL.EQ.1) IVF=IVS

DO 206 IV=IVS,IVF
VPAI=VMIN®(1.192+1IV*F.021}
IF (ICONT25.EQ.6) GOTO 4881
VPAI=VP{1)}*VDELTA

IIvs=1

IF{IFULL.EQ.Z) NVG=#
T1IVF=HVGa+1

IF (IFULL.EQ.&) IIVF=11IVS
DO 285 IIV=IIYS,IIVF
VPAII=VMIN+DVPA*({IIV-1)

IFCCIIVLEQLITVS) . AND.CIFULL. EQ 1)) VSTART=VPAII
IFCCIIVLEQ.IIVF) LAND.(IFULL.EQ.1}) VEND=VPAII

IF (IFULL.EQ.1) SVPA=VPAII
IF CIFULL.EQ.Z) SVPASVPAL
ITERATE FOR EQUATORIAL PITCH ANGLE

TAF AND IAS ARE PITCH ANGLE RANGE DATA FOR SINGLE PARTICLE TRACING

IF (IFULL.EQ.1) IAF=IAS3
0O 204 IA=IAS,IAT
ALEQIﬂALPDAT(IA)

ITAS AND IIAF ARE PITCH ANGLE RANGE FOR FULL DISTRIBUTIDN

IFCIFULL.EQ.8) 1IAF=1
IFCIFOLL.EQ.#) TIAS=1
IF (IFULL.EQ.Z)} TIAF=IIAS

 ALMIN=5.25+8.5+I1AS

ALMAX=5.25+F . 5% 1 1AF

DO 243 I1IA=I11AS,ITAF
ALEQII=5.25+F.5%11A

IF (TFULL.EQ.1) ALEQ=ALEQII

IF (IFULL.EQ.@) ALEQ=ALEQI

IF (IFULL.EQ.¥) WRITE (6,993) ALEQ
ALEQ IS IN DEGREES

FORMAT(IH1," EQ PITCH ANGLE=',F7.3/}
ITERATE FOR BETA

D0 282 I=1, IMAX

BETAD=38.*I-34.

BETA=BETAL™A

STARTING LATITUDE IS INPUT DATA
RPHI=SRPHID™A

SPHI=SIN(ABS{RPHI)}) ~
CPRI=COS{ABS(RPHI )}
SRF=SQRT(1.+3.%SPHI*=2)

S=R0O/2./SQART(3. )/COS(PHIO)**Z*(ALOG(SQRT(S.)

*"SPHI+SRF }+SORT(3. )*SPHI*SRF)

IF (RPHI.LT.Q) S=#.
TANS=TAN{ALEQ*A}**2
FHRAT=SQRT(1.+3, *bPHI**Z)/CPHI**S
VPA=SVPA®SORT(1.+TANS-FHRAT*TANS)
SVPE=SVPA*TAN{ALEQ=A)
VPE=SVPE*SGRT(FHRAT)




456
457
458
459
4ed
461
462
463
464
463
466
467
468
48
478
471
472
473

474

475
276
477
478
478
480
481
482
433
484
485
436
487
428
489
i9g
491
492
483
494
495
436
497
498
499
598
531
592
593
544
595
586
597
598
509
519
511
512
513
514
15
516

C 817

518
518

173

135
7951

999

108

49

119

37¢£8

WM

2769

"IF{IFULL.EQ.1}) GOTO 135

"IMDONE=8%

©HL=R-1

EQ=EM/2.*(VPEXVPE+VIPAXVPA}
EVO=EQ/E

IF{I.MNE.1} GOTO 13§

IF{ICONT25.EQ.1) RATIO=VDELTA

IF{ICONT25.EQ.J) RATIO=VPAI/VMIN

CONTENUE

IF{{I.EQ.1).AND.{IFULL.EQ.@}) WRITE(&,7851) SRPHID : ’ :
FORMAT{"' TRACIMG STARTS AT ',F&.2,' DEGREES LATITUDE"} : : s
IF{IGROW.EQ.1) EPA=XAMPL i
IF{{IFULL.EQ.@}.AND.(I1.EQ.1}}) WRITE(6,359} EL EN;Q F,SVPA,EVD,EPA
JYPA,VP{1},RATIO

FDRMAT [ EL=' F5.2,3X,EQ DEN=',F6.1,'CH-3',3X .'FREQ='.-3PF6.3,
‘KhZ',3X, 'EQ PAR VEL=',gPE19.3,"' M/SEC',3X,'INIT ENERGY=",E12.6,

* EV',3X,'EPA="' E1&.4,°V/M"'/' VPA=",E11.4,'M/5", 3X,

' EQ PHASE VEL=',Ell.4,°M/S",3%, 'RATIO(VPAR/VPHASE)=",F7.5}
IRDONE=2 ' o '

iRDON=4

ITi=0

1T2=0

IC=&

IND=@

1C2=4

IMIRR=g

T=g.

DT=5.9881

iT=8

N=i

N=N+1

IF (ABS(S}.GT. Z(N)) GO TO 199
NU=M

IF{(I.EQ. 1)} WQITE(G 49) INDMAX,NL,NHU

FORMAT(//315//)

VPHASE=IWD*(YP(NL I+ (VP (RUI-VPINL )} )*(ABS(S)-Z{NL I/ (Z{NU)}~- ZNL YD)
IF (VPA.GE.(VPHASE*IWD)) ITEST=1

IF (VPALLT.(VYPHASE*IWD) ) ITEST=-1

BZF=(BZ(NU)-BZ{NL ) )*{ADBS{S)}-Z(HL )} )/ (Z(NU)}- 2(NL))+BZ(N')
IF{S.LT.8.) RKDZI=RKDZL{NL}
IF{S.GE.J.) RKBZ1=RKDZ(NL}

" IF{S.LT.@.) RKDZ2=RKDZL(NU}

IF(S.GE.Z.) RKDZ2=RKDZ{NU)

RKF=IWD*(RKDZi+(RKDZ2~ RKD71)*(ABS(S) Z(NL!)/(Z(NU) Z(NL)}
)

IF (S.LT.8.) BZF=-1%EZF

CARG=OM*T-RKF+BETA - .

IF{{IGROW.EQ.1}Y.AND . {S.LE.&.})) EPA=AMPLOW(NU}
IF({TGROW.EQ.1).AND.{S.GE.Z.)) EPA=AMPLHI{NU)}
IF{ICONT99.EQ.F) GOTO 3783

COSINE=CTH

IF(IG.EQ.1) COSINE=(CTHG(NU)}+CTHG{(NL)}/2.
TERM1=VPE*{WN{NU)+WN{NL))/2.*COSINE/F/2./PI
ARG=(ETA(NU}+ETA(NL))}/2.2VPE

CALL BESJR{ARG,!,BESEL,IER)

TERM3= BESEL(I)*(l TERMI*(BMULT(NU)+°M“LT(VL))/2 *BESEL{2}
/BESEL{1})

GOTO 3799

TERN3=1.

