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.I. PRELIMINARIES

A. OBJECTIVES

.The purpose of this reporf is td discuss the equationé controlling
the propagation of waves in the 1ow¢f region of the ioﬁosphere. The
first part of the repbrt déals with tﬁe anaiytical treatment-ofrthe
wave equations governing reflection and transmission of waves through
a planarly stratified ionosPhefe. The.mathematical treatment includes
the gffect of positive énd negative ions. The computer program for
integrating the corresponding wéve equations is givén in a sﬁcceeding
chapter. The developed computer program is limited to the case in
" which the waves are generated below the ionosphere and only the effect
of electrons is considered. However, the computer program contains all
the relevant féatures required by the numerical treatment of the wave
equations and therefore the program can be easily changed in order to

satisfy a specified problem.

B. INTRODUCTION

In the lower region of the ionosphere the electiron concentration
experiences substantial variation in distances comparable to the local
wavelengths of waves ﬁhose frequencies are below ~ 300 kH=z. Eor these
frequencies and more.pafticularly for very-low-frequency waves that
travel inside the D-region of the_ionoéphere the propagation is dominated
by internal reflections, coupiing between different modes of propagation,
and by éﬁllisional absorption. .An instantaneous picture of the amplitude
-0f the elec%ric or magnetic field vector of a propagating wave would
"show a spatial variation that is not sinuscidal, therefore ruling out

field solutions of the form _e_JBZ_. Undér the above circumstances a

~1- : : SEL-69-046



"full-wave' method of solutiOngmust be conceived in Whidﬁ the” wave-field
solution is constructed point by point inside “the ilonosphere. When sub-
‘stantial varidtiqn occurs in the medium at & distance much“greater than
the local wavelengfh of a propagating wave a W.K.B. or '"ray-meéthod” may
be used (see Budden [1966]), In this case there is no internél reflec—
tion and the variations_oflwave—fields E -énd H are such that, for a
lossless.medium, the power flow is conserved and tﬁere.is only aﬂ imped-
ance transformation relating E to ,H . | ”

The set of differential equatlonslgovernlng the propagation of piane
waves inside a ﬁlanariy stratifiéd anisotropic medium was derived by
Clemmow and Heading [1954] Théée equations are suitable for the study
of wave propagatlon in the 10war 1onosphere but the resultlﬁg set of‘.
differential equations reveals a sort of instability when direct
numerical 1ntegrat10n is attempted by using standard 1ntegrat10n pro-
cedures. Because of the 1nstab11ity problem the flrst numerical methods
uged indirect approaches for solving the Clemmow-Heading eﬁuations. For
‘example, Budden [1955] used a related reflection coefficient matrix B
that was integrated along the vertical in the ionosphere. Barron and
ﬁudden [1959] developed the above ‘technique by introducing an admittance
mafrix A which simplified the dmount of éomputational work required.
However, both of the above methods were not capable ‘of determining -the
" wave-fields inside the ionosphere and, hence, the power transmitted
'thighfin thé ionosphere., The first successful numerical treatment to
overcome the above limitations was given by Pitteway [1965]. 1In this
case the wave equa£ions afe integrated directly by introducing an .

orthogonalizing'procédure which stabiligzes the numerical technique of

SEL-69-046 o
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integration. The mefhod of integration that will'be'described_in this

report follows the technique of Pitteway.

The mathématiéal and the physical basis of a humerical method of

‘solution for the egquations governing the propagation 6f low frequency

plane wave-fields inside a planarly stratified anisotropic lossy magneto-

) ionic mgdium will be derived in Chapter'z. ‘The related computer program

is fully discussed in Chapter 3. This program has been tested and used

regularly in the IBM/SGO computer of the Stanford University Computer

Center since May 1968.

-3- | SEL-69-046



1. FULL-WAVE TREATMENT OF THE _EQUATIONS CONTROLL ING REFLECTION
o AND TRANSMISSION OF WAVES THROUGH THE LOWER IONOSPHERE

A, THE WAVE. EQUATIONS e A St ey SR

.Suppose there is an eleétromagnetic=plane wave propagating 'in free.
~ space which is incident upon a planarly stratified ionosphere that varies
only in the z—direction as shown in Figure 1. The geometry is such'that

the planes of different stratificatdion are parallel to the {x=y)  plane.

- FIGURE 1. The assumed geometry. Planes of constant
stratification are parallel to the (x-y) )
- plane. DIP is the angle between the geo—é
magnetic field B and the y-axis. B
lies in the (y—z)oplane. I is the angle
between the vertical and the wave-normal
vector k. The azimuthal angle for 'k

is ¥

SEL-69-046 -4 -



The -y axis is parallel to the ground and in the magnetic meridian (plane
y~z) with its positive direction pbinting northward. The earth’'s magnetic

' field is in the y-z plane and has direction cosines (O,Y,E); i.e.,

cos (DIP) | : (2.1)

o
I

—sin (DIP.) (2.2)

o
1

where DIP is the dip angle of the maghetic field. The wave-normal of the
incident wave makes an angle 1 with the z-axis (angle of incidence)
and an angle ¥ with the magnetic meridian (azimuthal angle). The

direction .cosines of the incidenee’wave—normal-are-(L,m,qi);

£ = sin I sin ¥ ) (2.3)
m = s5in I cos ¥ (2.4)
qi = cos 1 (2.5)

Next, we repeat the derivation of the four differential equations
governing the propagafion of plane waves inside the planarly stratified
ionosphere first given by Clémmow and Heading [1954}.

‘For siﬁusoidal'wave field exéitation with angular frequengy & and
for a non-magnetic medium the equations of Maxwell are

VX E=-jou H E (2.6)

VX H=jee (I+M +E - (2.7)

-5 = o . SEL-69-046



-and’ two more. equations relative to the . divergence of. i and ﬁ— which

are not necessary here. The symbols €, and--pO stand for therpermit-
tivity and the permeability of free spaée, respectively. In Eq. (2.7)
T 4is the unit matrix and M is the susceptibility matrix, given by the

constitutive relation of the medium

- ~ — :
P=9¢ M-E (2.8)

where P is the volumetrlc polarlzatlon of the medlum The suscepti-
bility M will be deduced in sectlon B of this chapter, pow it is only

- necessary to atate that M is glven by

(2.9)

The space-time variation of any wave-field of the incident wave 1is given
by

exp {éum - jk{dx + my + qizi} o (2.10)

‘where k is the propagation constant of Iree space,

k = w(aouo)l/2:; ay e o o ' {(2.11)

and c¢ is ‘the velocity of 11ght. The continuity of tangential fields
E and H alcong the succe551ve boundarles in the Zadlrectlon is stated

by Snell's law:

‘SEL-69-046 | =6 -
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ga. : - | “
== Jkf£ = const. - B (2.12)
D ) S ‘

it Jjkm = const. (2.13)

a/az is determined by the variational:characteristics'of the medium

along the =z direction. Then, from Eg. (2.6) we have

.dEy _
- JEm E -~ —& o - o .
Jkm 5 e ‘ quOHX (2 14)
dEx S
i + jki Ez =-_. J(J.)}.LoHy : (2.15)
- jkiL E jkm E = - j .
JkL E_ + jkm E_ Joou H, - (2.16)
Equations (2.7) and (2.9) give
. _ dHy _
. S - jk  — = .
: _ Jkm H - === Jwe | [(1 + M JE_ + My * M_E ] (2.17)
) daH_
o=+ Jk{HZ = Jwe {MyxEX + (1 + 1\{1W)Ey + MYZEZ] (2.18)
- JktHy + kaHx = Jwe [MZXEX +'MZyEy + (1 +'Mzz)Ez] C{(2.19)

We point out that from Egs. (2.14)to (2.19) a factor e~jk(1x + my) Hjowt
has been omitted for all fields. | |
- We notice that the derivafives of_VEZ énd' H, 2 are not present
in Eqs._t2.14) to (2.19). Thergfore'theéé fieldé can he eliminated
by the proper combination of-thé éqUafions. This is eésily done é;;

we get

== : : - BEL~69-046



where

8=

ZO is the characteristic impedance of free-space,

and T is given hy

-

LM
zX

Z, = (Mo/so)

£ M

I+M :
za

m M
ZX

1M
ZZ

M M
vz zZ%

1+4M
ZE

-M__-mi+
yX-

2 MXZMZX

1M -m -
XX 1+M
ZZ

"pefining the column vector

-SE1~69-046

zy Am 1
1+M 14+M
R Za4 Zz5
~mM 2
1+M 1+M
by ZZ%
2 iMszzy _mMyz
I -t TR T
Za ZZ
szsz: n sz
- - M -mf _
1+M2z Xy 1+MZZ
[~ 7
E
x
-E
— ¥y
e =
Z H
Q_ X
7 B
| oV

A

1+M
Z74

1M
ZZ

XZ

1M

ZZ

(2.20)

(2.21)

(2.22)

(2.23)



the set of Eq. (2.18) may be expressed in a more compact form, namely

- de s
a—;: - Jdk T - e ' ) . (2.24)

ﬁquation (2.24)ris the set.of linear differential wave equations
governing the propagatidn of waves in a planarly stratified and general
magnetoionic medium. The elements of '¥ are functions of 2z because
.the terms of the constitutive relation Mij vary from point to point
inside the inhomogeneous medium. -Equafion (2.24) 1is already in a form

suitable for numerical integration,

B. THE.CONSTITUTIVE RELATIOﬁ

| Consider a magnetoionic medium composed of g mixture of négative and
positive ions embedded in a magnetic field Eo whose diréction cbsines
are (0, ¥, E) as shown.in Figure 1. 1In order to simplify the following
mathematical treatment a lossless cold plasma is considered but the effect
of collisional loss will be readily taken into account at the end. The
equafion of motion for a single particle of species k , Charge magni-

-3
tude Zk-e and density Nk(m Y is

v}

v o
mk T = skae (E + Vi X Bo) . (%._E

where e is the absolute value of the electron charge and € is +1

or , -1 depending upon whether the k-species has a positive or a nega-
tive charge,
Taking  exp (+jwt) as the time variation for E we get
€%k

.Jvk—'mk(b .+a)—-—VkX ——-—-——m . (2.

~9- : : _ SEL-69-046



“We now define

Z.e B~ "
0 = 5 2.27
kT m 2. )
k
Y, = Qk/“’ S . (2.28)
and .
5
R S -
Xk = P =5 (2.29)
o'k ®
The gyrofrequency and the plasma frequency fqr‘thg kth speciés are

respectivély'

y . ..

and o
(2@ Ty
T 1. .
2me
o - Coth
The current density due to this k spécies is : , a
7 - (Z.e)e NV (2.30)
A LR T :
and tﬁén Eq. (2.26) gives
a - =
_ - - : -
S - we X.B 4 g ¥, I, X =2 (2.31)
I = B T B Kk T OB :
Working with Eq. (2.31) we get
R = e Ejii; ‘B - jFe. Y. 1 L jve -J;*‘sw,-f;s ‘
Jy = 0B, T3 [EX ‘]EekY-kEy + J\/EkYkEZ] {(2.32) )
oLy o ‘

SEL-69-046 ' -10-



jJ = »e —EE— [jEe Y E

2.2 2
Ky o .2 KWktx + 7Y T B - EYYE ] (2.33)

RE

o 2 2,2 |
kz = 08, —3 l-ive Y, E - Y§YkEy + (1-8Y)E | (2.34)

The total current density involves the summation over all the species,

that ié
J = E I, (2.35)
We now follow the notation of Stix [1962] defining
(’ R=1-3 ——EE—— R - (2.36)
: €
k. 1+ kYk
Xy
L=1-% —n ‘ (2.37)
‘ k l-GkYk
S=%(R+1) - (2.38)
D=%(R-L). (2.39)
and : P=1 ~ E Xk 7 (2.40)

N

Substituting Eqs. (2.35) to {(2.40) into Egs. (2.32) to (2.34) we get

I Y A - B | jEb | -jyD E_
. - 2 2 ;
Jy- = jwe ~3JED E's + Y'P-1 YE(P-8) Ey (2.41)
-l . 2 2
J, _ ' JYD Y5(P-8) Y's + EP-1/ \ E,

Equation (2.41) corresponds to ‘the constitutive relation of the
medium and is related to M by

" -1l . ' SEL-69-046




— —
J = —_'t = J(L)eo M E (2.42)
Therefore,
-dyp
W= . YE(P-8) o (2.93)
vZs + §2P—1

The effect of collisional losses. Given an effective collision

frequency Vk for each species k the effect of collisional loss is
. v
k
- t . - . ,- E : 3 . - .—. ——— .' .
. readily taken into account by replacing mk by mk(l J s Yy in the

definitions of Qk and X (Fgs. (2.27) and (2.29)). The above

k| _
replacement corresponds to the effect of a viscous force term that

should be present in the equation of motion, Eq. {2.25).

C. MATRIX T
With the knowledge of matrix M (Eq. €{2.43)) the elements of matrix

%' can be determined explicitly. Equation (2.43) shews that

M =-M
Xy yx

M =-M (2.44)
Xz ZX

M =
ye =y

oA

and from these relationships we readily obtain for ’E (Eg. (2.22))

- Tll:_T44
Tio = Taq
= _ .45
'T13: -T24 o : - (2 x‘)
_T21 = = Ty3
Toa = T3

SEL-69-046 . -12-



The determination of the elements T'j
i

follows directly from the

substitution of the elements of the susceptibility matrix E in

Fq. (2.22) giving:

;(2.46),

The matrix T when only the effect of

T,y = = JviD/a - Ty, = JYmD/a
T12“= YEL(P-8) /a T22 = - YEm(P-8)/a
T = %m/a T = 1 - mz/a

13 23
T, =1 - 22

14 = /2 ' Toq = T3

o .2 2 2 2
Tgy = 35D - ml + JYTED(P-S) /a Ty =8 -m - YD/a

- B 2 T 22 2 . 2 -,

Tgq = ED + Y'P - 47 -~ y'E7(P-8)"/a Tyo = = JED - mb - JY'ED(P-$)/a
T3 = Tay T3 =" Ty
T34 = T1o Taa =~ 11
where a = st + gzs

(2.47)

electrons is considered.

~ When only the effect of electrons is taken into account the k-indices of

Eqs. (2.27-29) and (2.36-40) are dropped and a new variable is defined,

U=1 - jv/w

(2.48)

where y 1is the effective collision frequency for electrons. With the

above notation and'after spme manipulation with Eq. (2.46) we obtain: °

-13-
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T = JLXUYY/b e Tor =~ JmXUYY/b .
T = vang/b': e T = —'mX ng‘b
12 ' | | Tgy =~ mXyEY/
T, = mu(ui-v%) /b | P =1 - nou@i -y /p
| T1s Tog = Y/
2 2 2 . i
T, =1-4% - b =
1q = 1 - Yoawtyn/ o Toq = Ty3
S
(2.49)
. _ o 2
|Tq = - ™ - ;X§Y(U—x)/b Ty =1l-m - XU(U-X) /b
T =1 - 4% - [XU(U-X) - XYZYZ]/b T,, = - im + j¥EV(U-X) /b
32 ! a3 = + Jx8Y(U-x) /b
1T33 = Tag Ty =~ Ty
Tsq = T1a ' ' Toa =" Ty
' ) 2.2
where b = vui-v> - x?-e%% (2.50)
In a loss—-free medium the susceptibility matrix ﬁ is Hermitian,
that is

Mij = Mji ’ {2.51)

and by inspection of T we observe that in this case

Ty s = Ty : @D

which-Budden'{1966 ~ Chapter 18]7dés¢rib25 as a Heimitian‘matrix with
rgspeét:to the trailing diagonal. Pitteway and Jespersen {19661 have
used the above property in érder to find.the fﬁ117w§ve solution when the
iﬁcident wave comes from above the ionosphere. This pbint will be

discussed further in Chapter 3.

SEL-69-046 -14-



D! NUMERIGAL METHOD FOR SOLVING THE WAVE EQUATION

The set of Eq. (2.24) of linear differential wave equations is already
w in a form suitable for numerical integration. The method of solution For
Fg. (2.24) that will be ogutlined. in this section followé the method intro-
duced by Budden {[1955] and more closely the method of Pitteway [1965].
They are direct methods in the sense that the achievement of the solution
is based strictly on the physical propertiés of the wave equations. Methods
that we consider indirect approaches to therproblem and whieh introduce
‘new assumptions were developed by Johler and Harper [1962] and more
recently by Altman and Cory [1969].

.;n order‘to solve the set of_@q._(z.zg) theld;regt;on and the polari—'
zation of an upgoing wave in the air space below the ionosphere are given
along with the z-dependent function Nk(z) and vk(z) , respecfively
density and collision frequency of each particle species k . The problem
is then to determine all the pfoperties of the wave reflected toward the
ground and the properties of the wave transmitted through the ionosphere.

The boundary condition that must be used in order to solve Egq. (2.24)
is that the.energy of the wave comes from below. It means that there is
a height é inside or above the ionosphere where only upgoing waves

1

are allowed to exist. At height. =z the. ionosphere is a slowly-varying

1
medium satisfying the validity criteria required by the W.K.B. method of

‘ R _ o .
solution (see Budden [1966]-Chapters 9 and 18), namely that no more partial

reflections or couplings'océur at 2 More specifically the medium may

be supposed homogeneous in a space of several wavelengths in the neighbor-
hood of zlﬂ. Therefore the matrix"¥ is constant in the Vicinity of

z, and then a particular solution of Eq. (2.24) is given by

~15- ' SEL-69-046



— B
e~ e quz

(2.53)
‘Hence, fTrom Eq. (2.24) we get
F - o - e=0 . (2359
The condition for @ having a non-trivial solution is that
det(T - i) = 0 | (2.55)

~

Equation.(2L55)'is a chéfactéristic équation and ag T 'i=s a 4x4 matrix
there afe 4 .eigenvalues q determined by the solution of Eq. (2.55).

