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ABSTRACT

. An accurate determination is made of the sideband structure of ducted VLF whistler- =
- mode waves transmitted from Siple Station and observed at Lake Mistissini, Quebec. '
Single- and double-frequency transmissions are analyzed. “Single-frequency” sidebands are .
“u; shown to be due to interactions between the input wave and harmonics of 60 -Hz present--
within the duct (assumed to be radiation from the Canadian power line system).

Sideband spectra are explained as due to wave-wave interactions occurring in the mag-
netosphere through electron cyclotron resonances, the line intensities reqnired for such in-
teractions being low. Resonances can be located outside (external resonances) or inside the
wave potential wells (trapped resonances). External resonances produce radiation through
bunching in essentially the same way as the incoming carriers do. Trapped resonances
produce oscillatory disturbances in the potential well charge distributions that frequeney
meodulate the carriers to produce the sidebands.

Application of the KAM theorem to the electron equations of motion shows the pos-
. sible sideband radiation frequencies. Both external and trapped resonances generate the
-same radiation -spectrum-with -frequencies given by-a very simple formula. The carrier

-« trapping frequencies do not affect the sideband wave frequencies, and do not imposesharp:. =

- constraints on either the spectrum bandwidth, the sideband line separation, or the maxi--
-muIn interacting carrier frequency separation. -

v, % We:find that the inhomogeneity of the magnetic field of the earth-introduces phase .« -
shifts on the equilibrium positions of the resonances we discuss: Those phase shifts, whether =+ -
time dependent or not, will be translated at the receiving station as frequency shifts in the
observed sidebands. Since the phase shifts are dependent on v, , the sideband waves should
undergo an increase in width as they shift away from their nominal positions.

- A strong enough inhomogeneity will destroy a resonance completely. We find that

- trapped resonances are much more resilient to the effects of the inhomogeneity than external
resonances, this being the reason why extremely weak carriers can produce sizable and
readily observable sidebands when they interact with stronger carriers.

iv
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1. Introduction

1.1. What This Dissertation Is All About

»:The purpose of this-thesis is to explain the existence and properties of discrete frequency radiation.--
“-produced by the magnetospheric plasma when excited by a set of monochromatic waves propagating -
in a duct. It can be extended to include non-ducted radiation received by satellites, and so called

" “natural” line formation effects, observed in duets but apparently not related to the injection of -

discrete waves in the plasma.
The author had his attention first called to the subject when observing sideband radiation [Park,
1981) produced by single frequency transmissions made from Siple Station, Antarctica, and received

at Lake Mistissini, Quebee, after ducted wave propagation (see Figure 1.1). He was impressed by the

- fact that ‘the obsérved sideband wave-separations-were frequently an integét multiple of ten Hertz.

Since the plasma in the ducts has its natural frequencies in the kilchertz range and above, those
frequencies could not easily be related to plasma parameters, and since their numerical values seemed
artificial, they should be due to plasma contamination. A candidate for that contamination already

existed: harmonics of 60 Hz radiated into the duct from the Canadian power distribution system or,

= maybe, from the Siple transmitter generators. Such power line radiation (PLR} was, however, not

s considered- important -at the time, since-its levels -were so:low that the harmonics-could ‘barely:bew=:

seen when compared to the amplitudes of other waves propagating in the plasma. Additionally, it

was not easy to justify sideband spacings of 10 Hz or 20 Hz when the frequency difference between - -

= =vharmonics was known to be 60 Hz. =« . - -

Some theories existed at the time to explain sideband formation:

“Irapping” theories explained single carrier! sidebands by stating that a strong enough carrier

would create a potential well in which the plasma electrons would oscillate [Nunn, 1974;. Nunn,=

+-1973;+ Brinca, -1972;- Helliwell and Crystal, 1973;- Das, -1968; etc.]. Radiation from the oscillating

electrons would then produce the sidebands. There were doubts, however, that real carriers would
have amplitudes large enough to “trap” the electrons in the required way.
Two-carrier sidebands were explained as coming from distortions of the injected waveforms due

to wave growth in the plasma. Such an explanation, however, was phenomenological, no fundamental

“r=reason for the effect being given [Helliwell et al., 1986).— wor e cimmrnr oo

The absence of a well defined and successful formalism to describe sideband effects, a lack of

- .knowledge of basic physical parameters such as the interacting carrier amplitudes, and the absence-"

of a detailed knowledge of the sideband spectral structure, prompted the author to do this work. It
begins with an accurate determination of the sideband spectra for one and two transmitted carriers,

and continues by making a rigorous study of the equations describing the motion of an electron