CONTINUE '

Ift IG .ME. 1 ) GO TO 5088

EPAF = EPAG(NL)+(EPAG{”U) EPAGINL I I*{ABS(S)=-ZI(NL}}/(Z{RY )~ Z(NL))
VPAT=VPA-VPE**2/2.*BZF *DT-E/EW*EPAF*TERM3*COS(CARG;*DT

G0 TO 5401




528
521
522
523
524
8§25
525
527
528
£29
539
531
532
533
534
535
536
£37
538
539
549
541
542
543
544
545
546
547
548
549
554
651
552
553
554
555
556

- 557

558

553

Z6g

- 561

562
€63
564
565
566
5587
558
£69
578
571
572
572
874
875
576
877
578
579
538
581
a2
583
584
565
586
se7
583
589

5¢9g
SFE1

1£1
12

104

3715
3716

505
2449

37286
3727

2482

2421
~

253

VEAT=VPA-VPE**2/2 *EZF *DT-E/EM*EPA*TERN3I*COS(CARG ) *DT
ST=S+(VPAT+VPA)/2. DT :

NUO=HU

IF (ABS{ST).LE.ABS(S)} GO TO 141

NU=NU-1

NUsHY+1

IF (ABS(ST).GT.Z(NU)) GO TO 182

NL=NU-1

GO TO 194

NL=NL+1

NL=NL-1

IF (ABS(ST).LT.Z(NL)) GO TO 143

NU=NL +1

CONTINUE

BZS=(BZ{NY)~BZ(NL)

IF{S.LT.Z.) RKDZ1=RKDZL{NL)

IF(S.GE.@.) PKDZ1=RKDZ(NL}

IF{S.LT.9.) RKDZ2=RKDZL(NU}

IF(S.GE.J.) RKDZ2=RKDZ(NU) :
RKS=IWD*{RKDZ1+(RKDZZ~RKDZ] )*(ABS(STI~Z(NL )}/ (Z(NU}-Z{NL}
)) .

IF(ST.LT.8.) BZS=-1*8ZS

CARG=0M*T-8.5%( RKF +RKS )+BETA

IF{ICONT99.ED.0} GOTO 3715

COSINE=CTH

IF(1G.EQ.1) COSINE={CTHG(NU}+CTHG(NL))/2.
TERMI=VPE*(WN(HU)+WN(NL))/2.*COSINE/F/2./P1
ARG=(ETA({HU)+ETA(NL}/2.7VPE

CALL BESJR(ARG,1,BESEL,IER)
TERM3=BESEL(1)*(1-TERMI*{BMULT{NL }+BMULT(NU)) /2. *BESEL(2)
/BESEL(1)) _ : A
GOTO 3716

TERM2=1.

CONTINUE

IF{IG.NE.1) GO TO 5865
EPAS=EPAG(NL)+{EPAG(NU)}~EPAGINL ) )*(ABS(STI-Z(NL) ) /(Z(NUI=Z(NL))
VPAT=VPA-VPE*22/4,%(BZF+BZS}*0T-£ /EM*{EPAF +EPAS) '
/2. *TERM3*COS(CARG }*DT

GO TO 2408
VPAT=VPA-VPE**2/4 *(8ZS+B2F )"DT~E/EMYEPA*TIRM3*COS( CARG }*DT
IF{1G.EQ.1) EPATEM=(EPAF+EPAS)/2, -

IF{IG.NE.1) EPATEM=EPA

IF(ICONT99.EQ.#) GOTO 3726
TERM2=VPAT*(WN(NL }+WNENU ) Y /2 . *COSINE/F /2. /P1
TERM4=BESEL(2)*(BMULT(NU}+BMULT(NL }}/2.*( 1-TERM2 }
VPE=VPE+VPAT*VPE/4."{BZS+BZF }*DT+E/EM*TERM4*COS( CARG)*DT
*EPATEM ' . '

GOTO 3727

VPE=VPE+VPE*YPAT/3 . *(BZS+BZF)*DT

CONTINUE :

SC=S+(VPA+VPAT}/2.*D

CHECK FOR EQUATOR CROSSING

IF ({SC*S).GT.H) GO TO 2481

CALL £QCOMV

IF(IFULL.EQ.9) WRITE(6,2482) T,EV,E0QALD, IRDONE

FORMAT (' EQUATOR XING',3X,'T=',F7.4,3X, 'ENERGYs',E8.3,'EV',
3X,'EQ PITCH AWGLE=',F6.3,3X,'NO OF RESOMNANCES=',I3)
IRDONE=0

CONTINUE

FIND MIRROR POINT

IF (IMDONE.EQ.1} GO TO 2508

IF ((VPA*VPAT),LT.8) IMIRR=1

IF (IMIRR.NE.1} GO TO 2507

CALL EQCONV

IF (IFULL.EQ.O) WRITE 6,253} H,RPHID,S,T,EV,EQALD

FORMAT (' MIRROR POINT',3X,'H=',E12.5,' KM',3X,'PHI=',F7.3,3%,
'$=",E12.5,3X,'T=',F7.4,3X, '"ENERGY=" ,EB.3, ‘EV",3X,

'EQ PITCH ANGLE=',F6.3 )
IMDONE=1
GO TO 312




598
591
5392
593
594
895
596
597
598
599
3217)
el
642
643
6d4
6435
606
64g7
608
669
-39}
611
812
E13
514
615
616
817
618
619
629
621
622
623
624
625
626
827
628
629
G348
631
632
633
634
635
636
637

638

639

sS4y

641
642
643
644
645
646
647
648
649
657
651
652
653

QOO0 OOan

186

195
197

123

251

13¢

VPA=

ENG
ERR
AL
IF{
NU=
NU=
IF
ML
GO
NL =
NL=
IF
N =
CON

NUQ=

S§=5
RPH
IF

RFH
R=R
H={

VPHASE

FIN
IF
IF

VPAT
VY=EM/2 . /EX(VPE=VPE+VPA®YPA)
OR=ENGY-EQ/E

=ATAN(VPE/VPA)

ABS{SC}.LE.ABS(ST?)} 60 TO 185
HU~-1
U+l
(ABS(SC}.GT.Z{NU}} GO TO 196

=NU-1

TO 188

NL+1

NL-1

{ABS{SC).LT.ZINL )} GO TO 137
ML+

TINUE

NU

C

I=(PHI(NU)=-PHI(NL))*(ABS{S)~ Z(NL))/(Z(NU) ZUNL ) }FPHICNL)

{S.LT.&.) RPHI=0F.-RPHI
ID=RPHI/A
OFEL*COS{RPHI }**2
R-RO}/1384.