This is another form of presenting thé so-called Booker gquartic equation

" [Booker, 1936, -1939]. .Observe that the matrix T, Eq. (2.22), depends
on the direction of the incident upgoing wave by means of the terms £
~and m because the differential equations, Eq. (2.24), satisfy Snell‘s-
law.  Therefore the 4 eigenvalues that come from the solution of Eq. (2.55)
at zi‘ will produce 4 eigehﬁectors or characteristic waves Zi whose

horizontal wvariation is equal to the one presented by the incident wave,

namely

e-Jk(£X+mY) (2.56)

'.ThéICbéffiéients of the quartic equation produced by Eq. (2.55) which
 will determine the eigenvalues of T are derived in Appendix B. A
general SSlﬂtion'at z, would be given by a linear combination of the

4 eigenvectors, i.e.,

.'d — I - . 7:
Ce(z)) = a8 +ayey + agfy t A% @ 57

S$EL-69-046 -16-



'but because the wave energy'comes from below only the eigenvectors corre-
sponding to upgoing waves must be considered. The characteristic upgoing
waves are determined by the eigenvalues whose imaginary part is negative.

It is pointed out that the definition of "upgoing wave'" does not involve

the sign of the real part of q

Suppose then two eigenvalues are selected at Zl corresponding to

upgoing characteristic waves and, from each of them, the related eigen-
—* -—h

vectors cl(zl) and ez(zl) . The solution of the proposed problem is

then achieved by using -the following procedure:

-
1. Starting with eigenvector- el(zl) at height = Eq. (2,24) is

1

numerically integ;aﬁcd downward. The integration is stopped at
z = zn below the ionosphere.
2, The same procedure is repeated starting with the other upgcing

eigenvector gz(zl) . Observe the meaning of the vector El(or ?2)

at any height below Zy inside the inhomogenecus ionosphere: in
- R
general el(z) corresponds to the combination of 4 waves which will

produce at zl the purely upgoing eigenvector gl(zl) . In par-

ticular the vector el(zn) below the ionosphere corresponds to
the ‘sum of incident and reflected waves, with the polarization of
the_incidentlwave being such that only the upgoing characteristic

wave Elgzl) will result at z .
3. A spatial Fourier analysis is made for each solution below the

ionosphere yielding to incident and reflected wave—fields corre-

— hind - -
sponding to each solution, i.e., el(zn) gives U1 + D1 s ez(zn)

A - )
gives U2 + D2 and the Fourier analysis determines the upgoing

ﬁl , 62 and the reflected dcﬁhgoing 'Bl ’ 52 electric wave-fields

below the ionosphere. _ _
1T : 7 '~ SEL-69-046



4, The polarization and the amplitude of the incident wave is now
given by (sgy) supplying its electric field ﬁoi' ‘Hence" the

‘solution is established by the linear combination of 61 and-

- )
"Uz guch that the combination reproduces. U0 , L.e.,

U _=aU_+BU (2.58)

ox 1x 2x

AU, +BU (2.59)

oy 1y

U 2y

Eq. (2.58) and Eq. (2.59) determine the complex multiplicative
- constants @ and B - Consequently the total wave-fields origi-

.nated from the incident-source wave are determined from

o(z) = a;i(?) +.522(z)7 | (2.60)

af any arbitrarj height. z . The problem is %hen formally solved,

In Chépter‘3fﬁili be discussed how to perform steps 1 to 4 subject
to a furfhef campiication‘related to the fact that one éf the solutions
;i increases muéh more than the other duriﬁg the downward ;ntegration.
Thé coﬁpﬁtér prégram-to be described in Chap{ef 3 is developed for the
case where'only électrons are téken iht6 accouhf although the technique
fo be apbliedtwhéﬁ'thé effect of several ions is also considered is
exactly.the same. The only changes reQuiféd'in the.compﬁfér program
in fhis moré éénéral qase-are‘thé detérﬁihafioh of J; _using the set -
of Eq. (2.46) instead of the set of Eq. (2.49) and the calculation
of:the eigeﬁ&aiues;ét the ‘starting ionospherié height Z; 'frbm'a.

different.Bobkerjquarticrequatiph:as shown:ip_gppendix A.
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ITI. THE COMPUTER PROGRAM

The purpose of this chapter is to diséusé anﬁ pres;nt the com-
puter program that has been developéd for integrating Eq. (2.24) in
accordance with the theory introduced in Chépter 2. Thé computational
techniqué_determines the reflected and the transmitfed ionospheric-aneu
fields generated by an‘upgoing incident wave that hits fhe lower region
0of the ionosphere,

The problem of solving Eq. (2.24) consists of integrating a set
of linear.differentiai equations subject fo prescribed boundary con-

ditions. The set is expressed in vector notation by

s

d_‘zf =R(z) - ¥ ©(3.1)

where ; is the column vector of the dependent variables and 'E(z) is
a square matrix which ig a function of the independent variable. z, The
problem is to integrate Eq. (3.1) through an iﬂhomogeneous region, where
'E(z) is variable, between two points z, and z whose neighborhoods
are chafacterized by homogeneous media, i.e. constant 'ﬁ(z) . Although
some Well—kn6Wn numeriéal integration procedures migﬁt be used for inte-~
grating Eq, (3.1) a further complication can arise as is explained below,
The solution te¢ Ed. (38.1) is started with one eigenvector ';éi of -E
‘ét the poiﬁt zZ = 2z, and thé set of linear differential equations,

- Eq. (3.1), is numerically integrated from 24 to Z yiélding to a

- ’ ’
solution vector vi at zn . The above process is repeated for the m

eigenvectors of §'Q':Tﬁeref0re, a specific solution v, ~of Eg. (3.1)

at. Z =2 is obtained as a combination of the m 'independent'solutions:
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V =av, +ayv, +.,.+tav T (3.2)

Suppose now that during the integration the vector V. correspond-.
o e i _

—

ing to the starting eigenvegtor Vei “at z1 increases mgch more ﬁhgn
rﬁe solutions qorrespénding to the rest of the starting‘eigenvectors.

Ip addifioq consider the fact that when an arbitrary solurion ;j is
attempted round-off errors during the integration procéss continually
introduce in ;j some small amount o: the remaining solurion—véctors

at a11 steps ; = zk .  Round-off errors occur ﬁuring numerical integra-
tion because the number of decimal plaées rs limited in a computer ma-
_chine, 1In a stable integration technigue the round—off errors are made
small, waéver, because the solution-vector ;i increases much more
than the others during the numerical inregration, the round-off error
cérresponding to a Very sma11 fraction of ;i added to ;j at gn arbr—
trary integration step will grow during the following steps., After a
number of integration steps the attempted solution vJ at =z 1is com-
p;etely.mgsked by the behavior of ;i . Therefore, it becomes 1mp0351b1e
ro'obtain m independent solutions gt Z = zn and Eq. (3.2) cannot be
achieved. An algorithmic caiculus for handling this general type of
problem has‘been_deveLoped by Pitteway (personal commﬁniqation). A
method of solution that overcomes the abore 'interferenée" betweeﬁ in-

dependent solutlon—vectors for waves propagat1ng in the lower 1onosphere

has been intreduced by Pltteway [1965] and Wlll be descrlbed in Sectlon

‘A of this chapter.
The computer program described in Sect1on B is more restrlgred
ihrappIiCability than the one developed by Pitteway because it can only

treat the case of upgoing waves as 1nput However, several improvements
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have been made, namely
1. The integration routine uses a more stable integration technique
developed by Hamming [1959]. This stable modified predictor-

corrector method is specially suited for handling wave equations
where the solutions present a sinusoidal- type behavior,

2, Double precision accuracy is used throughout.
3. Relatively small computing time.

4, Information about the relative error committed in each step of
integration, .

When the incident wave comes from above‘the ionosphere the boundary
conditions must be modified as diSCusscd by Pitteway and Jespersen [1966].
The process by which they separate the internally reflected wave from the
downgoing wave uces the fact that ‘F is hermitian about its trailing
diagonal when the collision frequency.is zerp, The collision frequency
is made zero wheré the W.K.B. conditions are valid high in the ionosphere.
Under this condition the eigenvectors are related to each other.in a
way that permits the splitting of the waves in upgoing and downgoing parts.

The unique feature iniroduced by this treatment of waves incident
from above is a reflection coefficient for the internally reflected up-
going wgve. . The reciprocity theorem proved by Pitteway and Jespersen
- {1966] shows that the transmission coefficient for waves coming from
above with azimuth-apgle Xl is equal to the transmission coefficicnt
of the penetrating mode incident from below with azimuth Y, = 180° - Xy -
._The downgoing Ehistler-wcve emerges from the ionosphere at an angle I
from the vertical which is the same for the ccrresponding reciprocal
penetrating mode, Therefore the reflection coefficiect for waves.inci~
dent froc aboce is the only parameter not deterﬁined by the computer
program descrlbed in the- f0110w1ng pages.

The orlglnal computer program of Pltteway has been translated to
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FORTRAN language by G. H. Smith [Smith and Pitteway, 1969]. Although the
mathematical treafment-given*in Chapter 2 includes:the effect of heavy
“ions, the computer progranm to‘be descfibedrin this report only includes

- the effect of electrons. However the amountiofxwork necessary to con-

ceive a more general computer program is relatively small if it is

'starfed.wgfh the actuai program. More specifically it is oniy nesessary

to calculate %{ using Eq, (2.46) and to determine the eigenvalues‘of

EJ with the more general ceefficient given by Eq. (A.11) of Appendix A,
.On the other hand Eq. (3.1} is likely to occur in many other

branches of physics. For example, problems involving the Schrodinger

- wave equation in gquantum mechanics, problems‘invo}v;ng the interaction

Qf waves and atomic structures, etc. Hence, although the computer pro-

gram is particularized for integrating the Clemmow-Heading equations;

the program may also be valuable for people working in other scientific

areas. “

| A. THE ORTHOGONALIZING PROCEDURE OF PITTEWAY

VHEquation (2.24) represents.a set of four linear differentiall
equations.r Hehee, for obtaining one given field below the ienosphere,
:four 1ndependent solutlons would be requlred But since the energy
comes from below, only two startlng e1genvectors correspondlng to up—
Lgelngrweves;are necessary at very hlgh altltudes. This means that the
field below the 1osesphere will be obtalned as a comb1nat1on of two
1ndependent soiutlons. |

" The 1ntegrat10n is started at 7z = z, with the-upgbisg'eigen;
-;eetors e (z ) rand e (z ) and proceeds dowuward step by step. At

any helght zi the vector el(zi) (say) represents the total fleld
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e

- A . . =
which is the source of el(zl). In other words, el(zi) is a particular

combination of two upgoing and twe downgoing waves such that this combi-

- nation at = ='zi will give rise only to the upgoing eigenvector Zl(zl)

at =z = Zl . If the medium were homogeneous the starting eigenvector
would not chaﬁge as the integration proceeded (only an amplitude factor
Wogld be involved if attenuation were present) because in this case no
reflection would occur.

When integrating Eq. (2.24) in the lower iocnosphere, one of the
starting eigenvectors will correspond to one solution.which increaseé-

very steeply as the integration proceeds downwards., It is called the

o .
dominant mode el(z) which corresponds to the "extraordinary’ upgoing

wave high in the ionosphere, The other is the non-dominant mode Ez(z)
related to the propagation of an upgoing "whistler-mode’ wave at.the top.
Suppose the integration of the non-dominant mode gz(z) is started in a
computer machine which works to about 16 decimal places, Making the im-
possible assumpfion that no error is committed in the integration pro-

cedure itself, round-off errors still exist because only 16 decimal

places have been used in the computation, Suppose that an error of

10—16 has been committed in this step. This is a very small error and

in fact it would be very satisfactory if this amount of error would

continue during the rest of the integration. Unfortunafely the error

a

- : —
in ez(z) corresponds in part to introducing in ez(z) some small

-
amount of The dominant mode el(z) . The sum of two independent solu-

‘tions is itself a solution, so the integration proceeds downward not

only with gé(z) but with a sum of solutions. Since the dominant solu-

tion increases much more than the other as the integration continues,
the'polarization of the obtained ionospheric wave-fields changes
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-éradually from the,polarizafion of gz(zj 'tﬁ a polarization_mﬁch closer
to the dominant solution, 'ﬁbw, in addifidn to round-off errors there
..are truncaﬁiéﬁ;errors reléfégtfo‘thé facf tﬁ5flthe integfafioﬁ is per¥ 
formed using finite step sizes, Moreover, small'errors committed when
one particular element of zé(z) has a small value (the solutiqn ié of
gsinusoidal form) may represent an appreciable re;ative error, Hence,;
allowing the integration to proceed some wavelengths down does not
furnish a second independent sclution because the dominant mode solu-
tion "swamps'" the whistler mode solution, Pitteway [1965] described.
this phenomenon gtating that the traveling wave mode is unstable to
such a numer;cal integration, which converges ﬁo_the dominant_evanescent
wave solution. In order to overcome this difficulty Pitteway devised

the process described below.

By the Schmidt orthogonalization process a set of mutually ortho-

gonal vectors may be constructed from any set -of linearly independent

- —
vectors - e e -. The construction is as follows [Friedman, 1964]

1’ 2

- - ’
ey — € o _ (3.3)
— — — + -
—_ e = ae
2 7 C20 T %2 1
where
- K —
: € e
1 2 : : - .
0= - m— (3.4)
- e .
°1 T %1
: . Lo - 3 o : -
Hence, €50 is e2 minus its projection on e1 . The symbol
320 will be used for the vector derived from e, by the above ortho-

gonalizing procedure,.
Suppose the above orthogonalizing'process is_used in the integra—

S : . ) -
tion procedure at height h., If at 2z = h we replace €4(h) by
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e = e + a

20( _ 2( ) hel(h) (3.5)
we obtain a new solution which is acceptéd by the iﬁtegration routine
because it is a sum of solutions, Furthermore géo(h) has polarization

completely different from gi(h). This comes from the fact that
—g -4 .
h . ; =
e (h) - e, (h) =0 (3.6)

if ah ig given by one equation similar to Eg, (3.4).

The 'integration is allowed tc proceed a certain number of steps and
then é new orthogonalization is made. This process is carried out through-~
out the whole interval of integration and, in this fashion, a second solu-
tion is obtained which doeé not.attain the polarization of.the dominant
mode gi Hénd thuéAdbésﬁﬁof behave fhe.séme'as gl' Observé that each

time the second solution is orthogonalized the part of the error. in 32

which is paraliel to El is eliminated. Obviously not only this error
but all of the part of 32 that is parallel to Ei is eliminated. The
errox caused by 31 is not allowed to increase during the integration
becauge this error is cut down by the above orthogonalizing process, On
the other hand, the numbers produced by the computer do not represent a
second pure solution in é because each adjustment changes its polariza-
tion abruptly. Hence, in the free space below the ionosphere the second
solution is a possible second independent solution and may be combined
with 3& fﬁr %inding everything below the ionosphere (reflection co-
efficients, polarization of reflected wave, height of refleétiOn, ete),
But since the correspondence_between this second independent solution
and the stanting eigenvectorr gl(zl)l at the top is unknown, it is not:

possible to find the transmitted wave at the top unless a reconstruction

of the wave-fields is made starting now with the two independent solutions
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below the ionosphere. Ore possible way of reconstructing the wave-
fields is discussed below,
Suppose that from each 1ndependent solution below the 1onosphere
the upgoing and downgoing electric field components are obtalned (see
~Section G)
z ) — : 2
el( n l(zn)’ Dl(zn) .7)
(z)— T (z), D (z) 3.8
b1
€20'%n V2tfnls Paly - B.8)
It is known that the upgoing wave ﬁz(zn) will be the one which
will give rise to the traveling wave at the top. Probably some part of
_ Uz(z) will die out inside the ionosphere because of a mismatching of
polarization, Hence, instead of obtaining the incident field as a
.combination of. El(zn) and ﬁé(zn) a more suitable technique is to
obtain the incident wave as a combination of ﬁl(zn) - the wave whose
'energy will be completeiy reflected or absorbed inside the ionosphere -
and a "penetrating” wave ﬁé(z) - the incident wave that maximizes the
power at the top. To obtain the penetrating mode the following relation— .
ship is set
' B U (z) =0 (z ) + bl (z) (3.9)
Up n” 7 "2 n 1' n N

such that Ep(zn) and ﬁl(zn) are mutually orthogonal. In other words,

p oo+ 8 2_n | (3.10)
— |

Observe that Eq. (3.10) represents an orthogonalizing condition between
two triFdimensionﬁl electric field vectors.

For prov1ng that U (z ) 1s the fleld whlch minimizes the 1nput

power it is supposed that another vector U (z ) would be better, say
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Ug(zn) = Up(zn) + blvl(zn) ' . (3.11)

Hence the power flux density would be proportional to

.