. under the influence of several waves. The equations are formally solved, and the calculations taken

as far as possible without making specific assumptions about the physical systems under study. As -

-a result, sidebands come.out as a necessary consequence of the equations of motion, single frequency -

. .L . In this manuscript, Scarrier”, means a single frequency wave transmitted from Siple Station.
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Fig.-1.1. VLF transmissions are made from Siple Station, Antarctica, and received at

- Lake Mistissini; Quebec. The waves propagate within ducts-because of their higher index- "

of refraction. In a region around the Equator, where the geomagnetic field goes through a

minimum, the waves interact with counterstreaming electrons producing additional radia-
tion in the form of wave growth, sidebands, triggered emissions, ete.

sidebands are seen not to exist, and PLR effects are found to be almost omnipresent, -Although the
effects of PLR are found in almost all spectra studied, they are indirect: sideband wave spacings are
almost never equal to. 60 Hz and the amplitudes of PLR harmonics are never large enough to permit
a direct determination of their presence. '

The theoretical part of this work is not an effort to produce quantitative results to be compared
with éxperiment, but is aimed at those who want to understand the sideband formation process.
The mathematics used is not a computational tool, but a language used to describe and explain the

several physical phenomena relevant to sideband formation and, as such, cannot be stripped away

-+iifrom the main body of the work. ‘The;work, as.a whole, forms an infrastructure, firmly founded

- on the equations of motion, from which extensions should be made to obtain specific quantitative

results for each case under study. Such extensions, of course, are not part of the present work.

. 1.2, Outline of the Dissertation

In chapter 2, an accurate determination is made of the sideband structure of ducted VLF whistler
‘mode waves transmitted from Siple Station and cbserved at La.ke'Mistiss'mi, Quebec. Single- and
~ double-frequency. experiments are studied. It is shown that.sideband spectra can be explained by

- interactions between two or more waves in the magnetosphere, the wave intensities required for such
.interactions being low. When one of the waves is a transmitted carrier, the other wave can be as
>+ ~pinéh as 40 .'dB-‘lowe‘r-int--amplitude,»-implying.that -power line radiation (PLR) can be an important
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factor in sideband generation. It is shown that “single-wave” sidebands are consistently explained
" 'by interactions between the input wave and harmonics of 60 Hz present within the duct {assurned
.to be PLR), and that two-wave spectra are affected by their position relative to the same 60-Hz
..system of waves. A study of two-wave spectra as a function 6f wave frequency separation and wave:.

- amplitude ratio is made.

: Chapter 3 of the dissertation introduces the reader to the physical and mathematical aspects of
. the problem of sideband formation associated with VLF whistler mode waves propagating in ducts
- in the magnetosphere. It starts with an introduction to the general problem of charge distribution:
in the duct and locks at the effect of monochromatie electromagnetic waves acting on such distri-
butions. It describes sidebands as due to wave-wave interactions occurring in the magnetosphere
through eleciron cyclotron resonances, and concentrates on sideband radiation coming from reso-
. nances formed. outside the wave potential wells (external resonances).. It also presents a general
" solution to the electron equation of motion, based on the KAM theorem [Rasband, 1983), that lists
the possible sideband radiation frequencies. Both an analytical treatment, based on Lie Transform
perturbation theory, and a numerical treatment, based on phase plots, are used in the detailed part
of the analysis. Effects of the inhomogeneity of the magnetic field of the Earth are mainly neglected
in this chapter.

... Chapter.4 of the dissertation presents an:analytical -and numerical treatment of cyclotron re

-onances formed inside the potential wells of a set of monochromatic carriers propagating in-a duct-
in the magnetosphere. It is found that those resonances produce oscillatory disturbances in the
.. potential well charge distribution that frequncy modulate the carriers to produce sidebands. The
frequency spectrum is the same as the one generated by the external resonances defined in chapter 3.
1t is shown that the carrier trapping frequencies do not affect the sideband wave frequencies and do
- not impose sharp constraints on the spectrum bandwidth, on the sideband wave separation, or on

... the maximum interacting carrier frequency separation. When not highly distorted by wave growth;,:.
. a two-carrier sideband spectrum should have an approximately exponential profile. '
Chapter 5 addresses the effects of the inhomogeneity of the magnetic field of the earth on

the resonances studied previously. We find that the inhomogeneity introduces phase shifts on the

equilibriurn positions of both types of resonance we have treated. Those phase shifts are time

dependent if either the main carrier in the case of internal resonances, or the interacting carriers in

the case of external resonances have time dependent amplitudes. The time dependent phase shifts