D RESONANCE FOINT
({VPA*IWD).LT.Z) GQ TO 25%

{{(VPA- VPHASE)*ITEST) LE.Z) 60 TO 251

G0 TO 25#7
CONTINUE

IF¢

(IFULL.EQ.@).AND.(IRDON.EQ.F)) TR{I)}=T

IRDON=IRDON+1

IFt

IFULL.EQ.1) GOTO 137

CARGD=CARG/A

IF(AES(CARGD)}.LT.3568.}) GOTQ 138
IF{CARGD.GT.®.) CARGD=CARGD-3E65.
IF{CARGD.LT.®.) CARGD=CARGD+364.

GOT
IF{

0 139
CARGD.LT.®.) CARGD=CARGD+3ED.

CONTIMUE

IF¢
,CA

FORMAT (' RESONANCE VEL=',E12.5,5X,

g8X,

RGD

IRDOME=IRDONE+]
ITEST=@-ITEST

IF{ABS{(VPA-VPHASE }/VPA}.GT.Z.18) GOTO 1729

It

NEXT CARD ,G0 TO 389, BYPASSES WRITING OF PHASE ANGLE

CONTINUE

T=T+DT

THE

SAMPLING OF PLOT DATA
IF({ICONT2.£Q.#}.0R.{IFULL.EQ.1)) GOTO 1732
RESOMANCE POINT SAMPLIMNG.

IF({T.GT.5.4) GOTO 1732

IT=1T+1

IF{IT.LT.28) GOTO 1726

(T-TR(1)}.GT.&.29) GOTO 1729

CARGD=CARG/A )
IF(ABS(CARGD).LT.369.) GOTO 1728
IF{CARGD.GT.#.) CARGD=CARGD-364.
IF{CARGD.LT.A.) CARGD=CARGD+364
GOTC 1727 ’

=IWD* (VP ENL I +{VP{NUI-VP{NL)II*(ABS{S}=Z(HL})/(Z{NUI=-Z{NL)})

(IFULL.EQ.2).AND.(IRDONE.EQ.Z)}) WRITE(G,252) VPHASE,R,RPHID,S3,T

'AT R=",E12.5,5X,
'S=' E12.5,5%,'T=",F7.4,3X, 'BETA=




854
8565
&656
657
658
653
6647
E61
662
663
664
665
666
667
568
669
. b7%
€71
672
673
674

675"

676
677
678
679
638
€8l
682
683
684
685
6as
687
688
689
694
6§91
692
693
694
6s5
896
897
698
599
769
721
702
743
704
785
796
7€7
708

799 -

718
711
712
713
714
718
716
717
718
719

o000

1728
1741

1726

O0o0n

ooO

1742

1734

1743

1778

1779

1732

319
231

4753

311

176

IC=IC+1

IF(CIC.LT.I).OR.{IC.GT.4693) WRITEt(E,1741) I, T Ic
FORMAT(/*' FIRST RESONANCE ERROR {(BAD IHDE X)',IS F15.5,1I5)
IF({IC.LT.1).0R.(IC.GT.455)) GOTO 1726

TCLIC.I)=T

CARGU(IC,I)=CARGD

VPHACIC,I)=VPHASE /1024,

VPARA{IC,I)=VPA/10F0,

IT=8 '

EMERGY SAMPLING (EVERY 6 MSEC)

CITISITH)

IF{IT1.LT.68) GOTO 1733

IND=INT(T*1028/6)+1

IFC{IND.LT.1).0R.(IND.GT.B858})) WRITE(S,1742) I,T,IND
FORMAT{/' TOTAL ENERGY ERRQOR (BAD IVDEX)',IE Flﬂ 5, 15)
IF((IND.LT.1).0R.{IND.GT.3852)) GOTO 1738

ENERCIND, I )}=ENGY

IF(I.EQ. 1) DISTAN(INDY=PHI(NL)/A
IF{(I.EQ.1).AND.{S.LT.&. }} DISTAN(IND)=*1 *PHI(NL }/A
ITi=2

CONTINUE

PHASE BUNCING DETECTION (THMINCTITMAX)

IFCOT.LT.TMINY.OR.{T.GT.THMAX)) GOTO 1732

IT2=1T2+1

IFCIT2.LT.29) GOTO 1732

IC2=1IC2+1

IFC{ICZ2.LT7.1).0R.{IC2.6GT.565)) WRITE(G,1743) I,T,1C2
FORMAT{/' PHASE DATA ERROR {(BAD INDEX}',15,Fl13.5, 153
IF(LIC2.LT.1).0R.(IC2.6T.585}) GQTO 1732
CARED=CARG/A :

IF{ABS{CARGD).LE.3€9.) GOTO 1779

IF{CARGD.LT.Z.) CARGD=CARGD+354.

IF{CARGD.GT.359.) CARGD=CARGD-35%2.

GOTO 1778

CONTINUE

PBCARGU(IC2Z2, ] )=CARGD

PEVPH{IC2,I)=VPHASE/1229.

PBVPA(IC2,1)=VPA/1H0Y.

IFCI.EQ.1) TPB(IC2)=T

IFCI.EQ. 1) DISTANI{IC2)=PHI{NL)/A
IFG{T.EQ.1).AND.{S.LT.&.3) DISTANI{IC2)=-1.*PHI{NL}/A
172=9

CIF{IRDONE.GT.18} INDEX({(1}=}

IF{IRCONE.LE.1@) INDEX{I)=g@

CONTINUE

IF {(T.GT.18) GO TO 299 .

TEST FOR DETRAPPING. 1IF PARTICLE VEL DIFFERS FROM WAVE VEL BY
MORE THAN SPECIFIED AMOUNT, NO INTERACTION IS ASSLHED AND ALL
PARTICLE PARAMETERS CALC FROM ADIABATIC THEOQRY

IF {IADTA.EQ.#) GO TO 318 )

IF COVPA*IWD) .GT. 9. AND.IRDONE . GT. . AND.{ ABS{VPHASE-VPA)/VPHASE ).
GE.#.2) GO TO 311

IF (R.LT.(RO+1.E5)) GO TO 241

GO 70 119

CONTINUE

CALL EQCONY :

IF (IFULL.EQ.O) WRITE (6,4269) H RPHID,S,T.EV,EQALD

FORMAT ( 'LAMNDING POINT',3%,'H=*',E12.5,' KM',3X,'PHI=',F7.3,2¥%,
'S=*,E12.5,3X,'T=",F7.4,3X, 'ENER’Y='.E8.3,'EV’.3X.

'EQ PITCH ANGLE=',F6.3 ) ) :

GO TQ 312

CALL EQCONV




720
721
722
723
724
725
726
727
728
729
738
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747

748

749
ra-t)
751
752
753
754
755
755
757
758
759
e
761

762
7483
754
7E5
756
767
758
789
770
771

772
773
774
775
7?78
777
778
779
789
781
782
733
784
785

177

313

312

314

232

203
2g4
2085
246 .