Uy (2 - Ty = (G = [T+ oy 1% - (817 3.12)

Equation (3.12) is obtaiﬁed using the fact that ﬁp(zn) is orthogoﬁal_
to El(zn). Equation (3.12) shows that the minimum power-flux density
i=s achieved for b1 =0, i,e., ﬁp(zn) defined by Edq. (3.9) and Eq.
{(3,10) is the penetrating solution,

_"pr, ;;ngaxity ;eqqireg that_;f ﬁp(zn)_‘igvthSgn as_a‘possible

independent second solution for the incident electric field, then
Dp(zn) = Dl(zn) + Dz(zn)> (3.13)

must also be chosen for the downgoing reflected wave of the penetrating
R —y
w mode, Similarly the total field vector ezo(zn) must be replaced by

-
e

p(zn) = ezo(zn) + bel(zn) _ , (3.14)

- Obtaining the penetrating wave-~fields inside the ionosphere. The

B

integration procedure and the orthogonalizing process will be represented
by equations in which the following symbols are used: -
A o . , _
-1, E,Cj) ig the vector e, at the height =z corresponding to the
iﬁtegration step number j, j=1, 2, . . 7 1. : :

2, g-(j) "is the non—drthogonaliied‘vector s obtained from the
,s%eps of integration starting with the ortﬁogonaliZed field ezo(j - 1).
’ 3. éj is the orthogonalizing factor defined by Eq. (3.4) at the step

number J.
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The following equations show schematically the integration tech-.
nique used by the computer program where R means "'replaced by" and I

means “after a certain number of integration steps yields to",

2@ R —E B, ) =) a e, (1) (3.15)
lx e//j;,//’//

eife)) 3, R @ =@ +af@ (3.16)

S, 8 ey TR 2,03 25,3 + a8 (3) (3.17)

¢ (@-1) gz(nrl)—~§~—+'g20(n—l) =C,(@-1) +a__ e (1) (3.18)
lI /

@ d,m — BT ) =3,m) ¢ ad () (3.19)

For example, Egs, (3.15) and (3.16) should be read in the following
way: At the height corresponding to step number 1 there are two starting -
solutions ;1(1) and gé(l) -— the two eigenvectors of %f corresgponding
%‘to upgoing waves. The eigenveétor 32(1) is replaced by 220(1) which
i$ a,Ye9t?r orthogonal o 21(1) . After a certain number of integration
T I L '
stgpﬁﬁ_el(l) ang eZD(ly yields Fo_rel(z) and e2(2) at tﬁe height
correspondiﬁg to sfep number 2. VThe wholg procedure repeats successively.
At thg gﬁgp number =n’° at z in free spéce the penetrating ﬁéde

is determined by Eq. (3.14)

.ep(p)lé-ezo(n) +:bel(n)u ' '.f"(3i20)
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Hence, for obtaining the penetrating vector solution at the height corre-
sponding tozthe_step number (n-1) it is first noted from Eg, (3.19)

that Eq, (3,20) can be exﬁanded to .

Ep(n) - Sz(n) + (0 +a) e m (3.21)

which, integrated back gives (see Eq. (3,18)):

ep(n—l) ezo(n-l) + (b + an) el(n—l)

- -
ez(n 1) + (b a + an—l) el(n 1) (3.22)
Therefore at the step number (n-2) the penetrating mode will be given by

6 (n-2) = ,q(n-2) + (b +a +a ) e (n-2) (3.23)

Hence, at any height corresponding to step k the penetrating
. ' solution is given by
n

L d - —
e (k) = e_ (k) + b+ L a.l. - e (k)
b 20 i=k+1 t .

(3.24)

During the integration the stored vectors are gi(i) and the
Qrthogonalizedafields--7320(1)_ so that the pénetratiﬁg-wavejfieids '
are readily qbtained if.all the ai’s are stored, .

Hence, the penetrating solution is constructed inside the iono-
sphefe and is our second independent solution, .It is a pOSSible”second
Vsolutibn but, clearly, a different poséible second solution could be

found if another criterion were used, For example, an independent
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"solution could be found such that its reflected power is a minimum,

The computer program“ubes Eq. (3.24) along with an extra scaling

¥

procedure for e1 for obtaining the penetrating wave-fields., It is

kD

. .
necessary to scale-down the dominant mode ey because this field in-
- . a -- s -+ . : . -
creases too much in comparison with ez.'

B. DESCRIPTION OF THE COMPUTER PROGRAM

in this section the logistics involved in the full-wave coﬁputer
program will be described, The duties and the capability of each sub-
routine will be broadly defined.

The bloék diagram of FULLWAVE is shown in Figure 2, Thé program
consists of 2 MAIN PROGRAM and four aﬁxiliafﬁ subroutines. They are

| subroufine.ﬁAMMING | |

subroutine MATRIX

subroutine BRAIN
and . subroutine OUTPUT _ _ 7 B : T

The program works under the following plan:

1) Input parameters and data are supplied by a read in étatement
in the MAIN PROGRAM, Some input parameters‘aré control variables and
some are inherent variables of the prbgram such as frequency, angle of
incidence,'etc.1 The data consist of the set height, electron density,
and COliiSion-frequeﬁEy which is provided in & block of Qardé. The
MAIN PROGRAM then calcu;ateS'the'four eigenvélues-;q at very high alti-
tudeé'aﬁd séelect the twoiof—thém-cQ:responding to upgoing waves, Finally
the eigenvectbrs relative. to thiS'two~eigenvalués.are,fqrmed,and sub- ' _ "
routine HAMMING is called 'Af tﬁis‘ﬁoint all cdntﬁol,variabIGSéare

known and’ a11 the duties of the MAIN- PROGRAM have been completed ‘Tpe
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INPUT ) I
PARAMETERs DATA ]

'y

MAIN
PROGRAM
MATRIX | % HAMMING
——
‘| KSTOP=1
BRAIN
T
I
1
- OUTPUT

FIGURE 2. Block diagram of "FULIWAVE."
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STORE
DLOG (COLFRE) N
DIAG (DENS) - - . R " ’

!

FIND
G, B,v,08,€ AT
ALT (NPOINT)

SOLVE .
4 3 2
aq” + Ba +v;a + 6qg + g =0

Y

SELECT ¢
FOR UPGOING :
WAVES

!

FORM

EIGENVECTORS ) - A
- N — ) . -

el AND 92

FIGURE 3. Block diagram for the MAIN PROGRAM. . - .
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Below the operations performed by the MAIN PROGRAM are described.

Figure 3 and the listing of the program are important for a good under-

. standing of the whole procedure,

1. Data input. The program reads NPOINT and NSTEP. NPOINT is the
number of points in .z where collision frequency and electron density
are given. NSTEP is fhe number of height; where the initial step size
of integration will be doubled. The initial step size should be of the
order of 1/20 of the 1ocai wavelength at the starting height. Based on

the author's own experience the present program produces relative errors

. _5 : _
of the order of 10 if 1/20 or less of the local waveélength is main-

. tained during the integration, As the density decreases at lower heights

the integration step size may be doubled at specified heights, always
maintaining a value smaller than 1/20 of the local wavelength, The
doubling (or halving) bf.the step-size is a requirement given by the
integration procedure (HAMMING) which does not permit intermediate step
sizes.

WNext, all the data cards are read in:

ZAXIS, DENS, and COLFRE are height (km), electon density (cm_S)
and collision frequency (sec_l) respectively, There are NPOINT cards
of this type and ZAXIS is given at equidistant'intervals.

 NSTEP cargs'are also read in giving the heights where the inte-

'gfation step~size will be doubled. The name of this control variable

is HEIGHT.

Following, DENS and COLFRE are stored in logarithmic form (INS33/35),
The reason f&f_doing this is that intermedia£e points which will be ré~ 
quired by the intégration procédure wili be 1oéarithmica11y interpolated.
Hence it is moré practical to store DENS and COLFRE in this form,
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2, Input parameters. The next set of input includes the’reading

of FREQ, FH, ANGI, AZIM and DIP, They are the frequency (Hz), gyro-
frequency (Hz}, angle I of incidence (degrees), azimuthal angle (degrees),
and dip angle of the magnetic field.(degrees) respectively (see Figure 1).

- Finally the last set of input is read:

HSTART - the height where the integration starts (km)
HEND - the height below the 1onosphere where the integration is
o to be stopped (km)

"STEP - the initial step size (km) 7

HLASTX - the height (km) below which the plasma frequency is made
equal to zero, ~Observe that as DENS and COLFRE are stored
in logarithmic form these variables are not allowed to
have zero values, Hence these variables are made non-
zerc near HEND and DENS is effectlvely made equal to zero
for heights lower than HLASTX.

EFORM - a control variable which specifies the outputs to be se-

le¢ted at subroutine OUTPUL. There are available 4 differ-
ent output formats,. :

For KFORM = 1 the output will be the penetrating and non-
penetrating wave-fields set up by a horizontal electric
field of unlt amplltude.

For KFORM = 2 the output cons1sts of

- transmission coefficients for the penetrating mode, hori-
zontal, and vertical polarizations

- penetrating and non-penetrating reflection coefficients %

~ polarization of the penetrating mode

- Budden's reflection coefficients Ry , B , n1R1 , uRy

For KFORM = 3 the output will be the sum of the outputs
for KFORM = 1 and KFORM = 2

For KFORM = 4 the outputs will be..

- the output for KFORM = 2

- the envelope of ionospheric x=-electric and x-magnetic
wave-fields for the penetrating and non-penetrating modes.

- the relative errors committed at each height for the two
solutions, '

3, Computation of the eigenvalues ¢ at the top. The computer

progrhm described here only takes into account the effect of electrons.
In this case the coefficients of the quaftic'of'ﬁooker that deteTmines

the eigenvalués g of T are given by Eq. (A.;14) in Appendix 4. In
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order to solve the quartic the following symbols are used:

Symbol'l . Computer Variable
U ='1-jv/w R |
j=J/-1 o ¥ §
V = colligion frequency 4 2+ & + s s s ¢ 4 ¢ o 2 o + +» COLFRE
w = ZaXFREQ e e e e e 4 a4 s e e 4 4 « « . JFAT
Y = FH/FREQ . e 4 e 4 e s e e . ... a4 e 4 . . YY
X = 8,061 X 107 X DENS/(FREQ)2 s s s 4 4 s e s e 4« o« o« &« o+ « XX
-E = sin(DIP) P <))
l~Y = cos{DIP) t s s e s s s 4 s e s s+ e . . . CD
q, = cos I - e 4 e 4 4 4 s+ 4 s e e s s e « o+ AN
m= sin I « cos ¥ e s 4 4 4 4 e s e e e e e e e« o AM
4 =sin I * sin Y st e e 4 e e e e e e e e e e . s AL
a, B; vy, 85 e "toT -, . LALPHA, BETA, GAMMA, DELTA, EPSI

The scolution of the quartic equation, Eq. (A.10), is obtained by
using a standard method of solving quartic equations, First the resol-
vent cubic equation is calculated and Based on one solution of this cubic
the four solutiomns Q(1), Q(2), Q(3), and Q(4) of the quartic are

determined (INS75/110). Next, the eigenvalues corresponding to upgoing

' waves are selected by choosing the eigenvalues with negative imaginary

part (INS112/125),

4, Computation of the eigenvectors at the top. For each eigenvalue

q corresponding to upgoing waves the eigenvectors are given by Egs. (B.13),
(B.14) and (B.ls) or (B.18) from Appendix B. The elements Tij are com-

puted at the'starting height and then the parameters Al to A6 are

. determined for each upgoing eigenvalue q (INS126/148)., The eigen-—

vectorg are then computed with EX chosen arbitrariiy equal to one

(INS149/170).

. —
Equation (2.24) characterizes a complex vector e ~with four ele-

- ments. If we separate real and imaginary parts we come up with a new
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form of Eq. (2.24);

dy(z)
dz

= V(@) © Y@) (3.25)

where V(Z)} 1is an 8X8 real matrix related to %fZ) as will be seen in
Pery
section F. The real column vector Y(Z) is related to the elements of

-— ! .
e in the following way:

(v, ][R
K , Y, | RC-E)
e ] Y, R(ZOHX)
5 ?4 j R(ZOHy) (3.26)
Y { 3(E)
Y, J (—Ey)
Y, 3 H)
= Ys | LS 25, )

- Hence, instead of working with a set of four linear differential
equations with complex variables, a set of eight linear differential

equations with real variables is integrated. INS149 to INSl70 are the

—

—
" FORTRAN statements far computing the two éigenvectors Y1 and Yé

—

—-
corresponding to e and 32

—
1 respectively., Y1 corresponds to the

. o :
dominant evanescent mode and Y2 corresponds to the "whistler mode”

at the top.

5, -Starting the integration. The final statements are concerned

with the setting of starting values tolsome_céntrol variables, Subroutine
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HAMMING is called and the command continues outside the MAIN PROGRAM,
The command will return to the MAIN PROGRAM after all the outputs have-

been obtained.

D, SUBROUTINE HAMMING

1. General aspects. HAMMING is the numerical procedure for inte-
grating the wave equations, Eq, (2.24),-or, actually Eq. (3.25). It
uses a modified predictor-corrector method introduced by. Hamming [1959],
The purpose is to obtgin an approximate solution of a linear system of
first-order ordina;y differential equations with given initial wvalues.
Subroutine BAMMING is a stable fourth-order iﬁfegrafion procedure, re—
duifing the égéiuétign éf'theAriéht—hénd-si&; of Eq, ké;Zéi oﬁiy two.
times per step. The matrix 3' will be evaluatéd 6n1y once per step,
This is a great advantage compared with other methods of the same order
of accuracy, especially the Runge-Kutta method, which requires the eﬁaluu
ation of the right-hand side four times per step. Another advantage is
that at eaqh step the procedure gives an estimate for the local trunca-
tion error,

On the other hand, Hamming's predictor-corrector method is not

self-gtarting; that is, the functional values at a.single previous point

" are not enough to obtain the functional wvalues -ahead. - Thérefofe, to get

the starting véiues, a special Ruhge—Kutta procedure followed by one
iteration step is added to the predicfbr—corrector method,
Given the linear system of first-order ordinary differential'equa—

tions, Eq. (3,25), and the starting eigenvalue

V() =Y, 3.2
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. o _
the problem. is to estimate:_Y(Z)_ at discrete points Zi ;. starting with

the knowledge of Eq. (3.27)., For stability purposes, the modification

by Hamming of Milne's classical modified predictor—correétor method is

preferred, Knowing the results at the equidistant points

Zj—l

, and ‘Zj’ the result at Z_+

j+H1

formulas (a prime denotes d/dZ):

Predictor:

Modifier:

Corrector:

Next values:

In the

vectors with

'l

Jj+1

=1

J+1

al

j+1

al

J+i

1l

J+1

-

Yii1 °©

1l
=l

1
<}

~
o

It
80|
=T

=h ]
()

- =y -
above formulas Y, Y ', P,

~

—

zj'3’

Z
j-2’

= Zj + h is computed by the following

(3.28)

{3.29)

(3.30)

(3.31)

(3.32)

(3.33)

=, —
M, M’, and C are all column

eight components, and V is an 8X8 real matrix provided by

subroutine MATRIX (section F)., The local truncation error committed

using Eqs. (3.28) to (3.32) is estimated to be

‘Hence, if equal errcr weight for ail eight elements of

- SEL-69-046
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assumed the evaluation of the local truncation can be estimated by

8
5= % ¢ =

8 IP(J+1),i - C(j+1),i| (3.35)

Equation (3.35) could be used in order to control the error by
halving or doubling the step-size. This ﬁrocedure is not followed here
because it is time consuming,. Instead, & 1is obtained and this parameter
is brinted out for KFORM = 4, Tﬁe experience shows that for obtaining
‘errors of the order of 1()_5/10_‘6 the step size should be 1/20 or less
of the local wavelength. At specified heights the step size is doubled
.because the local wavelength becomes larger asnthg-integration_proceeds
downward, Doubling the step size requires replacing the value of
(F - 8 )} to be used in the next step by (see Eg, (3.29): |

Jj+1 jt1

121

- > _ 242
36

c Y Sh[Y'. +3¥! 437! 47!
- o 232 _ o . - )
Pirt ~ %y T3 My Yj75] [¥, #8Y_(¥3Y  o+¥0 ] (3.36)

j-1 "3-3 "3-5

2, The starting Runge-Kutta procedure, In order to start Hamming's
modified predictor-corrector method it is necessary to know the function-
al and derivative values at four preceding equidistant points Zo’ Zl’

- = - ~ -
Z Z_. The values Y0 and the derivative Y; = V(Zo)" YO are known

2’ 73
. - - . P~
‘because Y0 ig specified by input and V(Zo) is provided by subroutine

- =, — -,

MATRIX. For computation of Y, Y, Y, Y, ?s,

'-l! .
3 and Y  a special
2 3
Runge-Kutta procedure suggested by Ralston [1962] is used. Starting at

Z. the routine computes the vector at Zj+1 = ZJ + h .using the follow~

ing formulas

(3.37)

L
13
=
=l
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— —~ —p -— :

= h =7 Z - '4 * L . o .. . Lt
K, V( 5 +-0,4h) [YJ +.0 4K1] . . (3.38)
iy ~ — b
Ky, = b« V(2 + 0.45573725421878943h) - [V, + 0.29697760924775360K, +

+ 0.15875964497103583E2] (3.39)

- ~ - —_ . —
K, = h - V& +B) " [?3 + 0.21810038822592047K - 3.0500651486929308K, +

+ 3.8328647604670103E3] : o o (3.40)

Next wvalue

-3 - ' - -
\Yj+l = Yj + 0.17476028226269037K1 - 0.55148066287873294K2 +

+ 1.2055355993965235E3“# 0.17118478121951903E4 . (3.41)

‘The above formulas are not very stable but this is not very imp0r¥
tant because they are used énly in three successive steps (J = 1,2,3).
-On,fhe other hand they have the smallest bound of truncation errors of
all fourth-order Runge-Kutta procedures and so they are best suited to
start a non-self-starting integ;ation method., Furthermore these starting
values will be refined by one iteration step using the following fourth-

order interpolation formulas:

—3 -y h -y -+, -+);r -, ) :
. = ¥ b ! -5 + 3.42
Y, =Y, t'5 [oY + 19Y; - 5Y,. vl _ F )
= = h =2y 2 2r - .
‘ Yz Y6 + 5 [Yo + 4Y1 + Yé}‘_ S { )
‘ 7 o7 +2B 9043 +3Y] + ¥/1 (3.44)
Ys =% 8 Yo T 2 T3 R

" which must be considered as anriteration procedure. That is, first the’
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‘results of the previous Runge-Kutta method are handed to the right-hand
. : - .
side of Egq. (3.42) to compute a refined Yl‘ After computing the refined
—

Y{, the refined vector Y2 -is generated using Eq, (3.43). Finally,

refined Yé is used and combined with other values in the right-hand

p

side of Eq. (3.44) to compute:the refined vector _Y3 -

Subroutine HAMMING‘has been derived from gsome similar procedures
described in the System/SGO Scieﬁtific Subroutine Package, Version 1L,
published by IBM. - A'mpre'complete mathematical analysis is given by
Ralston [1965].