- -will translate into sideband wave frequency shifts. If the carriers have constant amplitudes, the phase
shifts are locally constant. However, frequency shifts observable at the end of the interaction region -
can still be produced if the amplitude of the radiated sidebands are locally time dependent. Since
the phase shifts are dependent on v, the sideband waves should undergo an increase in linewidth
~- as they shift away from their nominal positions. A strong enough inhomogeneity will destroy a

resonance completely. It is found that trapped resonances are much more resilient to the effects’

- of the inhomogeneity than external resonances, this being ome of the main reasons why we can .

-experimentally observe the creation of sizable sidebands by extremely weak carriers.

«#..Chapter .8, the last chapter, contains the conclusions.and suggestions for future work.
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1.3. Previous work on Sideband Formation

Before the present work, “single-frequency” sidebands were thought to come solely from the inter-
action between a single carrier and the magnetospheric plasma. From that point of view, several
theoretical papers were published [Nunn, 1974; .Nunn, 1973; Brinca, 1972; Helliwell and Crystal,
1973; Das, 1968; etc.]. Since the present analysis indicates that such sidebands come in reality from

.interactions with PLR, the conclusions of those papers appear doubtful. It is important, however,

to remark that in our opinion none of them succeeded in presenting a complete and conclusive
mechanism for sideband creation, indicating that maybe not even in principle single frequency side-
bands can exist in the magnetosphere. Park [1981] desciibed and analyzed such papers, and already
pointed out that they could not describe the data available at the time, The following paragraphs
repeat and complement some of his ohservations.

=All of the above.authors,:with the exception of Helliwell and Crystal, tried to explain “single-
frequency” sidebands as radiation from electrons oscillating inside the single carrier potential well.
This approach has several flaws:

a. The electron oscillation frequency depends on its pitch angle, and since pitch angles have a
continuous distribution, the radiated sidebands should not have sharply defined frequencies, as
seen in the data.

« b, The electron oscillation frequencies: are dependent-on the carrier-amplitudes. --A--variable!:.amé‘--i----
plitude carrier should produce shifting sidebands with shifts proportional to the square root of

--the carrier amplitude. This is not observed in the data.

-4z The carrier. amplitude must have a minimum value to overcome the effect of the magnetic field -

of the earth and “trap” the electrons. There is no conclusive evidence that the wave amplitudes

in the Siple experiments are always strong enough to do that.

... Helliwell and Crystal are an exception to the above group of authors: their sideband frequencies -

- -are a function of the propagation time of waves going from one end to the other of the interaction -

region, added to the transit time of electrons moving in the opposite direction. This approach is also
flawed: to obtain well defined delays, the ends of the interaction region are made artificially sharp,
and all electrons in the duct are given the same vj and the same pitch angle. As an additional radical

feature, particles are created and injected at the beginning of the interaction region and suddenly

sdestroyed at the.end, in.contradiction to. the.continuity equation:-A more realistic model [Carlson,
-.~1987] that injects electrons at the beginning of the duct, takes into consideration the “fuzzy” ends -

:.of the interaction region and a consequent spread in electron and wave time delays, does not exhibit -

'sidebands: the amplified wave shows only some ripples, due to an artificial sharpness still present in
the electron distribution (Carlson, personal communication).

Helliwell et al. [1986] explained two-wave sidebands as distortions of the two-wave beat envelope
due to the interaction of the electromagnetic field with the plasma. To justify harmonic sideband
generation, a phenomenological argument was given to explain why the distorted envelope still had
the same period as the original beat envelope. Such a fact is in reality only an approximation: in
this thesis it is shown that as the sidebands become stronger, the period of the envelope decreases,

;approaching zero and defining an asymptotically chaotic.electromagnetic field. -
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Chang et al. [1980] did not explain sidebands, but tried to give a mechanism for the wave-wave
interactions observed in their data. The paper suffers from a typical flaw: although wave-wave
~.interactions are highly non-linear, the explanation they provided assumes linearity. According to
the anthors, each wave, independently, is capable of accelerating electrons moving within a certain -
... frequency range called the coherence bandwidth. Two waves will interact only when their coherence B

. .bandwidths overlap. The reader, after going over the present work, will realize that such a condition -

- “-is not necessary: two-wave interactions are much more complex and general, occurring through

. cyclotron resonances, and are possible even when the waves are much farther apart than estimated
by the above authors.
Nunn [1986] studied sideband growth. In this paper he still explained “single-frequency” side-
bands as coming from a single carrier and tried to find support for his hypothesis in the data shown
- by Park [1981]. In the main body of his work, however, sidebands were simply assumed to exist

without worrying about their possible cause.