32680

[t Bl

3330
1

3506
3518

3592
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IF {IFULL.EQ.Z) WRITE (6,313} H,RPHID,S,T,EV,EGALD

FGRMAT (' DETRAP POIMT' 3X,'H=',E12.5,' KM',63X,'PHi=',F7.3,3X,

'S=',E12.5,3X,'T=",F7. 4.3K.'EHERGY=‘,E3.3.'EV'.3X.
'EQ PITCH ANGLE=',F6.3 }

IF (IFULL.EQ.1)} CALL DFUNC

IF PARTICLE CROSSES EQUATOR, IRDONE PRINTED HERE IS COUNTED
FROM- EQUATOR CROSSING.

IF{IFULL.EQ.&) WRITE(6.314) BETAD,IRDONE

FORMAT(' BETA=',F7.2,5¥%,'NO OF RESONANCEZS=',I13/)
ALDC({T)=EQAL

EVDC{I =tV

EOTOT=EQTOT+EVOD

EFTOT=EFTOY+EV

IF{VPAEQ.LE.VFMIN) VFMIN=VPAEQ

IF(VPAEQ.GE.VFMAX) VFMAX=YPAEQ

IF{EQALD.GT.ALFAHI) ALFAHI=EQALD

IF(EQALD.LT.ALFALO) ALFALO=EQALD

JCOUNT=JCOUNT+1

TTRACE(I1)=T

CONRTINUE

IF (IFULL.EQ.Z.AND.IDIFF.EQ.1) CALL DIFCO
IF((ICONTZ.EQ. 1. AND.(IFULL.EQ.J)) CALL PLOTTING
CONTINUE ’

CONTINUE

CORNTINUE

CONTINUE

IF (IFULL.EQ.1}) CALL 3SUMARY

IFCIFULL.EQ. 1) WRITE(6,3288) VSTART,VEND,VFMIN,VFMAX
FORMAT(////" DISTRIBUTION FUNCTION PARAMETERS' I//

' SVPAMIN=',E1¢.4,' SVPAMAX=',E18.4,' FVPAMIN=',E10.4,
' FVPAMAY="',E10.4//)

IF{IFULL.EQ.1) DVPALl=DVYPA*1H

IF(IFULL.NE.1) GOTO 3504

WRITE{(6,3278) DVPA,DVPAL )

FCRHAT{/' INITIAL VEL. BIN=',E1Q.4,' FINAL VEL. BIN=
LE18.4) '

Ki=INT{(VFMIN-FVPA(1}}/DVPAL}+1
K2=INT{{(VFMAX-FVPA(1}))/CVPAL}+1

J1=INT(ALMAK*2)+2

VRITE(6,3514) JCOUNT

IF{JHI.LT.35) GOTO 617

WRITE(6,3585)

FORMAT(/' FINAL DISTRIBUTION (s OF PARTICLES PER CELL)'}
FORMAT(////' TOTAL NUMBER OF TRACED PARTICLES WAS=',1b6//}
DO 35081 K=K1,K2

DO 3582 J=1,J1

PITCH=J*Z, 5—9 25

WRITE(H,25@3) PITCH,K, KFDIST(J K3

CONTINUE

CONTINUE

FORMAT(F1Z.4,14,' # OF PARTICLES=',I4)

CONTIMUE .

WRITE{6,3619)

FORMAT(//' INITIAL DISTRIBUTION AFTER SCATTERING P

DO 3653 K=1,28

DO 3654 J=1,J1

IF{K.GT. (VVG+1)) GOTO SGHQ
PITCH1=J"4.5-4.25

WRITE(6,3685) PITCHI,K,IFDIST(J,K)

CONTINUE

CONTINUE .
FORMAT(F1Z.4,14,' NUMBER OF PARTICLES="',I4)
CONTINVE

DIFEN=EFTOT-EQTOT

WRITE(6,3644) OIFEN :
FORMAT(/' TOTAL ERERGY EXCHANGE (EV)=',E18.4)
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893
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259
817

811

812
813
g§14
815
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223
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835

amo

652
663

606
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FULL DISTRIBUTION TABLE

IF{{JHI-ILO}.6T.32) GOTO BE1

bo &gz J4=1,32,2

ALFA(J)=0*¢.5-8.25

WRITE{(G,603) (ALFA(J),J=1,32, 2)

FORMAT(lHl,'EQUAIORIAL DISTRIBUTION FUNCTION (s OF PARTICLES)'
/' VPARALEL (KM/SEC})',358X,' PITCH ANGLE (DEG)’
/BX,16F6.2/9%,32(' 1'}}

IF(K1.GT.1) Kl=K1l-1
IF{KZ.LT.488) K2=K2+1

DO 6H4 K=K1,K2

VEL=FVPA(K)/ 158D

DO 606 J=1,33
TEMP{J)=KFDIST(J,K)

WRITE(6,6£85) VEL,(KTEM?(J) J=1
FORMAT(IX,FB.8,'-- *,33(12,"'
CONTINUE

CONTINUE

+33)
¥

© CORTINUE

CONTINUE

IF{IGROW.NE.1} GDTO 92@3

WRITE(6,8201)

FORMAT(/* WAVE AMPLITUDE DATA'}

WRITE(6,8381) XSTART,HEMD,XLEN,XAMPL :

FORMAT(/® START=',E12.4,' END=',E12.4," LENGTH=',F18.3,' AMPL='
yE12.4) :

PHI1=PHI{NTOP}/A

PHIZ=PHI{NBOT}/A

WRITE(6,992%) PHIL!,PHIZ2

FOQMAT(/' ABSOLUTE VALUES OF STARTING AND ENDINC LATITUDE ARE:
"W F18.5,3%X,F19.5)

IF(ICONTS EO 1) GO TO vg@2

GO TO 9283

CONTINUE

VRITE(6,9004)

FORMAT{( /' WAVE AMPLITUDE DATA')}

CO 9485 I1=1,3809,14

WRITE(S, 9396} 11, Z(II) AMPLOW(IL) , AMPLHI(II)

FORHAT(IS 3X, J(EIZ 4, 32))

. CONTINUE

CONTINUE -
CONTINUE

GO TO 218

WRITE (6,3881) . ,
FORMAT (///' INTEGRATION TIME EXCEEDS 14 SEC LIMIT')
CONTINUE

STOP

END
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SUBROUTIQE PLOTTING

COMMON/BLOCK3/, TC(485,12), CARGU{49 L12),YPHA(4PD,12),
VPARA( 409,12 ,ERER(858.12), PBCARGU(SQS 12),PBVPH(EE5,12}
LPBYPA{SHS, 12}, THIN, TMAX,TR{I12},TTRACE(12),INDEX(12)
LMLOHHI JMSTEP ,TEM{8EQ),TPB(535), DIbTAﬂ(SSﬂ).DISTANI(SHS}
DIMENSIDN SAVE(355),XX1(853).XXZ(4Zﬁ),KX3L435,2),XX4(453),

JLOC12),THI(12)

THAXI=g.