3. Block diagram of subroutine HAMMING, The procedure to be used

for integrating Eq. (3,25) has been presented in Chapter 2, Actually
it is necessgary to integrate two vectors corresponding to the evanescent
and to the "whistler mode" upgoing waves, Hence, all the procedufes to
-‘be followed in the integration-of one vector can be duplicated for the
other, Thig process is time saving because GQZ) is calculated only one
time for the two vectors at eaéh height. Thé program operation for one
- vector is described below although it is understood that actually two
vectors are being integrated, The program listing in pages 68 to 86
makes this clear and should be consulted af each stage of the following
deséription.

The bIocEﬁdiagram of ‘the sﬁﬁrﬁutiné:ﬁAMMING is shown in Figure 4.
The starting eigenvectors,_the upper and the lower bqund of the intem_
-gration interval, the starfing step-size, and the heights where the step
size will be doubled constitute the set of values required by BAMMING
and they’arewsupplied'by the MAIN PROGRAM. On the other hand, the allis-
éatidn of special intermgdiate—result vectors are stored in a 15%X8 auxil-
iary array AUX. .At a height Zj the stored vectors in AUX are.
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Y, HSTART, HEND,
_ ®STEP, HEIGHT (K)

SET STARTING .
CONDITIONS
ISTEP = 1

CALL
-MATRIX |

RUNGE-KUTTA
- PROCEDURE J=J+3

REFINING
PROCEDURE FOR\ ~ =

- =

REERSYRE

ISTEP = o] mamanG
EEER—
ISTEP+1 :

PROCEDURE

NORT'=NORT-+1

FIGURE 4. Block diagram of subroutine HAMMING.
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AUX(1) = ¥ Rux(s) =Y! '
=Y 8) = i-6 (3.45)
AUX(2) = Y % 3
=Y, 5 UX(2) = Yj_s (3.46)
Kuxfa) Y U0y =
= Y5 4 UxX(10) =.Yj_4 (3.47)
AUX(4) = Y Ruxal) - 37
=Y, 4 | UX(11) = Yj_s  (3.48)
AUX(5) = Y A ¥!
(5) = j-2 AUX(12) = Yj_z (3'49).
- AUX(6) = Y : AUX(13) = Y/
_ =Y | UX(13) = YJ._1 (3.50)
- - — =;
AUX(7) = YJ AUX(14) = Yj (3.51)
. . and finally,
— - -t '
vector AUX(15) = (Pj - Cj) (3.52)
The procedure begins with the program setting
- - .
AUX(1) = Y INS210 (3.53)
7 = HSTART INS206 (3.54)
and H = STEP _ INS207 "~ {8.55)
Next, MATRIX is called and the derivative
-, e , : _
- Y = v(z) - Yb o INS222 ' : - (3.56)

is formed, The statements after the calling of MATRIX (INS193/204) con-

stitute a routine pfocedure which will be repeated at each calling.
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Following each call to MATRIX there is a textrto check whether KSTOP has
been changed to 1 or not, If KSTOP = 1 the subroutine returns to
MAIN,
After the calculation of the initial values the special Runge-
— - -
Kutta procedure for calculating Yl’ Y2 and Y3 is put in operation
by the statement "GO TO 200", The Runge-Kutta procedure corresponds to

INS288/323, Observe that

INS296 corresponds to Eq, (3.37) for -ﬁl
INS306 (3.38) for "2
INS316 (3.39) for ﬁs
INS326 . (3.41) for Yj+1
Vectors ?1, ?2 and §3 produced by'the above procedure are
stored in
‘ ‘ _ _ - .
INS228 o AUX(2) = Yl
' - =
INS233 AUX(9) = Y1
= . -
INS240 AUX(3) = Yz
— oy
INS245 - AUX(10) = Yé
-). . b d
INS2562 AUx(4) = Y3
. - - =,
INS257 : AUX(11) = Y3

Y

The next step is to use the fourth-order interpolation formulas,
Egs. (3.42) to -(3.44) to refine the starting valueS'prOVided by the above
Runge-Kutia processg. This is accomplished by means of INS259 to INS287.

— .
Now the value of the vector Y is given at_foux{equidistant points
7 = HSTART, - (Z+H); (Z+2H), : (Z+3H)
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and then the infégration may continue with Hamming's stable'predictor~
corrector method. Notice that although ?(Z) has been chpuféd at four
poinfs no information has been filtqred out, In fact results of the inte-
gration will come out only when all the elements of Auﬁ-have been computed.
‘There is no strong reason for doing tﬁis. This is part of our policy of
'computing the first points with =2 maximum-of accuracy: the first ~ 10
points are computed with a very small step-size, approximately 1/50 of
the local wavelength, after which the step size is doubled, For doubling
the step size all the elements of AUX are required. Another character-
istic of the subroutine, whose reason for being there has been dictated
‘by experience, is explainﬁd below. The orthogonalizing procedure pre-
viously discussed (section A) must be applied at discrete heights sepa-
rated by a gpecified number of integration steps. Here four steps are
specified, that is, the fields are iﬁtegrated in four consecutive steps
and only at the last point is the information filtered to BRAIN where
the fields wili be orthogonalized. BRAIN always returns the orthogonalized
fields to HAMMING. The variable controlling the number of steps before
each orthogonalization is NORT (see INS378). |

The modified pfedictor—corrector method of Hamming consists of
INS300 to INSS%G. The corréépondence between the formulation given pre-

'viously-and prqgram”instructions is shown below:

- Predictor, ‘Eq. (3.28) INS341
Modifier, Eq. (3.29) INS343
Corrector, - Eq., (3.30) . INS350

>, - C, . . (3. S352
Y vy {3. 354
Next ¥,..,  Ea. (3.32) ~ INS
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65, Eq. (3.33) INS359

o=
erivati ! ‘
D va 1je Yj+1 INS367

. After the completion of each integration step a‘feSt'is generated
to check whether or not the next step should be doubled. This is done
by comparing % with HEIGHT(ISTEP) as shown at INS375/376, 1If the step
A d —_
is to be doubled then the vector (P, - C, ) must be changed as given
j+1 j+1
by Eq. (3.36). This is done by INS396.

E. SUBROUTINE BRAIN

In subroutine BRAIN the solution-vectors are scaled, orthogonalized
énd sto?ed. All these missions are very important in the whole problem
of finding the wave-fields inside the ionosﬁhere. ' N |

The block diagram of subroutine BRAIN is shown in Figure 5 and the
listing of the program in pages 78 and 79.

The first action in BRAIN is to check whether or not a generated

3 .
variable TEST1 is greater or smaller than 10, This variable is a measure

of the amplitude of the dominant mode, i.e., )

2 212
{Ex + (2 H) } (3.57)

'If TEST1 is equal to or greater than 103 the solution-vector of the

ot

TEST1 =

b

.

doﬁlnant mode is scaled down by mu1t1p1y1ng its value by 10 (INS419/425).
. The height where a particular scaling occurs is stored in HSCALE(NA) =

The f1rst scallng occurs in the first calling of BRAIN because the elgen-
vectof correspondlng to the dom1nant mode is mu1t1p11ed by 10 before
calllng HAMMING (see INS175)., This is dOﬁe bécausé it is convenient for N 3

. the firgt scaling to occur at the first p01nt stored in BRAIN, as will be
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apparent when the reconstruction of the wave-fields in subroutine OUTPUT
is discussed (Section G).

In subroutine BRAIN theqfields will be stored in-complex form,

- - de1 de2 _ . ‘
Thus €s €5 Gz » 8and = are first formed - INS437/440, Next

the orthogonalizing factor AORT(JZ) is generated (INS442/444) and 32

"is replaced by the orthogonalized field vector

- — - - —
E2(JZ)——$E2(JZ) = E2(JZ) + AORT(JZ)* EL(JZ) INS446 (3.58) -
' —
de
There is a corresponding eguation for 7 1 Finally the related
- b d
field vector Y2(Z) ig restored and BRAIN returns to HAMMING.

For KFORM = 1 one more step is added to BRAIN, namely the calcu-
lation of relative errors committed in the integrations of ;i and 32
(INS432/433).

Summarizing, after each call fo subroutine BRAIN the following set
of variables is stored:

NA, HSCALE(NA) if TEST1 > 10°

AORT(JZ), ALT(JZ)

— - -t
E1(JZ), E2(JZ) orthogonalized field vectors
-+ —
DE1(JZ), DEZ(JZ) derivatives
- ERRORL(JZ), ERRORZ(JZ) if KFORM = 4

F. SUBﬁovTIﬁE MATRIX _
Subroutine MATRIX performs the.following operations:
1) _Ié returns ali the 64 elements of ‘F(Z) to HAMMING at each call.
.2)_ It pffectively transforms the medium in free space if the height

_-ig lower than HLASTX,

3) It turns the command to OUTPUT when the height is lower than HEND.
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Y1;=-l0,-Yl

L= B
ANV L.

DY1 10 1

HSCALE (NA )=Z.

rNA:NA-l—l
[3z=gz+1
ALT (JZ)=%

"ERRORL |
:ERROR2 {.

|FIND :
2 FROM Y.,ef FROM Y|
_ FROM Y, ,e! FROM?YE”

—
e

ey 2,e2

—é*—i —
.AORT(JZ)=§1-e2;el.e
2 +AORT (JZ )~ e

1 +AORT (32)-e} |
FIND NEW ¥, AND' Y}

1}

L d

ol o]
[

o,

b=

2

FIGURE 5. Block diagram of subroutine BRAIN.



The block diagram of subroutine MATRIX7is‘shown in Figure 6 and
the related program listing can be found on pages 80 to 81;

If the height is greater than HLASTX then the electron density and
collision frequency must be found for this particular héight. This pro-
cedure starts at INS489 where the actual value of 7 is coﬁpared with
ZAXIS(NMAT). Observe that NMAT starts with the value NSTEP set by INS173.
If Z coincides with some height ZAXIS this means that no interpolation
is necessary because DENS and COLFRE are already available at this height
(INS492/493). If Z does not coincide with ZAXIS a lineaf interpolation
is made in the logarithmically stored va]ues of DENS and COLFRE (INS495/493)
.Hence, the valuesg of electron den81ty and collision frequency are deter—
mined at Z and the computation of '¥(Z) starts,

When only electrons are involved the elements of '¥(Z) are given
by Egqs. (2.49) and (2.50), The whole sét Tij is calculated betﬁéen
INS503 and INS524. Notice that matrix ’¥(Z) is columnwise stored.

ot ~ Bl
Relationship between T(Z) and V(Z) . Each element of e is a

complex function aund therefore:

— i
(v, + 5
[~ &, Y, Y
-E Y.+ 3i¥Y
€= Y = 2 6 (3.59)
. Z_H_ | Yo+ 3 Y,
Y +3Y
V__ZoHy_J | Ya T I %
Now replacing ?kz) by —jE?(Z),
T(Z) = -JKT(Z) | (3.60)
Hence Eq. (2.24) is now written
% 5. ¢ - (3.60)

az
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INTERPOLATE

N=EXP(N)
v=EXP (V)

N AND v

iy

vy

MATRIX
T(2)

MATRIX
V(Z)

CALL
OUTPUT

FIGURE 6. Block diagram of subroutine MATRIX.
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Next the matrix T is written as it is stored in the computer

T T
1 S TQ
—~ Tz TG TlO
T =
T3 T7 Tll
T4 TB T12
-

ALl the elements T, i =1, 16,

-

T
13

T14

T15

T16

(3.62)

are complex in principle and

then Egq., (3.62) is fully written in the following form

e

R HIHT)  R(TIHII(T,)  R(TG) +3I(T,)
R(TLHINT,)  R(TIHINTL)  RCTy I+FCT, )
{REHIITY  R(TH+IIA) KTy IHIITy)

R(TH+IHT,)  R(TOIHINTL)  R(T IHIHT, )

R(TLI+HIIT )

e

R(T, ) +3I(T, )

| (3.63)
R(T, )+IHT, )

R(T| I +3ICT, o)

Making use of Egs. (3.59) and (3.63), Edq. (3.61) can be expressed in

another form if the real and the imaginary parts of the left-hand side

are equated with the corresponding real and imaginary parts of the right-

hand side respectively, For example:

ay _
1 : . - . -
5 =IR(T)) AT KT R DI Y] - [3¢T)) 9@ 9(Tg) 9T, DI ¥] (3.64)
5 Y2 YG
Y, Y,
. | | Y8
-453é 'SEL—5§?046



or, betterxr

P
. 1 ‘ - :
y A [Q(Ti) R(Ts) R(Tg) ﬂ(Tis) - fl(Tl) —S("I‘s) —ﬂ(Tg) -ﬂ(Tlg)] Y, (3.65)
. . Y2
Y3
Yy
Y5
YG
Y7
Thus, Eq. (2.24) is transformed to
| & oy L D -
w = viz) * Y (3.66)
where ‘F(Z) is given by
~ | . s L i —
KT KA KT K@) | -IT) SITH I 9T )
: A - B -
_Q(Tz) ?(TG) 5{('1‘-10) ER(T]A)I ﬂ(TZ) ﬂ(Ts) ﬂ(Tlo) ﬂ(Tl4)
1 _ ' _
R(T) KT R DRI | -IT) -IT) ~HT) KT
! - _
.‘R(T4) fR(TS} ‘-R(le) R(Tl_s) | -S(T4) -.‘](TS) "f](le) ﬂ(Tl6)
V= u-————————————% ———————————————— (3.67)
S(Tl) S(Ts) ﬁ(Tg) 5(T13) : R(Tl) R(T5) ﬂ(Tg) R(Tls}
: 1
S AT @) T, | R@) KT R ) R
- . R A
3(T3) 3(T7) ﬂ(Tll) 5(T15) | 3§T3) R(T7) R(Tll) ﬂ(Tls)
_ _ i ‘ .
5(T4) S(TS) ﬂlez) 3(T16) [ Q(T4) ﬂ(Ts) ﬂ(le) 3(T16)

. And notice that.if- ¥V  is columnwise stored the following relation-

ships exist:

Vg = R(TK). ' © 7 (3.68)
Vi = 9T o (3.69)
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V.. = —ﬂ(TK) . (3.70)

LL
VL = ﬂ(TK) : _ (3.71)

where ‘ '
K=1+4¢J~1) ' (3.72)
KK = I + 8(J-1) - (3.73)
MM = I + 4 + 8(J-1) o (3.74)
LL = I + 32 + 8(J-1) (3.75)
L =TI+ 36 + 8(J-1) {3.76)

and '

I=1, 2, 3, 4 - (3.77)
J=1,2, 3, 4 © (3.78)

The opergﬁions determining 'V(Z) are IN8527 to INS538,

Finally one last comment should be made about the possibility of
having the data in analytical form instead of equally spaced points
(DENS and COLFRE). If the height distribution of_ionization and colli-
sion frequency are functionally given then the first part of_MATRIX must
be, changed by the respective functions.. -From INS503 to the end.of theé
subroutine everything.can e maintained., Obviously the corresponding
read-in statements in the MAIN PROGRAM would not be necesséry.

Subr&utine MATRIX}transfers the éommand to OUTPUT if the héight is
legs or equal to HENﬁ. _Following the return statement from OUTPUT the
control-vari;ble KSTOP is made equal to one.. This will_ih turn.traﬁsfer

the command to the MAIN PROGRAM.

Y
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G. SUBROUTINE OUTPUT

In subroutine OUTPUT all the results provided by FULLWAVE are ob-
taiﬁed and printed out, From thé sfandpoint of computational technique
.the hard job has already been completed and all the resu1£§ are stored,
Now it is only neqessary té combine coﬁveniently the stored results in
order to get suitable information about the whole process of reflection -
abhsorption - transmission in the given ionosphere, A set of output para-
meters that can be obtained with the FULLWAVE program is presented.
Clearly the‘capabilities of the program can be extended depending upon
the requirements established by the problem at hand.

The block diagram of subroutine-OUTPUTris shown in Figure 7 and.
a listing of the computer program can be found between pages 82 and 86.

1. Obtaining upgoing and downgoing waﬁes. The stored field-vectors

21 and 320 are calculated effgctively in free space in the last inte-
gration steps. These two vectors are the orthogonalized vector solutions
which have been stored in BRAIN, The important feature about them is
that they are independent solutions (it is impossible to obtain one of
them by multiplying the other by.a complex constant)., Hence these two
solutions can be combined conveniently in order to obtain any specified
incident wave. This fact is shown by first observing that.if,is possible
to determine upgoing .and downgoiﬁg waves for each independent solution
as follows: |

"It is known that the Z-variations of the incident andlthe reflected

wave are éxp(-jkqiz) and exp(jkqiz) respectively, Then at the last

calculated'point it is known that

E =U +D _ ' (3.79)
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ENTER

FIND, _ ..
UysPysU5 0,

AT ALT(JZ)

FIND MULTIPLYING
FACTORS Al AND A

HOR. POLARIZATION

FIND

TP,TH,TV,?PEN,

R,R, (B)
PRINT

2
KFORM=2 YES RETURN
NO

RECONSTRUCT
WAVEFIELDS

P AND NP FIELDS
|SET UP BY HOR.