1.4. Contributions of the Present Work

In general, this work shows the importance and necessity of a formal mathematical treatment, cou-
- pled with data analysis to illustrate theoretical points, when the data originally available to describe-
.4 physical system. are-incomplete, important-physical parameters are unknown, and contradictory<::
explanations have been put forward. '

Some of the main results are: _

1. Magnetospheric sidebands are due to the interaction of two or more waves propagaiing in the
plasma. Radiation comes from resonant electron motion produced by such an interaction.
“Single-frequency” sidebands come from the interaction of a single carrier with PLR harmonics
present in the duct.

2. Sideband wave frequencies are given by a simple formula. Although the formula is simple,-it. is+
.recurrent, allowing for the generation of extremely complex spectral structures. e

3. Sideband waves do not have constant frequencies, but shift and increase their linewidths when
the interacting waves have time dependent amplitudes. Such shifts are a perturbative correction
to the sideband frequencies, proportional to the degree of inhomogeneity of the magnetic field
of the earth, and should not be confused with the larger shifts mentioned in 1.3.b.

4. Carrier amplitudes involved in sideband formation ‘are not critical. In particular, it is not

-+ necessary that any of the carriers be strong enough to “trap” the electrons in the plasma. If, in=

- a set of interacting carriers, some have large enough amplitudes (say, 30dB above noise level),
the others can be vanishingly small (at least 40dB lower in amplitude) and still participate in - -
the generation of sizable sidebands {comparable in size to the large carriers).

5. Sophisticated mathematical techniques are indispensable: without the help of Lie Transform
Perturbation Theory, most of the analytical calculations would not have gone beyond their
initial steps. The study of radiation frequency shifts, where the inhomogeneity of the magnetic ..

+field of the earth plays a very important role, or the calculation of high order sidebands, could *

not have been carried out.



2. Experimental Determination of
- the Sideband Spectra

.2.1. Introduction

Whistler mode sidebands generated by the Siple Station transmitter have been the subject of several .
-, papers, some of them mainly descriptive, such as Park [1981], others, such as Helliwell et al. [1986],
.also presenting a mechanism for the observed sidebands. A shortcoming noted in those papers was
the lack of a unifying idea that could shed some light on the cause and structure of all observed
spectra, indicating relevant variables and suggesting experiments in which the mechanism of spectra
formation could be investigat'ed. As a result of such a lack, only for the case of double carrier

transmissions [Helliwell et al., 1986], where the sideband spectra consist mainly of harmonics of the

el garrier Trequency-separation, -was it-possible to. arrive at-a-successful-description of the line structure
together with a possible mechanism for its creation. _

In this chapter,’ such a unifying idea is put forward, together with a set of experimental data
showing its plausibility. In the following chapters the same idea will be justified from a mathematical

viewpoint, and many of its consequences will be further explbred.

2.2. Sideband Generation Mechanism

- The basic assumption used to analyze the data in this chapter is a_property common to many:«

. nonlinear dynamical systems, being mentioned and discussed, for.instance, by.Chirikoy:[1979].:In: .+

B & s v wies bhe present chapter, we quote this property without proof and justify. it simply by the accurate way
in which it describes the data. (Such a property is nothing but the KAM theorem. A detailed
explanation of it, and of other statements made in this section, is found in the subsequent chapters.)
It may be stated as follows:

- If several lines with frequencies §2;,4 = 1...n,; measured from one of the carriers, are present-in: -

- the magnetosphere, they are able to interact with one another, and a new line can be created at a
frequency 2, given by

mQ = myQy + -+ Ml : (2.1)

where m and m; are arbitrary integers (m # 0). The likelihood of a line being created depends

s partly'on the underlying electron distribution and inconﬁngnliue intensities, but is higher the smaller

the integers in question are and the smaller the number of lines involved in the interaction is..
+- As an example we can look at the two-line case: If only two lines are initially present, one of:
the frequencies will be zero, and the other will be the frequency separation between the lines, AQ.-
Then
g} = pAQ (2.2)

-This means that a line can be created at any rational point between the original two lines, small
. values for p and g being more likely to occur. Equation (2.2) prediets the occurrence of harmonics =

- (¢ = 1, any p), half harmonics (¢ = 2, p = 1), one-third harmonics (g = 3,p = 1,2), ete.

s oo 1 The present chapter is a close reproduction of $d.and Helliwell [1988]. -
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For three lines, with subscripts 1, 2, 3, an interesting result is obtained for a particular choice

of the smallest nonzero values of the integer coefficients:
Q=05 (2.3)

- For €5 > {23 this implies the creation of a mirror image of line 3, within the interval defined by lines .