BO 1 J=1,12

IF{TTRACE{J).GT.TMAXI) TMAXI=TTRACE(J}

CONTINUE

Do 2 J=},12

DO 3 I=1,458

IF((INT(IC(I J¥*18988 )~ INT(TR(J)*IE?BE)) EQ.Z) INDEX(J}=I-

CONTIRUE :

CONTINUE :

WRITE(E,B) TMAXI

l:ORMA\T(///' PLOTTING ROUTIHE STARTED'//' MAXIMUM TRACING TIME=

L,F19.5}

0o 18 J=1,12

WRITE{(6,11) J,TR{J},TTRACE{(J)
FORMAT(' PARTICLE#"',12,' FIRST RES.=',F15.5,' END=',Fl1g.5}

FILL UP ENERGY ARRAY

G0 28 Jd=1,12

DO 21 I=1,858

IF{ENER(I,J).LT.Z.} ENER(I, J)=ENER((I 13,30
CONTINUE

CONTINUE

SUM ENERGIES FOR ALL PARTICLES

Do 22 I=1,3854"

TEWMP=F.

DO 23 J=1,12

TEMP=TEMP+ENER(I,J}

ENER(I,1)=TEMP/1008".

ENER(I,2)=ENER(I,1}/ENER{1,1}

WRITE(H,243 ENER(1,1),ENER(E55,1)

FORMAT(' TOTAL ENERGY DATA'//' INITAL ENERGY (EV)',El12.4/
' FINAL ENERGY (EV)=',E12.4)} |

SET UP TIME ARRAY

II=INT{TMAXI*1980/6)+10
DO 64 1=1,8508
IF{TI.LE.II} GOTO 61
TEN(I)=1.E36
ENER(I,1)=1.E36
ENER(I,2)=1.E36

GOTO 6@

TENC(IIsI*T. 006

CONTINUE

PLOT ENERGY VS. TIME (DISTANCE)

UEFINE CURVE WINDOW

KK=1 - ‘ :
FORMAT(*® THIS IS STEP',13)

CALL AGSETF{'GRID/LEFT.',7.1@)
CALL AGSETF{'GRID/RIGHT.',@.98)
CALL AGSETF('GRID/BOTTOM.',&.14)
CALL AGSETF('GRID/TOP.',2.85}
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DEFINE BACKGROUND

CALL
TURN
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL

LOAD

AGSETI('BACKGROUND. ", 3)
ON WINDOWING
AGSETI( 'WINDOWING.',1)

AGSETF{ 'LABEL/NAME.','L"')
AGSCTI('LINE/MUMBER.*, 189}

AGSETP{'LINE/TEXT.',' ENERGY (XEVIS',

AGSETF("X/MINIMUM. ' 7.2}

AGSETF( "X/MAX.' ,TMAXI)
AGSETI('BOTTOM/MAJOR/TYPE. ", 1}
AGSETF{"BOTTOM/MAJOR/BASE. ' ,4.5)

AGSETI{'BOTTOM/MINOR/SPACING. " ,4)

AGSETF{IIPLABEL/HAME.‘!HB)
AGSETT( 'LINE/HUMBER.',-159)

1)

AGSCTP(lﬂﬁLTVEIT:XT.,llHTIME (SEC)3, 1)

TEMP ARRAYS WITH DATA

DO 63 1=1,858
XXLOEY=ENER(I,1)

CALL EZXY(TEN,XX1,85%,22HTOTAL ENERGY.VS. TIMES)

DO 54 1I=1,8%8
KX1{I}=ENER(!,2)

CALL
CALL
CALL

AGSETF('LABEL/NAME.','L"')
AGSETI{('LINE/MUMBER.®', 198}
AGSETP('LINE/TEXT.','E/EZS',1)

CALL EZXY(TEN,XX¥1,858, 27HNORMALIZED ENERGY VS.

RESET X AND REDEFINE 'NMNICE'

CALL
CALL

PLOT

CALL
CALL
CALL
CALL
CALL
CALL
FLOT.

AGSETF{'X/MAX.',1.E386)
AGSETI('"X/NI.',¥):

ENERGY VERSUS LATITUDE

AGSETF('X/MIN,',1.E36)
AGSETF{ 'X/MAX.',1.E36)
AGSETF(IIHLABEL/HAME..lHB)
AGSETI(‘LINE/NUMBER.',~189)

AGSETP(IZ&LINE/TEKT..19HLATITUBE {DEGREES)S,1)
EZXY(DISTAN,XX1,85¢,3HNORMALIZED ENERGY vs.

RESONANCE DATA

XMAXI=g.

XMINI=1080,

DO &5 J=1,12

DO 66 I=1,480
IF(TC(I,J).6GT.1884.}) GOTO &7

TCL I,

Jr={TC(L,J}~-TR{J ) )* 1350,

THI{J}=TC({(I-1),}
IF(THI{J}.GT.nMAKI) KHMAXTI=THI(J)
COMTINUE ’

DO 68 J=1,12

TLO(J)=TC(1,d)

IF(ABS(TLO{J)).LT.ABS(KMINI)) XMINI=TLO(J)}

LATITUDES)
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WRITE(G,69) J,TLOLIY, THI(J)

FORMAT(' RESCMNAHCE #' IJ.'TMIN 'y F15.4,'TMAY=" ,F15.4)
XMAXI=INT{AMAR I/lﬂ.)*lﬂ

KMINI=INT{XMINI/LD,)*19.

IF(ABS(XMINI) . ST.289.8) HMINI=-222.3

WRITE(B,139) ¥MINI,uMANT -

FORMAT{(/' RESCMNANCE TIME WINDOW'/' TMIN=',Flg.4/' THMAN='
CJFLlE.47/7)

SET XMIN AND XMaX

CALL AGSETI('X/NI.',-1)

CALL AGSETF('¥Y/MIN.',F.9}

CALL AGSETF({'Y/MAX.',388.8)
CALL AGSETI('LEFT/MAJOR/TYPE.',1}
CALL AGSETF( 'LEFT/MAJOR/BASE.',5¢.9?
CALL AGSETI{'LEFT/MINOR/SPACING.',5)
CALL AGSETF{'X/MI.',XMINI)

CALL AGSETF({’X/MA.',XMAXI}

DO PHASE PLOTS

CALL AGSETF('LABEL/NAME.','L')
CALL AGSETI('LIME/MUMBER.',188)
CALL AGSETP('LIME/TEXT.','PHASE (DEGREES}Z',1)

CALL AGSETF('LABEL/NAME.',1HB)
CALL AGSETI('LI\F/NUMBER. »= 1893
CALL AGSETP(IHHLIYE/TEAT.,IZHTLME {MSEC}S, 1}

SET BOTTOM AXIS PARAMETERS

CALL AGSETI( 'B8OTTCM/MAJOR/TYPE.',1)
CALL AGSETF( 'BOTTOM/MAJOR/BASE.',5J.9)
CALL AGSETI('BOTTOM/MINOR/SPACING.',4)

DG 123 J=1,12

DO 1@2 1=1,G5H8

XX1{I)=1.E36

ENER(I,1}=}.E356

ICNT=1 :