INCIDENT WAVE

ENVELOPES E_,
Z H_ OF P AND NP
0 X

FIELDS ERRORS
" PRINT

PRINT

FIGURE 7. Block diagram of subroutine OUTPUT.
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and : '
3 E 4

X
——— =~-TU + D ' v
jkq. X T x ) (3.80)
i .
where Ex is the total x-electric field given'by_the particular ; vec—
tor at HEND, Ui ‘and DX are the x-electric fields for the upgoing and
downgoing waves respectively and E; is the z-derivative of Ex'

Hence, U_ and D_ ‘are determined by

E!
1 X
U =2 "~ Jkq, (3.81)
o,
p =+dE + “x (3.82)
x 2 |'x Jka, : . A

"It is easy to determine U and D because both E_ and E’
x X x x
are known. Equations similar to Egs. (3.81) and (3.82) also determine

U& and Dy, the related y-fields, The z~fields come from

(3.83)

n
Q

LU0 +mU + q.U
x y iz

/D +mD -4q.D =0 (3.84)
x ¥ iz

—
Hence, for each vector-solution e, the upgoing and the downgoing

electric wave—field viéctors are obtained

. — 5 ¥ ﬁ D (3.85)
. e ; and D, .

py—— d D (3.86)

920 2 an 2 - -

The corresponding FORTRAN instructions are 'INS570 to INS581,
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2, The penetrating mode solution, The penetrating electric wave-

fields are determined by Egs, (3.9), (3.10) and (3.13), The correspond-

ing FORTRAN statements are INS582/589. Observe the correspondence '
-b eof Eq. (3.10)— Bl of INS583

3. Multiplying factors for obtaining the incident wave. As has

-been pointed out before, two independent solutions are required to ob-
tain a given incident wave, in fact, any two independent solutions.
Hence the penetrating mode previously defined as one of the solutions

may be used, Now, if the incident wave is hOrizontally polarized with

the electric field amplitude eqﬁal to one, then the geometry of the

problem shows that (see Figure 1):

Biine = 1 % cA (3.87)

E yne = 71 X sA : (3.88)-'
whére 7 ‘ CA-= cosy . {3.89)
SA = siny : (3.90)

\

.'The_right combination of upgoing # 1 and upgoing'#-ﬁ {p for

penetrating) are established in order to get the above incident wave

' . =C, = a + . 3.91

- Exinq CA_ aluxl azvﬁp ( )
= —‘ = -+ ) 3.92

Eyinc Sy aluyl aZpr ( )

Hence, a, and a, are readily determined from Egs, (3.91) and (3.92):
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®
]

1 - (SA pr +'CA-pr)/A _ : (3.93)
8, = (SA,UQI + CA Uyl)/A N (3.94)

where
= U U - U U (3,95)

xp vyl xl "yp

The above multiplylng factors will be used later when the output
ig chosen to be the penetrating and the non-penetrating ionospheric wave-
fields set up by a horizontally polarized wave with unit electric field.
. : - -
At each height ey and ep are replaced by

(3.96)
e ——a e - (3.97)

Egs. (3.93) to (3.95) correspond to INS520 to INS592.

4, DPolarization, transmission and reflection coefficients for the

penetrating and non-penetratinggpodes. The square of the transmission

coefficient is defined as the ratio between the power flow in the i-
direction high in the ionosphere and the z-directed incident power flow.
The tgansmission/cqefficient for the #l‘non—penetrating (np)'mode
is obviously_zero,rq |
Oon tﬁe other hénd, the penetrating fp) mode yields to a purely dp-

going whistler wave at the top. For this mode the vertical component of

- the cycle averége of the-Pmynting vector is
1 org ¢« @ H) - B - @) (3.98)
P, = 2ZO Al x oy ¥ o X ‘ ’
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If the peneirating mode is normalized such that the p. wave inci-
dent from below has an electric wave-field vector of unit amplitude,

Eq. (3.98) can be manipulated to give

q,
i

pzin = EE; (3.99)

Hence, the transmission coefficient for the p-mode will be given by

T2 =
p

alH

. * : * ‘
- RIE(ZH ) - E(ZH) I (3.100)

The-fields at the right—hand side of Eg, (3.100) are p—moﬁe fields
set up by one incident p-mode wave of ﬁnit électric field. .

INS594 to INS598 perform the numerical calculation of Tp._ Variable
F is the normalizing factor for the-incident p-mode (IN8594).'

On a similar.basis the reflection coefficient comparesg the z-power
flow in the reflected and in the incident waves

P _
R2 - zdown 7 (3.101)

pzin
The reflection coefficient for the p-mode and for the np modé are

computed by means of IN8602/633 and INSGO4/605 respectively.

The polarization of the incident p-mode wave is defined here as

- . . R . -
the ratio between the electric field in the plane of incidence (plane Kk,
z-axis) and the electric field in the horizontal plane (plane x-y).
That is
E_. sinf U - (s, Uu_ + C,U cosl
- BL_ £ Y 4V " Calyp’ 3.102)
S ¢.U_ - 8,0 (3.
P Xy A'xp A yp :
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Equation (3.102) correspbnds to INS599.
It is not necessary fo‘q0mpute the poelarization of the incidént x ;

1ip mode wave because it is known that
-k =
U1 U =0 (3.103)

Equatien (3.103) says that the polarization of the incident np mode is
obtained by interchanging the major'and minor axes of the polarizaiion

ellipse determined by pp, and reversing_thé‘direction of rotation.

5. Transmission coeffiqients at vgrtical and horizontal polariza-
EEEEE' if the incident wavé has a polarization diffeféﬁt than the polar-
izat£6;-éf-tﬁé.ﬁ—ﬁ6de fheﬁ it ﬁill eééite botﬁ‘_ﬁ kénérﬁﬁ wavéé; Tﬁe
traﬁsmission of thé np mode is zero and i; Tp for the. p mode, Hence,
for.calculating transmission coefficient for any incident wave it is
dnly‘necessary to calculate the amount of p mode exéitéd by the wave,

The tfansmission coefficients for hofizontally and vertically polarized . o -

waves are computed at INS606/610,

6. Reflection coefficient matrix, The reflection coefficient

matrix is another very important result that comes out from the program.

Led ) .
The elements of R. are Ry, JRu, .#Riy, and uRy, such that

S | E down
‘ -LR-L KR

1l

‘ (3.104)
pine -

E“ j_n.c:O_ )
R = i down | : - {(3.105) *

E .
.linc -

E . o :
i|1.110=0. o N
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. E . .
R = iﬂﬁﬁﬂﬂ (3.106)
. rinc

ELinc=0

.
Ldow i
—CowR (3.107)

It

Ry :
ninc

E;inc:O

where the first symbol ﬁreceding R characterizes whether the ingident

‘ electric field is perpen&icular (1) or parallel (y) - to the plane ofr
incidence. Similarly, the symbol which follows R characterizes the re-
flected electric field, In oxrder to find the fields in Egs, (3,.104) to ;__
(3.107) any-two independent solutions may be combined, TFor example, here
the fields #1 and #2 that come out from the integration are-directly:

combined, After some manipulation it is found that

1 ' .
LRy = E'{;(CADXI—SADyl)(SAUXZ+CAUy2> + (CAsz"SADyz)(SAUx1+CAUy1) } (3.108)
1 _ .
.LRu = ToooT {}(SAUX2+CAUYZ)(SADX1+CADy1) + (SADX2+CADy2)(SAUx1+CAUyli}(3.109)

1 .
- = J_(C. - . - L110
URI = 7 { (C,U,, SAUyz)(SADx1+CADY1) + (sADX2+cADy2)(cAUXl sAuyli} {3.110)

cosl 2 : ’ . o
- =22k L - - + (CD - - 3,11t
"Ry = A { (CADxl SADyl)(QAsz SAUyZ) _( A x2 SADyz)(CAUkl SAUyli} ( )
- o = : - - 3.112
where _ A Uyl sz Uil Uy2 L ( )

- The FORTRAN instrucfions for computing the above reflection coefficients

are INS614 to INS626,
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7. Reconstruction of the ionospheric wave-fields.. In order to

fecbnstrucf the ionospheric penetrating mode wave-fields it is necesséry
to use Eq., (3.24). Equation (3.24) must now be slightly changed dﬁe to
the fact thét the #1 solution has beeh constaﬁtly scaled down during

the integration, Subroutine BRAIN shows that at the heights where scal-

- . .
ing took place ey was scaled down first followed by the orthogonaliza-

—
tion of the second vector e Hence for obtaining the penetrating mode

2°

at a height k the equation is written

n .
ep(k) = ezo(k) + (b +i=§+1 ai) . el(k) (3.24)

if k corresponds to a height equal or 1éss than the loweét value of
HSCALE(NA). For the first height above HSCALE(NA) the p-vector will ‘be

obtained by the following equation

- ’ 7 - 1-3 n -
ep(k—L) = ezo(kjl) + 10 . (b + igk ai)el(k—l) (3.113)

and next the value of ‘zl(k—l) is also changed
P -t : -3~
_ el(k—l)———910 el(k—l) (3.114)

In order to understand the formation law for gp one further step
is -shown:

) n f
_3 —y
(k-2) + 10 (b + & ai)el(k"z) + a

.3 (k-2)  (3.115)
. 1 A
1=k

ep(k—z) = 620 k-1

' The last term in Eq. (3.115) comes from the orthogonalizing pro-
cedure at the first height above HSCALE(NA). The above reconstruction
prbcedure'is then eagily generalized for'any height yielding to the block

" diagram of Figure 8 where the whole process is shown,
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Y

Fa(M) = E2(M)+ASUM * B1(M)
F1(M) = F * E1(M)

Y

1 ASUM = ASUM -+ AORT (M)

-3 .
ASUM = ASUM * 10 NEXT |
FeF* 105 : ; STATEMENT
NA = NA - 1 ' [correct fields are
) K=20 now stored].
| . FIGURE 8. TReconstruction of the ionospheric wave-fields.
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The FORTRAN instructions corresponding to the reconstruction of
the wave-fields are INS641 to)INS657.

B'. Ionospheric wave-fields set ﬁp by a horizontal electric field

of unit amplitude - relative eérrors. At this point the correct solu-

- .
tions e1 and 35 are known and stored., If an incident horizontally
polarized wave is incident upon the lowexr boundary of the ionosphere it
will excite both penetrating and non-penetrating mode waves, Moreover,

it is also known that if this incident wave has electric field of‘unit

amplitude it will excite p and np-modes in the following amounts:

il

a

1Y1. upgoing np-mode, électric field

cl

a upgoing p-mode, electric field

2p

"The above results come from Egs. {(3.93) to (3.97). Hence, the

jonospheric wave-fields excited by the given incident wave will be

p mode: € ——3 a (3.116)

-
np mode: e —>a (3.117)

Eﬁuationﬁ (3.116) and (3.117) determine the wave-fields Ek’ Ey’
: Zon and ZOHy for each solution aF any height. Fields ZOH# and E,
are not printed out in this program but can be obtained immediately
frém.Maxwell's équatiéns plus the knowledge of e and d;/dz..

The relative errbrs éommitted.at each step of integration are
"known aﬁd stored, Hence they aré availaple fof printing at any time,

The_ionospherié wave-fields set up by a horizontally p;iarized
wave of unit amplitude are calculated frpﬁ INS679 to INS698. 1
KFORM.;74 only the envelope of the x—eleCtric/magnetic fields for the

p and the np modes are printed out together with the relative errors
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as shown in the listing of the program corresponding to INS699 to INS710.

H. GENERAL CHARACTERISTICS OF THE FULL-WAVE PROGRAM

The FULL—WAVE prdgram has been tested and used regularly‘in the

IBM/360 computer of_the Stanford University Computer Center, Somé tests

. corresponded to checking results presented by Pitteway [1965], Piggott

et, al, [1965], and Deeks [1966]. Another useful test is the total =z-
power flow behavior with height, If the collision frequency is zero
the power flow in the =z direction must be congtant due to the con-

tinuity of horizontal fields. In a typical case pZ maintained constant

_within 6 decimal figures.

General Characteristics

All the variables are double-precision with the exception of the

relative errors committed at each step.
- 712 FORTRAﬁ IV-H statements
- 1 main program and 4 subroutines
- Object code: 60224 bytes
- Total array area: 150184 bytes
- Total length: 210408 bytes

- fTypical run time: 10/25 seconds for each input set.-

In the following pages a 1isting of the computer program is presented,
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O P L B e

[+ 43

30

. 31
‘32

[a¥eNeNaRaEaNaNal

[aNela)

1q0
200
aco
400

50¢C
600

100

Yoy

1

1

!

*-*.'*.*‘*.*.*.*'*-*I*.*.*.*-*- *.*-*.*-*.*Q*.*-*.*.*-*.*'*'*.*.*.*I
- MAIN PRCCRAM - +FULLHWAVE. R4R.SCARABWCCI
*.*'*.*.*‘*.‘*.*.*.*.*'*.*.*.*.*.*'#.*.*.*.*.*.*.*.*.*.*.*I-*.*. *.*‘7

REAL*8 DEXP.DLOG, DCDS.DSIN;DSQRT.GHAXIaDHINloDABSrCDABS

COMPLEX*16 CDEXP,CDLOG, COSQRYy DCMPLX,DCONJG

REAL%8 YY,YAY,YAZ, AL, AH,AN;C;CA:CD’S’SA:SD’FREQ'ALT(500)

COMMON/BRAZIL 7YY+ YAV YAZ s AL »AMsANSC +CA +CD+SeSA.SD,FREQ,ALT

COVMPLEX®16 AT

COMMON /IMAG /AT

REAL%8 Y1{8),Y2(8),DY1{8),DY2(8),AUX1(15,8),AUX20(15,8) HEIGHT{20} ,
HETARTHEND.STEP,2,DELT1 (DELT2

COMMOM/USA/Y1+ Y2.DY1eDYZ25AUXLL AUN2 JHEIGHTHSTARTSHEND +» STEP+Z+BELT]
2 DELT2

REAL*8 ZAXIS(10Q0) ,DERS(1CO),COLFRE(IOQ0)

COMMON/ITALY/ZAXIS-DENSCOLFRE

REALXB V{564),FAT,FATY 4HLASTX

COMMON /FRANCE/V,FAT,FATY JHLASTX

COMPLEX*16 E1(4-5001152(41SOOlfDEl(érSGO)'DEZ(41500]'AURT(SOC)

COMMON/RUSS/EY »EZ +DE1 4DE2 4 ACRY

"REAL*B FH,ANGI,AYI¥,DIP

1
2

1

[ENRNE N

CDFMCN/CANADA/FH,ANGI,AZIMqEIP'JZ'NA.NMAT'KFGRM,KSTUP
COMPLEX%:1E T(1£}
COMMONSMEXICO/T

REAL%8 XX, X¥2yQR{4) QI {4),QQ

COMPLEX%16 UsUMXs XAs AL PHASBETA «GAMADELTALEFSY+P+QC» R!AA:BB!SC!
Al 3 A2 AT X1 ;ABC,0D4+EE,Q{4}¥,81,82,B3,B4,85,T11,T12,
T134T34,T21L,T22,T234T41+T424A3,A4,A5,4,A6,FAC,RR.CENCM

EXTERNAL BRAIN,HAMING,M ATRIXQUUTPUT

- F O R M A T 5 -

FORMAT {215}
FORMAT (F10.2.,2010.2)
FORMAT (2010.3,3F10.2)
FORMAT { *1',' FREQ ='4D20.5/" FH =1',D20.5/" ANGI =',F20.2/
OAZIM =9 ,F20,2/0 DIP =Y, F20.2///)
FORMAT {4D10.3,15)
FORMAT (¢ .9 Q1R =1,D026,15,% QI =',D26.15/
TOGAR =',D26.15,% Q21 =1,026.15/
t Q3R =',D26.35,' Q31 =',026.315/
.Y QAR ='.D26.,15." QAT =1.D26.15//7/)
FORMAT {F10.3) .

Al = DCMPLX(0.000, } .0C0)

READ 100+ NPOINT, NSTEP

-READ {5,200F {ZAXTIS(JY,DENS(J)+CCLFRE(J)s J=T14NPOINT)

READ {5,700 (HEIGHT(J)» J=1.NSTEP}
STORE THE LGGARITM OF DENS AND COLFRE
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65
66

67

62

. 69

70
71
T2
73

T4

15

76
T7

OO0

OO0 oy

D & 1=1,NPCINT
DENS{ 1) = DLOG(DENSII))
COLFRE(1) = DLUG{(CCLFRE{(I})

READ 300, FREQ.FH.ANGI . AZIM,DIP
IF {FREQ.EQ.0) GO TO 55
PRINT 400, FREQsFH,ANGI,AZIN,DIP

FAT = 2.0N0%3,141592653589T23C0%FREQ
FAT1 = B.0#1DCT/{FREQ*FREQ)

XX = COLFRE(NPOINT) )

U = 1.0D0 - AT*DEXP{XX)/FAY

XX = DENS(NPOINT)

XX = FATL®CEXP(XX)

READ 500, HSTART HEND,STEPHLASTX KFOR¥

ANGT#1.7453292519943300-02

ANGI =
AZIM = AZIM®1,745325251964330D-02
pIip = 1.80C02 - DIP
pIie = DIP%*] .7453292519943300-02
€ = DCOSTANGI)
S = DSEINC(ANGI)
SA = DSINCAZIM)
CA = DCOS{AZIM)
CD = DCcas{cie)
- SD = DSINIDIP)
AL = S*SA
AM = S%CA
AN = C
YY = FH/FREQ
YAY = YY#CD
YAZ = YY=SE
UMX = U - XX

XA = XX — U*C*C
XY2 = XXHYYXYY

P LR N P P P P U N P I TN I T P L T P P I R L P

START COMPUTATION CF EIGENVALUES AT ALT{NPCINT) - BCGXER QUARTIC

ALPHA = UHUxUMX 4+ YYRYYR (XX*50*%50 - U}

BETA = 2.0C0*%XYZHAMAXSD*CD )

GANA = 2,0D0%XA%R(UEYMX ~ YY XYY ) + XY2%(1.000-(CASD)**2+{AMICD) ¥%2)
DELTA = —-2.0D0#*XV2*L 0% SD*C*CxAM

EPSY XAR(XARUMN  + YYRFYYREC#HC Y — XY2%(CHLD*AM) %%2

it

BETA = BETA/ALPHA

GAMA®= GAMA/ ALPHA

DELTA = DELTA/ALPHA

EPSY EPSY/ALPHA

ALPHA = OJTS5TCO*BETA%BETA - 2.0D0#%GAMA

IF (CBPBS(BETA’-EQ.0.AND.CDABS(DELTAI.EQ-O)'GG TO 2¢C
THE RESOLVENT CUBIC

P = —GAMA :
QO = BETA*DELTA — 4.0DO*EPSY
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T8

79
an

81
A2

83

84
85
a6

“R?
88
89
aQ
91
92

94
95
96
Q7
98

100

101
102

103

110

112
113
114
115

116

1ig

b fust
[ B

Q-

alale]

[aXxlg]

4]

EslaleNuReNel

23

R = -BETA*BETA*EPSY + 4. 000%GAMAXEPSY -~ DELTA*LCELTA

AA = QC - 3.3333333333333330-C1#%Pxp’

BB = (P*P*P/1,35001) - 3.3333333333333330-0L%P%00 + R
SQ = CESQRT{0.2500%BR*B8 + {AA®AA®AA/Z, 7000’!)

Al = ~0.5D0*BHE * 5Q

A2 = -0.500*BB - S0

AT = 3.333333333333333D-01 *CCLOG(AL)

AT = CDEXPLATI

X1 =

AT - 3.,332333333333333D-01%((AA/AT) + ©)
THE SOLUTION FOR Q

RR = 0.25CO%BETAXBETA —~ GAMA + X1

IF {CDABS{RR}.LT.1.0D~70) 60O TC 21

RR = CLSQRY(RR)

ABC = (BETA*GAMA - 2.0DO%*DELTA - 0.25D0%FETARBETAXBETA J/RR
D0 = CDSQRTUALPHA — RR*RR + ABC}

EE CCSQRT{ALPHA - RR*RR - AB(}
GO 10 22

RR = 0.0C0 + AI*(}.0D0

X1 = GAMA

ABC = CDSQRT(X1#X1 — 4,0DO%EPSY}*2,0D0

CDSQRT (ALPHA + ABC)

CDSCRT(ALPHA - ABC)

IF (CDABS(DD}.LT.1.0D=70) DD=0.0D0 + AI*0.0D0 .
IF {CDABS(EE).LT.L.0D-70) EE= 0.000 + AT#0.0D0
= =0.25D0*BETA + C.5D0%RR

-0.25C0%BETA ~ 0,S5N0#RR

e
Q
W

I» I
N
Hon

THE FOUR ROOTS

Q(1) = Al + 0.500%0D
Q(2) = Al - C.SD0*%DD
Q(3) = A2 + D.5DO%EE
QU4) = A2 - 0.5D0%EE

0O 23 I=1,4

Al = DCONJGIG(TI)}

QR{IY = G.5DO*(Q{T) + A1)
QI{I) = -AT#Q.500%{Q(1) - AL}

PRINT 600y QROIISQIC1ISQRE2) «QE(2)+QR(3},Q1(3} JQR(4) QI (4)

*. *.*.*- #‘*'*.*.*.*-*-*‘*.*.*.*-*.*.*.*-*‘*.*.*‘*'.*.*‘*‘*-.*.*.*.*.

CHCOSING EIGERNVALUES FCR UPGCING WAVES AT THE TOP

=20

PO 24 I=1,4

IF (QI(IV.ET.0) €O TN 24
J=J+1

QrRUJY = QR(I)

CI(J) = QI{(T)

CONTINUE

GQ = QI{1y - QI(2)
IF {QQY 25,25,26
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121
i22
123
124
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141
142
143
144
145
Y46
147
148

149
150
151
152
153
154
155
156
157
158
159

16¢
161
162
o143

164
165
166

OO OMOO0

[ W]

25

26

27

Qi{l) = QR(1I) + AT*QI(1}

QE2) = QR{2Y + AIxQYI(2)

G0 TO 27

Q1Y = QR(2) + AY*QI(2)

Qr2Y = QRULY + AI%QI(1})

Q1) CORRESPONDS TO THE EVANESCENT WAVE EIGENVECTOR AT THE TOP.
Q(2) CORRESPONDS T THE TRAVELLING WAVE FIGENVECTOR AT THE TQP
ek ok ek Lok ke Ry %, #.-#,#.#_#.*.*.#.t.*.*.*.*.#,#;#.#.*‘.*.#.#.#.#.#,
COMPUTATICA CF THE EIGENVECTCRS AT THE TOP

ALPHA = UR[UHY -~ YYRYY) — XxX*({U%U — YAZ*YAZ) ~
Bl = XX®*UXYAY/ALPHA :

B2 = XX*YAYXYAZ/ALPHA

B3 = U*{UAU -~ YYRYY)/ALPHA

B4 = XXEYAZRUMX/ALPHA

BS = XX¥U#UMX/ALDPHA

T11 = =AI%xAL%R)

F12 = AL*R2

T13 = AL *AM%B3

T14 = 1,000 - B3KAL*AL

T2]1 = AI+AM#B1

T22 = —-AM%B2 .

7232 = 1,0DC .= .B3%RAMEKAM. o L e
T41 = 1.0D0 — AM%AM - BS

T42 = —AL®EAM — AT#B&

DO 35 I=1.2

A6 = QI) + T11

Al = (QUI) - TilLy®A6 — T14%T41

A2 = (QUI) — T22)¥%A6 - T13%742

A3 = Ti2#%A6 + T14%T42

A4 = T21#A6 + T13%#T4)1

A5 = T23%A6 - T13%T21}

A6 = T13%A6 - Ti14%T21

STARTING EIGENVECTORS

Y201} = 1.0D0

¥Y2({5) = 0.0D0

DENOM = A3%AS5 + A2%AG

FAC = (A1%A2 — A3%A4)Y/0ENOM

Y2({3) = C.5D00%(FAC + DCONJG{FAC})

¥Y2{7) = —-C.5DO0*AT%{FAC — DCONJG(FAL))

FAC = (AL*A5 + A&4%AG)/DENOM

Y2(2) = Ce5D0%{FAC + DCOKJG(FAC))

¥Y2(6) = —0.500%AT2={FAC - DCONJG({FAC))

IF {AM.EC.O) GG TO 30 :

FAC = Q{I)1*{1.0D0 + (AL/AM)#(Y¥Y2(2) + AI*Y2(6})} -
1 (AL /AMY*{Y2{3) + AI*Y2(T)}

Y2{4}) = C.5R0%{FAC + DCONJGI(FACYH)

Y2{8) = ~0.500%A1*{FAC - DCONJG{FAC}H)

G0 Ta 31

FAC = ALPHA - UsALxALR{U*U - YY*YY)

FAC=(ALPHA®QU T }4+AT HAL R XX*URYAY-ALE XXEYAYRYAZR( Y2 (2) + Al *Y2 (6} ) ) /FAC
Y2 {41} 0.,500%(FAC + DCONJG{FAC)}

Y2(8} =L, 500%AT*{FAC — OCONJGIFAC))
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167

168
169

ShOE

171
172
1732
174
175
176
177

31 IF (1.EQ.2) GC TC 35
DO 32 J=1,8 ., .
32 Y1(J) = Y2{J1#1.0003

.* 35  CONTINYE -
¢ EIGENVECTOR CORRESPONDING TO TRAVELLING WAVE STCRED AY Y2(J)
({:: #.*.*.*.*.,*.*.'*.*.'#t.*r.*.*.*.*.*.i.#.*.#.#.#.*.*.#,*.*.*.#.*.*.#.*.
¢ PREPARING PARAMETERS FOR STARTING INTEGRAT ION PROCEDURE
‘ JZ =0 |
NA = O

NMAT = NPOINT
CALL HAMING
Gao TC 10

55 RETURN
END
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179
180
191

182

183
184
185
184
187

i88
i8¢

1ag

il

192
193
194
168
196
197
198
199
200
201
202
203
204

205
206
207

208 .

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

600
00

- 20

25
30
35

40

SUBRDUTINE HAMING

REAL*8 DEXP,DLCG,DCOS+DSIN,DSQRT+DMAXL ,DMINL +DABS . CCABS
COMPLFX*16 CLEXP.CDLOG.CDSQRTHDCMPLX LDCONJIG

REAL®S YI(B)sYZ(8),0¥1 (8),0Y2(8),AUX1{15,81,AUX2(15,8),HEIGHT(20),
3 HSTART,HEND ,STEP,Z,DELTL,DELTZ '
COMMON/USAZY1,Y2,NDY1,DY2,AUX1, AUX2,HEIGH T, HSTART,HENDy STEP ,Z ,DELT1
1 +DELTY2

REAL#8 V{64},FATFATL.HLASTX

COMMCN/FRANCE/V, FAT, FAT1y HLASTX

REAL %8 FH,ANGI AZIV,DIP
COMMON/CAMACA/ FH ANG I, AZ IMsDIP+JZ + NA JNMATLKFORMLKSTEOP

REAL¥A HS1 +HS2 4H4X1 X2 420

FORMAT (' ',% IMPOSSIBLE START. INTEGRAT INGy HSTART=HEND')
FORMAT (* *,* IMPOSSIBLE START INTEGRATING, STEP HAS WROME SICN'!

ISTEP = 1

‘6C TC 10

CALL MATRIX
IF (KSTOP.EQ.L1) GO TO 5Q0

00 3 M=1,8

LL = M-8

HS1 = 0.0D0

HS2 = 0.0D0

DO 2 L=1,8

LL = LL+8

HS1 = HST + V(LLI¥Y1(L}
HS2 = HS2 + VILL)I*Y2(L)

DY1{M) = HS1
DY2(M) = HE2
GO TN (35,2104220,239,55,75,90,1104335), IS5W2

N
Z

1
HSTART
STEP
KSTUP = 0
DO 15 I=1.8
AuX1 (1,0

AUX2(1,1) Y2(1ry
AUX1(15,1) = 0,000
AUR2{15,1) = 0.0D0Q

IF (W& (HENG — Z)} 25520, 30
PRINY &00

GO TO S0C

PRINT 700

‘GG TC 500

1SW2 = 1

co 1O 1

D0 40 T1<=1,8

AUXI{a,I}
AUIX2 (8 41)

non o

Y1 {1}

ou

DY1(I}
DY2411

H

H
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c COMPUTATION OF AUX(2,1)
c
224 ISWI = 1
225 60 TO 200
226 45 72 =7 + H
227 DO 50 1=1,8
228 AUX1{2.1) = Y1(I)
229 50 AUX2(2,1) = Y2(T)
c .
230 ISH2 = 5 ,
231 . 6D TO 1
232 55 DO 60 1=1,8 :
233 AUX1 (9,1} = DYI(I)
234 60 AUX2(9,1} = DY2(1)
235 N=2
236 ISW! =2
237 GO T0 200
c
238 65 1 =17 + H
239 DO 70 I=1,8
240 o AUXL(3,1) = YI{1)
241 70 AUX2U3,I) = ¥2(I}
242 1SW2 = 6
243 GC TC 1
244 75 DO BO I=1,8
245 AUX1(10,1) = DYL(I}
24¢ 80 AUX2{10,I) = OY21(I)
247 No= 2
248 1SWl = 3
249 GO TC 290
C
250 85 I =1 +H
251 DD 87 I=1,8
252 AUX1(4,1) = Y1(I)
253 87 AUX2 (& ,1) = Y2{I)
254 IS¥2 = 7
255 6o YO 1
256 S0 DD 95 1=1,8
257 AUXT(11,11 = DYI(I)
258 95  AUX2(11s1) = OY2(T)
C ,
C FOUR ORDER INTERPOLATION FOR REFINING THE FOUR STARTING POINTS
C GIVEN BY THE RUNGE-KUYTA METHOE.
c :
259 N =1
260 Z = HSTART
261 DO 100 1=1,8 .
262 YI(E} = AUXL(1.1) + H¥(O,375DOAAUXICB.T) + T.OLE6EL66666666TD-01%

1 AUX1(9,1) - 2.0833333333333330-05%AUXL1(10, 1) +
‘ 2 AJ6EEEELELELEHETD—02FDYTIIY)
263 100 Y2{1) = AUX2(1,T) + H¥(O,375D0*AUXZ2Z(8,1) + 7.91666666666666TD-01%
1 AUXZ2(9,1V.- 2.0833333333333330-01AUXZ2(70,1} +
2 4. 1E666666666666TD-02%DY2LI])

264 .
265 105 Z = Z + H
266 M =N+1
267 ISK2 = 8 .

268 GO Yo 1%
c .
269 130 EF (N - 4)- 115,295,295
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270
27
272
273
274
215

27¢
277
278
279
280
281

282
283
284
285
286
287

288
2R9
290
291
292
293
294
295

296

115

120

125

140,

}

om0

240

205

297

298
296
300
301
302
303
304

305
306

a7
308

309

310
311
312
313

314

315

210

229

225

Do 120 1=1.8

AUXL{NsI) = Y1{1}
AUX2(N,IY = Y2(1}
AUXTI(N+T.1) = BYI{ 1}
AUXZ (N+T,I}) = DY2(I}

IF (N.~- 2} 125,135,295

DO 130 1=1,8

X1 = 4,0D0%AUXILG,1)

X2 = 4., 0P0*AUX2(9, 1}

YLLEF=AUX1 () oT¥+3,.3333333333333330-00 %H* {AUXT (8, T #XI4AUXI(10, 1))
Y201 )1=AUX2(1,1)+3.233333333333233D-00%Hx (AUX2{8B,1)+X2+AUX2{10,1})
G0 TO 105

DD 140 I=1.8

X1 = 3,0D0%(AUXI(F,I) + AUX1{10,1)}

X2 = 3.0DO*(AUX2{3,I} + AUX2{10,I}}

YI{I)Y = AUXI{1s1) + Q.37500*H*{AUXLI{8.I) + X1 + AUXL(11.,I})
Y2LEF = AUX2(1,T} + 0. 375D0*H*(AUXZ2(8, 1) + X2 + AUX2{1%, 1))
GC 7O 108

-*-*.*.*-*-*-*.*-*.*-*.*a*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*-*.*.*

RUNGE—KUTT A METHOD FOR STARTING NOT SELF-STARTING PREDICTDR
CﬂRRECTOR METHPD

10 = 2
DO 205 I=1,8

X1 = H*AUXL(N47, I}

X2 = H¥AUX2(N+7,1)

AUX1{5,1) = X1

AUX2145,1) = X2 ,

YI{I) = AUXL{N,I) + C.4DO0*X}
Y2(I) = AUXZ2(N+1) + C.4DO*X2

I = 20 + 0.4D0*H

ISW2 = 2

GO TO 1

Do 215 1=1,8

X1 = H#DY1 (1}

X2 = H&DY2 (1)

AUXTL6,1) = X1

AUX2 (6,1} = X2

YI(I) = AUXLIN,I) + 2.9697760924775360-07 *AUX1 (5,]) +
1.58759£4497103580-01#X1

Y2(I) = AUX2(N,T) + 2.,969776092477536D-01%AUX2(5, 1) +
1.587596449710358D—-01%X2

I 270+ 4. 55?372542‘8?8940 01 *H

IsSwz = 3

GO 70 1 .

DO 225 1=1,3

X1 = HaDYL(I)

X2 = H*DY2{1

AUXI{T,I) = X1

AUX2(T. 1) = X2

Yi{n = AUXl(N:I! + 2. ‘810038822592050-0’*AUX1(5:I’ -
3.050665148692931D0%AUX1(6,1) + 3.83286476046T01000%X1

Y201} = AUX2{N,T) + 2.181003882259205D-01*AUX2(5,1} -
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31¢
37
38
319
320

321

- 322

323

324
325

32¢
327
328
329
330
331
332
323

334
335
33é
337
338
336
340
341

342
343
34k

34%
346

347

230

235

AT OD

295
300

Cﬁn(ﬁ

305

326

330

s ke iaks)

348 .

[aNe

1 3,050965148692931D0%AUX2(6,1) + 3,832864760467010D00%X2

71 =120+ H

ISW2 = 4
6o 70 1

DO 235 1=1,8
YI(TIY = AUXLIN,I) + 1, ?4760282262&9040-01*AUX1(5 Iy -

1 5 ,514806628787329D-01+AUX1{ &, 1) + 1. 205535599396523D0*AUXL{7,1)
2 + 1.7118478121951900-01%H%DY1 (1)

Y201} = AUX2IN.T) + 1.747602822626504D-01%AUX2{5.1) -

1 5.514806628787329D-01 *AUX2(6, I} + 1.205535599396523D0%AUX2( 7,1}

2 + 1.7118478121655 900-C01 *H&*DY2 (T}
=10 :
GO TE (45465,85), ISWl

*.*.*.*I*.*.*.*I*'*.*.*.*I*.*.*I*.*.*C*.*.*.‘*C*-*.*'*. *-*.*.*.*.*(

EAMMING'S MODIFIED PREDICTOR-CORRECTOR METHCD

NORT = - 1
IF (N - 8) 315,305,315

M = 8 CAUSES THE ROWS (IFf AUX TO CHANGE THEIR STDRAGE-LGCATIDNS

DO 31D M=2,7 -
oo 310 I=1,.2
AUXL{N-1 .1}
AUX2TN-" 41}
AUX1 (M6, 1)
AUXZIN+6,1)
M 7

N N+ 1

AUXT (M, 1)
AUX2(N,1)

AUXT(N+7,1)
AUX2 (N+T7 4 1)

Wl W u

noH

COMPUTATION OF NEXT VECTOR Y

DO 320 1I=1,8

AUXTIN=-1,1) = YI{D)
AUX2IN-T ,1) = Y21(1)
AUXI{N+5,T} = DYLLTY
AUXZ (M+6.1) = OY2( 1)

1 =7 +H

DO 330 I=1.8

X1 = AUX1(N-4,1I) # 1. 333“33333?3333380*H*(ALX%(N+6,I)+AUXL(N+6 1¥-
3 AUXTIN+5,I1 + AUXT(N+4,T) + AUXI{N+4,T))

X2 = AUX2(N-4,1) + 1. 3’3’33“3333333300*H*{AUXE(N+6 I)+AUK2(N+6,I)'
3 AUX2{N+5,1) + AUXZ (K+4,11 + AUXZ{N+4,1))

YI{E) = XI -~ 9,.256198347107438&D- —01xAUXL (15 4 1)

YZ(I) = X2 .- 9, 2561983471074%80“01*AUX2(15 I

AUXI{16,1) =X1

AUX2(15, 11 = X2

PREDICTOR 1S NCW GENERATED IN ROW 15 OF AUX. MCDIFIED PRECICTCR
1S GENERATED IN Y. X1 AND X2 ARE AUXILIARY STORAGE.