EMER{ICNT,1)=CARGU{ ICNT,J}

RALLICNT )=TCUICNT,J)

ICNT=2

DO 194 1=2,408 i

DIFF‘ABS(CARFU((I 1},31)= CARGU{I J)}
IF(DIFF.LT.189.8) GOTD 19t
ENER(CICHNT,1)=369,9+CARGU(I,J)
IF(CARGU{I,J).GT.CARGU{(}~1),d)) ENER{ICNT,1}=CARGU
(1,3)-365.49
XAVUICNT)I=TC(TI,d)
ICNT=ICHT+1
EMER{ICNT,1)=1.E36

RXTOICNT Y=TCA(T,J})
ICNT=ICNT+1
ENER{ICHT,1)=CARGU((I-1),Jd])~
IF{CARGU{I,J}).GT.CARGU((I~1)
+365.8

KEICICNT y=TC{{I~-1),d1
ICNT=ICNT+1

g.8
}

36
»

3 ENER{ ICNT,1)= CARGU((I -1},Jd)
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EHER(ICNT,1)=CARGU(T,J)
RXICICHTI=TC(1,d)
ICHT=ICNT+1 : :
CALL eZMXY{XXI,EMNER,359,1,850, |GHPHASE VS. TIMES)
COMTINUE

CALL AGSETF('Y/MINIMUM,',!
CALL AGSETF('Y/MAXNIMUM,',1.

38)
36)

.
mm

CALL AGSETF({'LEFT/MAJOR/TYPE.',1.E35)
CALL AGSETF('LEFT/MAJOR/BASE.',1.535)
CALL AGSETF('LEFT/MINOR/SPACING. ',1 E36}

PLOT VP AND VPA VS. TIME

CALL AGSETF('LABEL/NAME.','L"')
CALL AGSETI('LINE/NUMBER.',189).
CALL AGSETP('LINE/TZIXT.-® 'VELOCITY (KM/SEC)S',

DO 72 J=1,12

DO 73 1=1,489

XX2(1)= TC(I J}

XX3(1,1)= VPHA(I J)

XX3{I,2)= VPAQA(I J)

CONTINUE

CALL EZMXY(XX2Z2,XX3,48%,2,408,18HVELOCITY VS, TIMES)
CONTIHUE

PLGT PHASE BUNCHING
SET X,Y AND LABELS

CALL AGSETF{'Y/MI.',48.7)

CALL AGSETF({'Y/MA.',320.9) .
CALL AGSETI('BOTTOM/MAJOGR/TYPE.',1}
CALL AGSETF('BOTTOM/MAJOR/BASE.',%.05)
CALL AGSETI('BOTTOM/MINOR/SPACING.',4)

CALL AGSETF({'LABEL/NAME.','L"}
CALL AGSETI('LINE/NUMBER.',187)
CALL AGSETP('LINE!TEXT.','PHASE (DEGREES)S', 1)

CALL AGSETF('LABEL/NAME.',1HB}
CALL AGSETI('LINE/NUMBER.',~189)
CALL AGSETP(ISHLINE/TEXT.,{1HTIME (SEC}S,1)

DO 457 J=1,12

00 491 I=1,858

IF{1.GT.585) GOTO 442
IF(INDEX{(J}.EQ.Z) ENER(I.J)=1.E36
IFLINDEX(J).EQ. 1} ENER(I,J)=PBCARGU(I,J)
COTO 483

ENER(I,J}=1.E36

COHTINUE

CONTINUE

CONTINUE

DO 418 1=1,858

IF(I.LE.BO5) UNI{I)=TPB{1I}
1F(1.GT.505) XXI1(I)=]. E36
CONTINUE

TMINI=THIN

TMAXII=THIN+G. 1

182
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1128
1129
1139

1131
1132
1132
1134
1135
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1137
1138
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498

381
395

PO 289 1=1,20

IF(THMAXII. GT TH’-\XI) GOTO 22’1
CALL AGSETF('X/MIN.' ,THINI)
CALL AGSETF('X/MAK.'.TMAXII) ’ .
CALL EZMXY(XX1,ENER,E55#,12,854,1EHPHASE V5. TIMES?
TMINI=TMINI+Z.1 .
THAXII=THAXLI+Z.1
CONTINUE

RESET X

CALL AGSETF{'X/MAX.',THMAX]}

CALYL AGSETF({'X/MIN.',THIN)

CALL AGSETF('BOTTOM/MAJORITVPE.
CALlL AGSETF{'BOTTOM/MAJOR/BASE.
CALL AGSETF('BOTTOM/WINOR/SPACIN

m..

PLOT VPA&VPHASE VS. TIME

CALL AGSETF{'¥/M1.',1.E38)

CALL AGSETF{'Y/MA.',1.E386) :

CALL AGSETF{ 'LABEL/MAME.','L")

CALL AGSETI{ LINE/MUMBER."',128)

CALL AGSETP{'LINE/TEXT.',"VELOCITY (KH/SEC)S',1)
CALL,AGSETF(’LABEL/NAME.'.IHB)

© CALL AGSETI('LIME/NUMBER.',-104)
‘CALL AGSETP(IKHLINE/TEYT.,IIHTIME (SEC)S, 1)

bo 117 1=1,858

IF(I.LE. 534) AXI{I)=TPB(1)
IF(I.GT.588) XX1{I)=1.E36
CONTINUE

Do 111 J=1,2

DO 112 1=1,858
ENER{I.J)=1,E36

CONTINUE

pbo 113 J=1,12
PO 114 I=1,585
EMER(I,L1)=PBVPA(I,J)}
ENER(1,2)=PBVPH(I,J)}

CALL EZMHY(XXI ENER,859,2,859, IBHVELOCIT“ VS. TIMES)

CONTINUE

PLOT VELOCITY VS. LATITUDE

DO 449 I=1,85%

IF(L.LE.545) XXI(I)=DISTANI(I)}
IFCTI.GT.5085) XAI{I)=1.E36
CONTINUE

CALL AGSETF('XK/MAX.',1.E36)

CALL AGSETF({'X/MIN.',1.E3B)

CALL AGSETI({ X/NI.'.H)

CALL AGSETF({ 'LABEL/NAME.',1HB)
CALL AGSETI{¢{ 'LIME/NUMBER.',-194)
CALL AGSETP{1ZHLINE/TEXT.,19HLATITUDE {(DEGREESIS,1!)

no 2945 J=1,12
£o 281 1I=1,585%
ENER{I,1)=PBVPA(I,J}
EMER({I,2)=PBVPH(I,J’

CALL EZM Y{XX1, ENER.ESB 2,850,224VELOCITY VS. LATITUDRES)

CONTIHUE
CALL AGSETI{'X/NI.',=-1}
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.PLOT EACH PHASE CHANGE SEPARATELY

EHER{ICMT,1)=PBCARGU(ICNT,J}

184

CALL AGSETF('LABEL/MNAME.',*L")