ISW2 = 9 '

GO T0 1

DERIVATIVE COF MODIFIED PREDICTICR IS GENERATED IN DY
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345
350

351

352
353
354
355
356
357
158
359
360
361
362
363
364
365
166
367
368
369
370
371
372

335

340

345

3737

3T4
375
376

377
ChE:!
379

3n0

381
382
393
384
395
386
387
388
389
390
391
392
- 293
394
395
39¢

397

398
399
400
401

OO

365

370

500

‘DO 340 I=1,8

1
1

X1 = 0.125D0%(9,0D0FAUXLIN-1,1}

AUXT{N+6+1) + AUXT(N#6,1) — AUXL(N+S,11))

X2 = 0.125D00%(9, 0DCxAUXZ (N-1,11

AUXZIN+E+T) + AUXZ(N4&E,1) — AUX?(N+5 1))

AUXL (Y5, 1}
AUXZ{15,1)

AUXL (35,1) - X1
AUX2(15,1) - X2

* W

Yi(i) = X1 ..4380165289256200-02*AUX1(1511’
Y2(I) = X2 + 7.4380165289256200-02%AMUX2(15,1)
DELTY = 0.CDO ‘
DELT2 = 0.000

DN 345 1=1,8

T + 0,125D0*DABS{AUXIL15.1))

DELT! = DEL

DELT2 = DELT2 + D.125DOXDARS (AUX2(15, 1))
DO 350 M = 148

Lt = M - 8

HS1 = 0.000

HS2 = C€.0D0

DD 349 L = 1.8

LL = LL + 8

HS1
HS2

a

HS1 + V(LL!*YI(L}
HS2 + VIEL ¥*Y21L}

DYI{M) = HS1
DYZz2(M) = HS2

NCORT = NCRT
IF {NORT.NE

TALL BRAIN

NCORT = O

+ 12
«4} GO TO 3460

X1 = 7 - HEIGHT{ISTEP)

1F {(DABS (X1

Y - 1.,00-06}) 365,365, 30C

H WILL BE DRUBLED

z HFIGHT(
H H + H
DO 370 I=1l,
AUXL(T .1
AUXZ( 7,1}
AUXT (6 ,1)
AUXZ2{64+1}
AUX1(5+1)
AUX2 (5,1}
AUX1U14, 1)
AUX2 (14 1)
AUXI(13,1)
AUX2¢13, 1)
AUX1{12,1}
AUXZ2(12,1}

1

A1l = MIX1(1

1

1

x2 = Auxa2(1
X1 =

X2 = X2 + X
AUXLL15,1)

[T L T T I

ISTEP}

8

AUXL {6 ,1}

AUX2(6.1)

AUX1€4,1)

AUXZ (4,1}

AUX1t2,. 11}

Auxz (2.1
AUXI(Y3,1}
AUX2(13. 1)

AUXY (11,1}

AUX2(11.1)
AUX1(9, 1}
AUX2(G,1)

£, 1) + AUX1(13,1)

4,11 + AUX2 (13,1)

wowowronfon

X1 + X1 + X}

2 + X2
= B. 962@62962962963D0*(Y1(II - AUX?(S:I)) -

3,361111111111111D0%H*(0YL{I) + X1 + AUX1(12:1)}

AUX2 (15,11
3.361111

= B.962962962962963C0%(Y2({ 1} — AUX2(5,I}) -
110101 T100%HE(DY2( 1) + X2 + AUX?(iZcII)

ISTEP = ISTEP + 1

G0 10 300
RETURN

END
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402 SUBROUTINE BRAIN

o
_ ¢ .
403 REAL*8 CEXP,CLOG,DCOS,DSIN,DSQRT,DMAX],DMINI,DABS,CDABS
404 : COAMPLEX*15 CDEXP,LDLOG,CDSQRT,CCMPLY,DCONJG
c , ]
405 REAL#B YY YAY YAZyALsAMAN,C o CA, LDy Sy SAy SDSFREQLALT(S0C) L
406 COMMQN/BRAZIlfvv,YAY,VAZ.AL,AM.AN,C,CA,CD.S,SA.SG,FREQ,ALT
407 COMPLEX*16 AT
408 COMMON/IMAGY AT
409 - REAL%8 Yi(8) VZ(S).DY?(8).DY2{8),AUXI(lG,BJgAUX2{15,8!,HEIGHT(20)| h
1 HSTART, KENDs STEP+Z+DFLTL1.DELTZ?
40 COMMON/USA/YY Y2 4DY1 ,DY2 s AUX L4 AUX 2, PETCHT, HSTARTyHEND s STEP 7 o DEL T
. 1 +DELT2
411 COMPLEX*16 E1{4.500),F2(4, 500),0EL1{4,5C0),DEZ{ 44500) yACRT(500)
412 COMMON/RUSS/EL 4E2 ,DE) yDE2 , ADORT
413 . REAL %8 FHeANGI,AZIM.DIP
414 COMMON/CANACA/ FHy ANG T4 AZIM, CIP,JZ 4 NAJNMAT, KFGRM.KSTQP
415 DIMENSTON ERRORY (500) ,ERRCR2 (500)
&£16 REAL #8 TEST1.TESTZ.HSCALE( 50)+DENOM
417 CRMPLEX®16 ANUM, E1 CyHELP,HELPC
438 COMMON /OUTP /HSCALE ,ERRNRY 4ERRGR?
c \
C
c
C
419 TEST1 = 0,5 ODO*DSQRT(YI(I}**Z + YL(5)%%2 v1(3)**2 + v1(7|**2)
420 IF (TESTI.LT.1.0003) 60 TC 5 oo .
421 pn 1 I1=1,.8
422 YI(I} = Y1({[)#1.,0D0-03
423 DYL{I}) = DYI{I)*1.0Nn~03
&24 0g 1 J=1.15
428 TOAUXY (Je1) = AUXT (J,13%1.0D-D3
426 NA = NA + 1
427 HSCALEINAY = 2
c >
C (
428 S JI=J7 +1 :
426 ALT(SZY = 2 , -
430 IF tKFORML.NEL4Y GO TO 7
411 TEST2 = 0,S50C0*DSORTIY2(L)4%2 4 Y2(51%%2 + VY2(3)4%2 + Y2{7)%%37)
432 FERRORTI(JZY = DELTI/TEST? _ .
433 ERRORZ2(JZ) = DELT2/TEST2 :
434 7 OANLM = 0.0D0 + AI%0,0DD
4125 DENOM = C.CDEC
436 0O 10 I=1l.4
437 F1€1442) = YLUI) + AI%YT (1+4)
438 DEI(T,4Z) = DYUI + AT#DVILTI+4)
4349 F2{1+J2Y = Y201} & AI%Y2(]#+4)
T 440 : DE2(14J7) = DYZ(I) + ATXROYZ(I+4)
44 E1C = YU(I} = ATHYI{I+4})
447 ANUM = ANUM 4 FI1C*E2(T,47)
443 10 DENOM = DENOM + YI{T)®Y1(1)} + v1(1+4;*v1(1+4|
by bty ADRT (42) = — ANUM/DENOM
C
c
445 DO 15 I=1s4
H46 HELP = F2{I,J71 + ADRT(JZ!*Fltl;Jl!
46t HELPC = DCONJG(HFL P}
448 ¥Y21{1) = 0.6DO*(HEL® + HELPC) ' - 4

SEL-69-046 ~78~



449
450
453
452
453
454

455

456
457

nlnlel

15

25

YZ2{1+4) = —0.5CDO*ATI*(HELP. ~ HELPC}
E2{1,J7) = HELF :

HELP = DE2(14+J7) + ACRT(JZVI*CEI (1,41}
DE2({T1+JZ) = HELP

HELPC = DCCNJG{HELP)

DY2(1) = C.35D0*{HELP + HELPC)
pY2{I+4) = =0,.5D0*AI*{ HELP — HELPC)

FIELDS ARE QRTHOGOKALIZEG AND STORED

RETURN
END
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458 SUBRCUTIMNE MATRIX

459
C .
460 REAL*8 DEXP,[LCG,0C0S,CSIN,CSQRT,DMAXL,CMINT, DARS, CDABS
461 COMPLEX*16 CDEXP,CDLOG ,CDSQRT,DCMPLXDCONJIG
462 REAL#*8 Y1(B8),Y2{8),DY1{81},DY2{8);AUXI{15,8),AUX2(15,8) HFIGHT(20},
T HSTART,HEND,STEP,Z,DELT1,DELT2 .
463 COMMON/USAZY1+¥2+DY1+D Y24 AUXL s AUX2 +HETGHT-HSTART JHEND + STEP » 2o CELT] '
1 LDELT2
484 REAL*8 YY YAY (YAZ AL AN, ANSC,CA5CD45+58,SD+FRECYALT (500)
465 COMMON/BRAZIL /YY e YAYs YAZ AL sAMOANSCoCA +CD+ S+ SA + SN FREQALT -
466 COMPLEX¥16 Al
467 COMMON /1MAG /AT
468 REAL#8 ZAXIS (1001, DENS{100),COLFRE(100}
469 _ COMMON/I TALY/ZAXIS yDENS,COLFRE
470 REAL #8 V{641 ,FAT,FAT1.HLASTX
471 COMMCN/FRANCE/V, FAT s FAT1, HLASTX
472 REAL*B FHANGT JAZIN,DIP
473 COMMON/CANACA/ FHs ANGTSAZ IMADIP 4 JZ NA sNMA T+ KFORM o KS TOP
4714 COMPLEXX16 T(16)
475 COMMON ZMEXICE/T
476 REAL*8 ELDENS FCOL 4 XAy AA,ZA
471 COMPLEX¥16 UA,ALPHA,RL,B2,R3,R4,65
¢
C
c
C .
478 - 1F (2.GT..HLASTX) 6O 70 1 -
479 Bl = 0.000 .+ AT*0.0D0
480 . B2 = 0.0D0 + AI*0.0DO
481 B4 = 0.0CO + AI#0,0D0
482 BS = 0.0C0 + AT*0,0D0
483 83 = 1.0D0 + AI*C.0D0
4B4 ALPHA = 1.000 + AI%0.0D0
485 IF (Z.GT.HEND) GC TG 30
486 CALL OUTPUT
487 KSTOP = 1
4988 'RE TURN
489 1 IF (2 - ZAXIS(NMAT)) 5.10.15 .
490 5  NMAT = NMAT - 1 .
491 G0 T0 1
492 10 ELDENS = DEXP(DENS{NMAT)) .
493 FCCL = DEXP{CCLFRE (NMAT))
4ay GO TO 20
c
4as 15 AA = {ZAXIS(NMAT) — Z)/(ZAXIS(5) - ZAXIS(4))
496 ELDENS = DENS(NMAT) + AA®(DENS{NMAT-1) - DENS{NMAT})
497 FCOL = COLFRE{NMAT) + AA#(COLERE(NMAT-1) — COLFRE{NMAT))
498 ELDENS = DEXP(ELDENS}
499 FCOL = DEXP(FGOL)
c
50¢ 20 XA = FATI*ELDENS
501 ZA = FCOL/FAT
502 UA = 1.000 - AT#ZA
503 ALPHA = UAK(UA®%2 — YY#%2) -~ XAk (UAs%2 — Y AzRR2)
504 Bl = XAXUA#VAY/ALP HA
505 B2 = XAXYAYXYAZ/ALPHA
506 83 = UAR(UA®#2 — YY#22) /AL PHA
507 B4 = XASYAZ#*{UA — XA}/ ALPHA
508 BS = XA®UA%(UA — XA) ZALPHA «
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509

510
511
512
5113
514
515
516

517

512
519

520

521
522
523
524
525
526
527
528
529
530
5321
532
533
524
535
536
537
538
53¢

540

30

35

&0

/

SVOLLY

MATRIX T 1S5 COLUMNWISE STORED

T=AT%AL*R}

DO 40 I=1,4

KK = I + 8%{J=-1)
MM = T + & + 8%({J=1}
LL = 1 + 32 + g%({J-1)

L=14+ 36 + B%(J~1) ..

81 = DCONJG(T(K)
V(KK §
VIiMM)

nou o

RETURN
END

K o= 1.+ &X(J-1)

)

-81~

0. 50DO*(T(K} + B81)
~0.5000%AT+{T (K} ~ 81)
Co SODO*AIXR(T(KY — BL)
VIL) = D.50D0*{T(K) + B1}

Ty =
T(2) = AL%AMXE)
T{3) = —AL%AM + Al#R 4. :
T{4) = 1.000 - (AMXAM) - @5
T{5) = AL*RBR2
T{6) = —AM%R2 :
TOT) = 1.000 — AL%AL — B5 4+ XAAYAYRYAY/ALPHA
T(8) = —AL#AM — AI%Bs '
TI9) = AL%AM%B3
T{I10) = 1,0D0 - BIxAMEAM
T(1l) = ~AMAB?2
“TT{12} = -AIRAMER]
T{13) = 1.0D0C - R3I*ALKAL
T(14) = AL*AM#p3
T{15} = AL%B?
T{16) = AI#AL*B}3
Do 35 J=1,16 : ,
TCH) = —AI*FATET{J)%32,333333333333333D-06
00 40 J=1.4

SEL-69-046



. 541

542
543
544
545
546
547
548
549
550
553
552

554
555
556
557

558
559
560
561

562
" 563
564
565

566

567

568
569

570

571
572
5713

[a XAz

™y OO

200
300
400

500
600
700
800

900

oy O Y

574

100

SUBROUTINE OUTPUT

REAL %8 BEXP,DLGG;DCGS:DSIN;DSQRT.DMAXl.DMINIyDABS,CDABS
CONPLEX*1§'CDEXPgCDLUG’CDSQRT:DCEPLX:DCQNJG

REAL 3 YY-YAYsYAZ.ALoAMaANscoCA-CD95-5A-SB»FREQ-§LT(5OO‘
CG"MQN,BRAZIL/YYlYAYIYAZ!AL'AM'AN'C!CA#CD‘S)SA1SD'FREQ!ALT
REAL*8 FHsANGI ,AZIM,DIP .
CGMMGN/C&NADA/FH:ANGI’AZIH-DIP9JZ;NA(N¥AT.KFURH1KSTOP

COMPLEX*16 AT : . '

COMMON /IMAG/ATL :

COMPLEX*16 E1(4-5003152(41500’7051(4:500’10E2(4:500)gAGRTf500)
,COMMUN/RUSS/El1E2;DE1,DEZ,AGRT ’

R EAL *8 AA,B,F'TP,RP-RN-TH-TV-PPENR-PPENI;TRTRoTRTIc

1 TRPR;TRPI,PRTR,PRTI;PRPR;PRPI'HSCALE(SO)fABSPRP|ABSPRT'ABSTRT1
2 ABSTRP ’

COMPLEX*16 Al:UPXl-BGXloUPYlfDDYl:UPZl-DUZl.UPXZsDGXZoUPYZnBUst
1 UPZZgﬁﬁzz151rUPPx'UPPYrUPPZ'DGPX!DOPY!UUPZ:ANUM-PPENvPTN’AZr

2 DELTA,A11,A12,A21 sAP?2,B11,B12,B21,B22 +TRT . TRP,PRT,,PRP,F1 + A2V ASUM
DIMENS ION ERRORL{500), ERRORZ2 (5001}
CGMMBN/GUTP/HSCALE1ERRQR1gERRERZ

COMPLEX EXsEYsHYsHX4EX1,EX2HX1.HX2

REAL ATMAG,REAL,CARS

FORMAT (1 ', TP =',F20.6/% Tk =0 EI0 L/ TV =%, F20.567/)
FORMAT (1 ',% RP =",F20.6/' RN =*,F20.6//)

FORMAT (' *,1 POL.PENETRATING MOCE =1, F20. 6,4F20.6/)

FORMATY (° '1T13,'REAL'pT31,'IMAGINARY‘,TSS,'ABS.VALUE‘/

1 1 TRT =V,F20.6+F20.65F20.6/ '
2 t . TRP =1 ,F20.64F20.64F20.6/

3 t  PRT =V ,F20.64F20.6¢F20.67
4 ' PRP =1.F20.h:F20.6,F20.6/7) )

FORMAT {'1'4' NON-PENETRATING WAVEFIELELS SET UP BY A HORIZONTAL
TELECTRIC FIELD NF UNIT AMPLITUDE®//)

EORMAT (' T3, 'REIGHT*,T13,' EX VaT23, RIENIT LT3 TIEX) 4 T42,

1V EY 'L,TS3,'R{EY)? ,TER,* I(EY)? (TT73,* HX 1,783, 'R{HX )4 T93, *T{HX)"y -

2 T103. 1 HY *,T113:'RIHY) *.T123,' T{HYM' /}
FORMAT (Fl0.3,12E10.3)
EORMAT {*1'," PENETRATING WAVEFIELDS SET UF BY A HORTZONT AL ELECT

IRIC FIFLL OF UNIT AMPLITUDE*//)

FORMAT {'1%,' ENVELOPE OF X-WAVEFIELDS SET UP BY A HORTIZONTAL £LE

JCTRIC FIFLD OF UNIT AMPLITUDE*//* PENETRATING MODE '.TBD."NON-PEN
2ETRATING MGDE'/TS,‘ABS(EX)'QTZG.'ABS(HX)',TBS,'ERRDR',TSE"HEIGHT'
3 ,TSO,'ABS(EX)',TQS,'&BS(HX}‘ngloq'ERRGR'/l

1000 FﬁRMAT_(3E15.5-T55¢F10.3’176-3515-53

AA = 3.14159265358979300*6.6666666666666670-06*FREQ*AN
AY = —AL/AA o
UPXI = 0.5C0%(EL (1,42} - M =DEL{L,J47))

DOX1 = 0.SDO*(EY(1,J2) + A*DEL(1,47))