CALL AGSETI('LIME/NUMBER.',129)

CALL AGSETP{'LIME/TEXT.', 'PHASE (DEGREES)IS',1)
CALL AGSETF{'LABEL/NAME.',1HB)

CALL AGSETI{'LINE/NUMBER.',-189)

CALL AGSETP(1OHLINE/TEXT.,11HTIME (SEC)S,1)
CALL AGSETF('A/MI."',THIN)

CALL AGSETF{'X/MA.' ,TMAX)

CALL AGSETF{'Y/MIN.',Z.8)

CALL AGSETF('Y/MAX.',358.09) .
CALL AGSETI('LEFT/MAJOR/TVPE.",
CALL AGSETF('LEFT/MAJORX/BASE.',
CALL AGSETI('LEFT/MIMNOR/SPACING 3
bo 122 3J=1,12 ) {
00 121 lI=l,858 : ) :
XX1(Il)=1 E3&
EMER(II,1)=1.E36
ICNT=

13
63.49})
.',5)

AXTCICNT )»=TPB({ICNT)

ICNT=2

0o 123 1=2,505
DIFF=ABS{PLCARGU({I-1),Jd)}~P3CARGU(I,J}}
IF{(DIFF.LT.189.2) GOTO 124

EMER(ICNT, 1)=3692.+PBCARGU(T,J)

IF(°BCAQCU{I J)r.aT. PBCARGU((I 13,31 ENER(ICYT 1)=
PBCARGU(1,3)-363.9

HATCICNT}=TPB(1)

ICNT=ICHNT+]

CENERCICHNT,1)=1.E36

XX1(ICNT}=TPB(I)
ICHT=ICNT+1

EMER{ ICNT,1)=PBCARGU((T-1},J)-360.0

1F (PBCARGU{T,J).GT.PBCARGU{(I~1),3)) ENERCICNT,1)=
PBLARGU( (I~1),0)+368.0

XX1{ICNT)=TPB{(I~1)

ICNT=ICNT+1

ENER(CICNT,1)=PBCARGU(1,J)

XX1{ICNT)=TPB(I)

ICNT=ICNT+1

CALL AGSETF('V/MI.',9.0)

CALL AGSETF('Y/MA.',368.8)

CALL EZMXY{XX1,ENER,85%,1,858, ISHPHASE VS. TIMES)

CONTINUE :
WRITE(6,1081) _ :

FORMAT(///' ALL DORE 11°)

RETURN

END

SUBRCUTINE EQCONV

COMMON DVPA,EQALD,ALGRD,VPA,FVPA(402),SDIST,ALEQ,A,SVPA,FDISTI(1S
7,404 ,EQAL, FPDLST(ISK) PI,EM.EL,.RPHI,VPE,E,EV, KMAX ,VMIN,VPMAY,
ALMIN.ALMAX,ALDC{12},R, RO VPAEG EPA, EVDC(IZ) 1G, EPAG(3H§H)
SF=SNRT(1. *3 1r?IN{RPHI)**Z)

WPA=EM/2, *YPANYPA

WPE=EH/2.*YPE*VPE

EV={WPA+WPE}/E

WPEEQ= HPE/aF/(RO*EL/R)**3

WPAEQ=WPA+WPE-WFEEQ

VPAEQ=SQRT(2.*WPAELQ/EM)

EQAL=ATAN(SQRT(WPEEQ/WPAEQ)}

EQALD=EQAL/A

RETURN

END
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1234
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12383
1233
1248
1241
1242
1243
1244
1245
12456
1247
1248
1249
1259
1251
1252
1253
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1258
1259
12568
1261
1262
1253
1264
1285
1266
1267
1268
1269
1279
1271
1272
1273
1274
1275
1276
1277
1278
1279
1288
1221
1282
1233
1224
1285
1286
1237
1ZE8
1289
1209
1291
1262
1293

1294

1295
12986

185
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Cc
¢
4
c
[
g1
=Y: §
5
4
3
2
1
EQ -
19
11

[ R

SUBROUTINE DFUNC

COMHON DVPA.EQALD.ALGRD,VPA,FVPA(45;) SDIST,ALEQ.A,.SYPA,FDIST(1S
¥,A59) EQAL,FPRBIST(180),PI,EM,EL ,RPHI,VPE . E,EV,KMAN ,VMIN, VPMAX,
ALMIN, ALMAX,ALDC{12},R,RO,VPAEQ,EPA, EVOC{IZ) IG,EPAG(3354)
COMMON/BLOCKL/ KFDIST(lSE.49ﬂ),IFDiST{}33,ZH) '
IDERTIFY SLOT FOR FVPA AND EQALD
J=INT(EQALD/O.5}+1
ALGRD=J*7.5-9.25
K=INT{(VPAEQ-FVPA{1)}}/DVPA/1Q}+1
KFDIST(J,K)=KFDIST{J,K)+1
K1=INT({(VPAEQ-VMIN}/DVPA}+1
IFC{KI.LT,1}.0R.(K].GT.29)) GOTO 4
IFDIST(J K13¥=IFDIST(J,K1}+1
ONTINUE
It {ALEQ.GE.5.5) SDIST={({COS{ALEQ®A}/SVPA)*=4
IF (ALEQ.LT.5.5) SDIST=4.
FDIST(J,K}=FDIST(JI, K2+SDIST/12. *(FVFA(K)}/SVPAI**2*SIN(ALGRD*A)
JSTH(ALEQ=A}*(COS(ALEQ™A}/COS{ALGRD*A) }**3
RETURM

_END

SUBROUTINE SUMARY

COMMON DVPA,EQALD,ALGRD,VPA,FVPA{483),5DIST,ALEQ,A,SVPA,FDIST(]18
#,458),EQAL ,FPDIST(188),P1,EM,EL,RPHI,VPE,E,EV,KMAX,VMIN, VPMAX,
ALMIN,ALMAY ,ALDC{12},R,RC,VPAEQ,EPA,EVDC(12),1G,EPAG{ 35T}
CO”MON/BLOCKZ/ SFD]ST(IB%) 1IAS, IIAr.NVG ALFALG,ALFAHI -
LALFA{35),JL0,JH]

EMIN=EM/2 . *VMIN*VMIN

EMAX=EM/2.*VPHAX*VPMAY

EFMIN=EM/2.*FVPA( 1 }*FVYPA(])

EFMAX=EM/2 . *FVPALKMAX }*FVPA(KMAX)

EVMIN=EMIN/E

EVHMAN=EMAX/E

EVFMIH=EFMIN/E.

. EVFMAX=EFMAX/E

IF{ 15..NE. 1 ) WRITE(6,59)EPA
IF{IG .EQ. 1) WRITE(6,51) EPAG{1)

FORMAT{1H1,' EQ PAR E FIELD FOR GENDRIN MODE=',E1Z.4,' V M-1'/7)

FORMAT (1Hit,*' PARALLEL WAVE ELECTRIC FIELD=',E13.4,' VOLT M-1'//)
WRITE (6,6}

FORMAT (' INTEGRATION RANGE'//)

WRITE (6,5) VMIN,EMIN,EVMIN .

FORMAT (' MIN INITIAL VEL=',E18.4," M SEC-1',3X,E12.4,' JOULES',
IX,Eif. 4, EV'/) ' ’ :
WRITE (6,4) VPMAX,EMAX,EVMAX

FORMAT (* MAX IMNITIAL VEL=',E19.4,' M SEC-1°,3X,E18.4," JOULES',
3N,E1H. 4, EV'/)

WRITE (6,3} FVPA({1},EFMIN, EVFMIN

FORMAT (' MIN FINAL VEL=',E15.4,' M SEC-1',3X,E1£.4,' JOULES',
3X,E1Z.4,' EV'/) - .

WRITE (6,2) FVPACKMAX),EFMAN,EVFHAX

FGRMAT (' MAX FINAL VEL=',E1%.4,' M SEC-1',3X,EL1&.4,' JOULES',
3IX,E15.4," EV'/)

WRITE (6,1) ALMIN,ALMAX

- FORMAT (‘ INITIAL PITCH ANGLE RANGE=',2F6.2,3X,' DEGREES'/)

DO 68 J=1,180

SFDIST(J)=4.

FPDIST(I =4,

DO 11 J=1,188

CO 10 K=1,KMAX

FPOIST(I}=2. %P FBISI(J,K)*FVPA(K)**’*DJPA*1H+FPDIST(J)
CONTIYUE

Ké=NVG+1




1297

1228
1299
1332
1391
1352
1343
1354
1395

1326

1387
1398
1329
1318
1311
1312
1313
1314
1318
1316
1317
1318
1319
1328
1321
1322
1323
1324
1325
1325
1327
1328
1229
1339
13231
1332
1333
1334
1335

1336

1337
1338
13389
1349

151

168

23

21
22

g

31

4g

186

00 @9 J=I1AS,IIAF

PITCH3=J*0.5+5.25

Lo 101 K=1,K4

IF(PITCH3.GT.5.5)  DIST={COS(PITCHI*A}/{VMIN+DVPA®(K=-11)} ) %24
IF(PITCH3.LE.5.5) DIST=4.

SEDISTII+11)=2. *PI*DIST*{VMIN+DVPA=(K-1)}**2*DVPA+SFDIST{J+11)
CONTINUE

CORTINUE

FINAL PITCH ANGLE DISTRIBUTION FUNCTION

WRITE (6,28)

FORHAT({///' -FIMAL PITCH ANGLE DISTRIBUTION'//' PITCH ANGLE',5Y¥,
'NORM DIST FUNCT',BX,"INIT NORM DIST FUNCT'//}
JLO=INT(ALFALO*2) ’ :

JHI=INT(ALFAHI*2)}+1

IFCOTIIAS+11).LT.JL0) JLO=FIAS+11]

IF(IHILLT.(IIAF+11)) JHI=1IAF+11

DO 21 J=JL0,JHI

ALGRD=J*a. 5-5 28

WRITE{(6,22) ALGRD,FPDIST(J),SFDIST(J}
FORMAT(F7.2,BX,E12.4,8X,E12.4)

PRECIPITATED PARTICLE AND ENERGY FLUX

JLOSS=INT(5.25/9.5)+1

PFLUN=

EFLUX= ﬂ

Do 31 J=1,JLOSS

B0 30 K=1,KMAX

EQAL={J*P.5-9.25}*A

ACCUM=FDIST(J, K)*FVPA(K)’*Z*SIN(EQAL)/CO&(EOAL)**S*DVPA

*IgRT . BFA

PFLUX=PFLUX+ACCUM
EFLUR=EFLUX+ACCUM=*®, 5"M*(FVPA(K)/COS(EQAL})**Z
CONTINUE

.CONVERT FLUXES TO ICNOSPHERIC VALUES AT 194 KM

PHIT=ATAN{SQRT(SE37Z.*EL/6472.~1.))

FAC=SORT(1.+3.*SIN(PHII )**2)~EL**3

PFLUX=PFLUX*FAC

EFLUX=EFLUX*FAC

EVFLUX=EFLUX/E

WRITE (6,48) PFLUX,EFLUX,EVFLUX

FORMAT (/7' PRECIPITATION FLUX=',E17.4,' M-2 SEC-1'//' ENERGY FLUY
WE19.4,' JOULE M-2 SEC-I QR ',ElF.4,"' EV SEC-1'")

FLUXES ARE NORMALIZED TO F=v#**-4 : '

RETURN

END
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1548
1349
1259
1351
1352
1253
1354
1355
1356
1357
1358
1259

126% -

1361
1262
1363
1364
1365
1366
1257
1368
1359
1379
1373
1372
1373
1374
1375
1276
1377

137

187

13

2g

11

21

3
3l

SUBROUTINE DIFCO

COMMGH DVPA.EQALD.ALGRD,V?A.FVPA(495)}SDIST,ALEO,A.SVPA,FDIST(18

0,486 . ECAL,FPDIST(188),PLE,EM,EL,RPHI,VPE ,E,EV  KMAX ,VMIN,VPHAX,

ALDC IS IN RADIANS,ALEQ IN DEG
S=0 :
§2=0

£s=%

CsS2=9 .

SS=9

SCS=g

SE=4. :

0O 19 I=1,12

S=S+{ALDC{I)}-ALEQ*A}/12.
§2=S2+(ALDC(1)-ALEQ®A)*22/12,
€3=CS+{COS(ALDC(I))-COS(ALEQ*A))/12. :
CS2=CS2+(COS(ALDC(1))-COS(ALEQ=A}}*72/12.
SD=S/A

§2=SQRT(S2)/A

WRITE(6,26) §,SD,S2,CS,CS2

FORMAT(//' DEL AL=',E18.4,' RAD OR ',F2.3,'

CALMIN.ALMANLALDRC(12).R,R0O,VPAEQ,EPA,EVDCI12),IG,EFAG(35EE)

DEG',3X,'DEL AL

MS=',E18.4," DEG',3X,'DEL COS AL=',E10.4,3X,'DEL COS5S AL sSQ="',

E1g.4)

Go 11 I=1,12
$S=5S+(ALDCI{I)~-S-ALEQ®*A)}**2/12.
SCS=SCS+{COS{ALDC{I)}~-COS(S+ALEQ*A)})**2/12.
S5=SQRT{SS)/A

WRITE (6,21) SS,5CS

FORMAT (' REFERENCE CHANGED TO AVE SCATTERED PITCH ANGLE',SX,

*DEL AL RMS=',E1¢.4,5%,'DEL AL COS SQ=',E12.4)

DO 37 I=1,12

SE=SE+EVDC{I}/12.

WRITE(6,31}) SE -

FORMAT{* AVE FINAL ENERGY=',E12.8,' EV'}
RETURN :

END

R
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