UPYL = ~ 0.5C0%{E1(2,42) — AL*DEL(2,J1))

DOYL = - 0.5D0%(EY (2,02} + AL*DELA2,J41))

UPZl = —-[AL®UPX1 + AMXUPY1) /AN
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575 DQZL = (AL*DOX1 + AMADOYY)/AN

¢ ' ‘
. 576  UPXZ = 0.5C0%(E2(1,JZ) — AL*DE2(1,J2))
577 DOX2 = 0,5D0%(E2{1 ,JZ) + AL*DE2(1,JZ})
578 UPY2 = — 0.5D0%(E2{2.J2) - AI#DE2{2.4Z))
579 © DOY2 = — D.5LO®(E2{2,J7) + ALXCE2(2432))
580 UPZ2 = —(AL¥UPX2 + AMEUPYZ)/AN
581 DOZ2 = (AL%DOX2 + AM#DOY2) /AN
c - :
¢ THE PENETRATING MODE
C , : _
582 B = UPXI*DCONJG(UPX1 ) + UPYL#DCONJGIUPYI) + UPZ1*DCONJG(UPZ 1)
523 Bl = (UPX2*DCONJGEUPX1) + UPY2#DCONJG(UPY1) + UPZ2*DCONJG(UPZ1)}/8
¢
584 UPPX = UPX2 - B1*UPX1
585 UPPY = UPY2 - Bl#UPY]
586 UPPZ = UPZ2 - BLAUIPIY
c
587 DOPX = DOX2 - B1#DOX1
588 DOPY = DCY2 - B14DQOY)
589 DOPZ = DOZ2 - B1%DOZY
c .
590 DELTA = UPPX¥UPYY - UPX1*UPPY
591 Al = ~(CA*UPPY + SA®UPPX) /DELTA
592 A2 = (SAHUPX1 + CA%UPY1)/DELTA
563 . . 1F {KFGRM.EQ.1) GO TC 20
C .
c TRANSMISSION COEFFICIENT FOR THE PEMETRATING MODE (PITTEWAY OEF.)
c : ' :
594 F = UPPX¥DCONJG{UPPX) + UPPY%DCONJGIUPPY) + UPPZA*DCONJIGIUPPZ)
595 ANUM = E2{1,1}*0CONJGIE2(4,1)} + E2(2, 1)¥DCONJGIER2(3,1))
- 596 F1 = ANUM/(FEAN)
597 TP = 0.500%(F1 + DCONJG(F1))
598 - TP = DSQRT(TP)
C
C POLARTZATION OF THE PENETRATING MODE
c
599 PPEN = (S*UPPZ — CAXCHUPPY - C*SA%UPPX)/(CA*UPPX — SA%=UPPY}
600 PPENR = 0.5D0%(PPEN + DCONJG(PPEN)}
601 - PPENI = —AI*C.S5DO*(PPEN — DCONJG(PPEN})
c .
c REFLECTICN CCEFFICIENT FCR THE PENETRATING MODE
602 RP = DOPX*DCONJG(DOPX) + DOPYXDCONJG{DGPY) + DOPZ*DCANJG(DOPZ)
603 RP = DSQRT(RP/F)
c .
c REFLECTION COEFFICIENT FOR THE NON-PENETRATING MODE
c
604 RN = DOX1*DCONJG(DCX1) + COYL*CCONJG(OCY1) + oezz*ncnmdetnsz&}
605 RN = DSQRT{RN/B)
c - .
c TRANSMISSICN COEFFICIENT AT HORIZONTAL POLARIZATION
C ,
606 TH = A2%DCCNJG(A2)
607 TH = TP*DSQR T( THAF
c ,
€ ° - TRANSMISSION CGEFFICIENT AT VERT ICAL PCLARIZAT ION
¢ . : :
608 A2V = -C*(SA®UPY1 — CA=UPX1)/DELTA
609 TV = A2VADCONJG (A2 V)
= TP#DSQRT(TV4F)

610 TV
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FIRST SET OF OUTPUTS - REFLECTIUN CDEFFICIENTS
TRANSMISSION COEFFICIENTS

[sXaEaExNa)

_ PCOLARIZAT IONS
611 PRINT 100s TP,TH;TV
612 : PRINT 200y RPsRN
613 PR INT 200, PPENR.PPENI
c
c COMPUTATION 0OF BUDDEN'S REFLECTICGN COEFFICIENTS
¢ : -
614 - DELTA = UPX2*UPYl - UPXL*UPY2
615 All = CA#UPY? + SA*UPX2
616 Al2 = CAMIPY1 + SA#UPX1
617 < A21 = CAXUPXZ ~ SA%UPY2
618 AZ22 = CA*UPX1 — SA%UPYL
619 B11 = CA%DOX1 - SA%DOYL
620 B12 = CA*DOYY + SA%DOXL
621 B21 = CA*D0X2 ~ SA#DOY2
622 B22 = CA%DLY2Z + SA®DCX2
C
623 TRT = (A12#%B21 - Al1#B11)/DELTA :
&24 TRP = (A12#B22 - A11%Bi2)/ (DELTA*AN) : .
- 625 PRT = AN#{A22%R21 — A21%B11) /DELTA '
626 PRP = (A22%B22 - A21%B12)/DELTA
) C . )
627 TRTR = 0.SDO*{TRT + DCONJG{TRTI} -
628 TRTI = —AI*0.5B0%(TRT — OCONJGU(TRT)}
639 TRPR = 0.5D0*(TRP + DCONJG(TRP}))
630 TRPI = —AT#*0.5D0%({ TRP — DCONJG(TRP)]
631, PRTR = 0.500%(PRT + DCCNJG(PRT )
/32 PRTI = —AI*0,5D0%( PRT — DCONJG(PRT})
. 633 PRPR = 0.SCO*(PRP + DCONJG(PRP)}
634 PRPI = —Al#Q.5D0%{PRP - DCOGNJIG{PRP))
635 ABSTRT = CDABS(TRTI
636 ABSTRP = CLABS{TRP)
637 ABSPRT = CDABS{PRT}
638 . ABSPRP = CCABS(PRP)
639 PRINT 400, TRTR,TRTI;ABSTRT,TRPR,TRPI,ABSTRP,PRTR4PRTI,ABSPRT,
1 PRPR,PRPT ,ABSPRP
c .
&40 15 IF {KFCRV.EQ.2} GO TO 65
C
c RECONSTRUCTION OF THE WAVEFIELDS
C
641 20 F = 1.000
642 = 0
643 ASbM = -B1
b44 D0 50 J = 1.42
545 M= JZ -J %1}
646 : IF (ALTEM) = HSCALE(NA)) 35,30,30
6467 n K =1
648 35 DO 40 I=1,
6549 : E2{1 M) = Eztl M) + ASUMREL{T 4 M) . _
115 40 El(I.M) = FEE1{1.M) _ -
651 ASUM = ASUM &+ ADRT(M) . :
652 IF (K. EQ.O! GO T0 50
653 ASUM = ASUMXI ,00-03
A54 F = Fxl,00-03
655 NA = NA - 1
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656 K =20

657 50 CONTINUE
€
c CORRECT FIELDS ARE NOW STOREC. PENETRATING MODE STORED IN E2.
c

658 IF (KFORM,.EQ.4% GO TQ 70
c : : .
C FIELDS SET UP BY A HORIZONTAL ELECTRIC FIELD OF UNIT AMPLITUDE.

659 “PRINT 8QC

660 PRINT 600

661 N0 56 J=1,412

662 FX = £1{1,J)%A1

663 EY = —E1(2.,J)%A1

bk HX = EI1(3,J)*A}

665 HY = F1{4,J1%A1

666 ABSEX = CABS(EX)

667 EXR = REAL(EX)

668 EXI = AIMAGILEX)

669 ABSEY = CABS(EY)

670 EYR = REAL(EY)

671 EYT = AIMAGIEY)

6572 ABSHX = CABS{HX)

673 HXR = REAL{HX)

ats . HXT = AIMAG(HX)

675 ABSHY = CABS(HY)

676 HYR = REAL (KY)

671 HYI = ATFMAG(HY)

678 55 PRINT 700, ALT(J)4ABSEXsEXREXT sABSEY yEYRSEYI  ABSHX, HXReHX 1,

1 ABSHY yHYR,HY I

c

679 PRINT 800

680 PRINT 600

681 DO 60 J = 1,42

6582 EX = E2{1.J}*A2

683 EY = —E2(2,J)%A2

&R4 HX = E2{3,J)%A2

6865 HY = E2{4,]J)*A2

686 ABSEX = CABS(EX)

687 EXR = REAL{EX)

688 EX1 = AIMAG(EX)

GRS ABSEY = CABSIEY).

6590 EYR = RFEAL(EY}

691 EYI = AIMAG{EY)

692 ABSHX = CABS{HX)

693 HXR = REAL (HX}

6594 HX] = AIMAG(HX]

695 ABSHY = CABS{HY)

696 ‘HYR = REAL(HY)

697 HYI = ATMAG(HY}

698 60 PRINT 700s ALT(JYsABSEX+EXRsEXT+ABSEYSEYRGEYI+ABSHXsHXR,HXI,

1 ABSHY sHYR3HYT ‘

c ,
C

69% 65 RETURN

700 70 PRINT 900

701 DD TS 4 = 1,42

702 EXI = EI1(1.,J)*A1

703 EX2 = E2(1.J1%A2

704 HX1 = F1(3,J)%A1
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‘705 HX2 = E2{3+J1#%A2

708 ABSEX1 = CABS({EX1}

107 . - ABSEX2 = CABSI{EX2?) =
708 ABSHX1 = CABS{HX1)

709 ABSHX2 = CABS{HX2)

710 75 PRINT 1000, ABSExz.ABSsz.ERRaaztdl,ALTcJ).ABSEXi,ABSHx1,ERR0R1(Jl -
711 RETURN

712 END

i

SEL-69-046 ' ‘ -86-




&

APPENDIX A. THE GENERALIZED QUARTIC OF BOOKER

In order to find the eigenvalues of the matrix T Eq;;(2;22) it is

necessary to solve the characteristic equation

det(T - q1) =0 ‘ . o {2.55)

which is known as the Booker quartic equation. ‘Arsimple inspecfion of
tye equations that determine.the eigments Tij Eq. (2.46) shows that for
obtaining the coefficients of the quartic by diréct use of Eq. (2.55)
some extensive mahipulation is required. Instead of working with Eq.‘
(2.55) an easier and more general prbcess ig followed here.

- Coﬁs;def the geometry shown in Figure 1 in which the homogeneous
medium where the incident wave exists is also allowed to be a'genéral
magnetoiohic'medium. -The reffactive index of the incident wave is n_.

1

The components of the refractive index vector are given by

L = nlsinI siny _ (A.1)
m = nlsinl cOSY . (A.2)
q, = n,cosl" (A.3)

171

"The‘above'équations coincide with the definitions previocusly given
to 4, m, and a; when n, = 1. In order to satisfy Snell's law it is
necessary -that the horizbntal projection of the refractive index be

maintained cbnsﬁant at any. height. In particular at the height zl

-where the medium is again .supposed to be homogeneduS'the projections of -

the refractive index n are n sinl .and q such that
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-nz = (nlsini)2 + q2 {A.4)

g -is the vertical projection of the refractive index at =z i.e., an

1’

arbitrary eigenvalue of T at zl;

On the other hand the equation that determinés the refractive indeﬁ

is given by {8tix, 1962]

An? - ma? + PRL = O ' (A.5)
where
A=278 sin2¢ + P cosz¢ {A.6)
2 ' 2 B
B = RL sin“§ + PS(1 + cos™ {) (A.7)

and | is the angle between the magnetic field 30 and the wave refrac-
tive index vector B. R, L, P, and S8 are given by Egs. (2.36) to

(2.40). The angle (| 1is related to 49 by

ﬁo-ﬁ_ yn, sinl cosy + Eq
co$¢ =5 - " " Y (a.8)
e (@] sin"1 + q°)

With the valﬁe of cosy given by Eq. (A.8) substituted in Eq. (A.6) and
Eq. (A.7)7p1us Eq. (A4%4) replécing n in Eq. (A.5) a new-equation in g
is obtained from Eq. (A.5):

2 ... 2 22 2 3 2 o 2
A(nl 8in“I + ¢ ) 8 + (nllsin I4+4q )(P—S)(ynl sinl cosy + Eq) - (A.9)

- ' L4 ¥ ’ ) v ) 2
- (RL + PS)(ni sin’1 + qz) - (PS-RL)(yn, sinI cos¥ + Eq)” + PRL = 0.

Equation (A.9) determines the coefficients of the quartic equation
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aq4 + Bq3 + vlqz +8q.+ ¢ =0 (A;lo)
where
a-=lSy2 + P2 R | - B RS
§ = 2ng y(P-5)
Yy =.nf sinzl {? [1 +ly2(1-coszx)] + P{Ez + fzcoszx)}.~ RL yz— PS(1 + %2;
5 - ;2mgy [FPS~RL) - nisinzl(P—S)]

9 :
e = PRL + nisin I {nisinzI [Pyzcoszx + S(l—Yzcoszx)] - RL(l—Y2coszx) -

- PS(i + yzcoszi;}

.and,

cos(DIP) (2.1)

<
I

E = -sin(DIP) - (2.2) |

il

‘Coefficients of the quartic equafion when-only electrons are
considered. In this case the index.  k 1is dropped from fhe equations
that define 'Y, and Xk'(Eqs.r(z.zs) and (2.29)) and the collisional
variable U given by Eq. (2.48) is used. .Equationé'(2.36) to (2.40)

give

- w
I

1 - xu/ (U2-%) : C(A.12)

P = (U-X)/U -
RL ='[(ﬁ—X)2-Y2]/(ﬁ2-Y2)

PS ~RL =P - § = XY2/U(U2-Y2)
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It is also defined

9 ,
ct =1~ nzsinzl (A.13)
1 . Do B
g0 that C = cosI when n, = 1. ' ‘
When Eq. (A.12) and Eq. (A.13) are substituted in Eq. (A.11) a
. 2 2
factor UU -Y") appears dividing all coefficients and is dropped. The
riew coefficients of the gquartic equation are
. 2 2 .2 2 2
o = UUT=Y") = X(U'-E"Y ) (a.14)
2
B = 2myEXY
- .. A T o - . 2 9.
vy = 2(X~UC) [UW-X)-Y" 1 + Xv2(1 + m y?‘ - 02§2)
6 = —2my§C2XY2
2'2 2.2 2 22
& = (U-X)(X=UC”) + 7Y (X-~UC™) = (myC) XY
Equations (A.14) reduce to the coefficients found in the literature .

{see Budden [1966}-Ch.B) when n1 = 1 and this also constitultes a check‘
for the more general coefficients, Eq. {A.11). The coefficients. of the
Booker quartic when heavy ions are taken into account was derived by
walker [1968] who supplied very t;csmpiica‘-’i_:ed expressions for the quartic
coefficients formulatgd as functiqns 0f'the eiementS‘of the susceptibility

| matirix M. The coefficients given here by Eg. (A.ll)'are'much'simpler.

[
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APPENDIX B. THE EIGENVECTORS OF THE MATRIX T

' The eigenvalues q of the matrix T are'given by the solution of
Eq. (A.10). If one eigenvalue of T is known the characteristic

equation, Eq. (2.55), can be written as

(q—Tll)Ex = —leEy,+ Tlszoﬂx + T_MZOHy (B.1)
—(Q—TZZ)EY = Ty B, + ToaZ H + T24Z0H& (B.2)
(q-T33)20H3.= ?31EX - T32$y + T34ZOHY (B.3)
"(q-T44)Zbﬂy'= T41E%.— T42Ey'# Téézoﬂg o (B.;)

Next, Egs. (B.1) to (B.4) are\manipuléted in order to find an

eigenvector e corresponding to the eigenvalue gq. This will be done

by relating_all the eigenvector compohents to an arbitrary field amplitude
E .
x ,

Equations (B.1) and (B.2) are multiplied by (q-T,,) which permits

the elimination of ZOH& from Eqs. (B.l) and (B.2):

AR, = - AE + AZH (B.5)
) ~AgF ='A4EX + A5zoﬁg . (B.6)
wheré - . . : :
Ay = (q-Tll)(q—T44) - TyT4y (B.7)
| Az-‘= (é"?zz)(q“T44) = TagTan (B8
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A3.= T12(g—T44) + T Ty (B.9)
By = Ty farTyy) + Ty Ty (B.10)
A5 = T23(q—T44) + T24T43 L (B.11)
Ag = T13(q—T44) + Ty4Taq | (B.12)
Ey - and ZoH# are determined from Eq. (B.5) and Eq. (B.6):
AA 4+ AA "
: 5 46
" F - (rlrm‘r x (8:13)
Y o\T3s "%/ T _
/A A, - A_A ,
Zofy = (H By (B2
35 276, -
ZOH§ can be determined directly from Mazwell's equations,
Eqs. (2.14) and (2.15):
z H :q{E -QE}-*—’ZH ' (B.15)
oy {1 x m ¥ m o x

with £ and 2z H  given by Egs. (B.13) and (B.14).
Therefore;-given\Bne eigenvalue ¢ of T the corresponding eigenj
vector is given by

e=] ¥ | (B.16)
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where the elements of ;. are given'as'functions of EX by Eqs. (B.13) ..
| through (B.15). .
o When the propagation is from west to éaét or vice-versa then m = O
and-therefpre Eg. (B.15) cannot be used. In thisicése ZoHy is détermined
from Eqs. (2.15)-and (2.19)i
oM, E 4 EXILM;X + Qo+ M_)al

ZH = - (B.17)

M- +1- &2
zZ

The elements of the susceptibility matrix M are given by Egq. (2.43).
When only the effect of electrons is considered Eq. (B.17) yields to
. ) | .
LYEXY Ey + (ba = JLYUXY)E_

Z H = "~ (B.18)
oy - b - 22@? - ¥9) ' T

where b is given by Eq. (2.50).
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