"1 and 2, as shown in Figure 2.1.

Mirror
Image

Q,(0Hz) Q, Q Q,

Fig. 2.1. Mirror image sideband creation. Dashed line marks symmetry axis.

Other sign combinations in (2.3) are possible, but lead to rarely found lines. For instance, a

plus instead of a minus sign in (2.3) will deseribe an intermodulation effect:
Q=Q+Q (24)

. -Although infrequently seen, an example of this effect. is found in Figure 2.4, and is described in=:.

section 2.4.

- '2.3. Description of Experimental Methods

Most of the data discussed in this chapter came from the CISP (carrier interaction with simulated
- power line) program,? transmitted from Siple Station and received at Lake Mistissini, Quebec, after:

i ducted whistler mode propagation. Its format consists of a sequence of 3-s pulses, 10 s apart, each one.

? The author gratefully acknowledges the help of Prof. R.A. Helliwell in designing and imple--

~menting the CISP program.



8

made up of a pair of single<frequency carriers with defined amplitude ratio and frequency separation,

"“"ag shown in Figure 2.2. The position of the upper carrier is fixed ata power line harmonic frequency,
7 its amplitude being a variable parameter. The amplitude of the lower carrier is kept constant, but
"+ ~its position below the upper carrier can be varied. The transmitted upper to lower carrier axﬁplitude_‘ :
" ratio can be set to =20 dB,; <30 dB, -40 dB, or'minus infinity. The carrier frequency’separation’can: -

~be 20 Hz, 23 Hz, 30 Hz, 37 Hz, 40 Hz, and 60 Hz.

Strong
Carrier

Weak
Carrier

PLR
|

n*60Hz " (n+1)*60Hz

et Fige 2.2, CISP -format used in sideband structure-analysis described in this chapter.: ..

Those frequency and amplitude ratio values are chosen with power line radiation (PLR) effects
in mind. The reason for choosing such amplitude ratios is that PLR levels in the magnetosphere

are believed to be 30 dB or more below the carrier amplitude levels. Since signals with such low

wamplitudes -are not. directly detectable,-a possible PLR presence; together :with its effects, must be
- verified by studying the eflects produced on the spectra by weak lines radiated by the transmitter .-

~ together with the main carrier.

The frequency separations consist of two groups: The first group, 20 Hz, 30 Hz, 40 Hz, 60 He,

 consisting of submultiples of 60 Hz, is chosen such that the carrier frequency separation is a rational
. function of the PLR line separation. This allows for the establishment of a resonance condition

. between the transmitted radiation and the one present in the duct. Under those circumstances,

both systems can excite essentially the same lines, creating an easily understood spectrum. ‘The

- rsecond group, 23 Hz, 37 Hz, is chosen such that the carrier frequency separation is either the most’ -
. irrational function of 60 Hz possible, the golden mean of 60 Hz [see Berry, 1978], or its complement

- ;with respect to 60 Hz. This choice does not allow easy excitation of the rational modes described
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Fig. 2.3. Sequence of 3-s pulses with carrier separation equal to 30 Hz. 0 Hz in those
pictures corresponds to 2220 Hz. The arrows point to the location of the two carriers. The
horizontal bars at the bottom of each picture indicate the time intervals over which the
average specira shown in Figure 2.4 were taken. In all spectra the filter bandwidth was
1.56 Hz. '

above, resulting in the appearance of more complex line interactions such as the one responsible for

the creation of mirror image sidebands.

2.4. Description of Data

BRI .‘Fig‘ure 2.3 shows a sequence of transmissions made with a constant line separation of 30 Hz, a very -

+ rational function of 60 Hz, and amplitude ratio varying from -20 dB to minus infinity. It can be*
seen that, as the upper carrier becomes weaker, the two carrier spectra blend in smoothly with the-

- single carrier spectrum shown at the bottom right. For this particular set of transmissions it can
also be seen that the line intensities in each pulse exhibit two maxima. Although the reason for the
existence of such maxima will not be discussed in this manuscript, their presence provides a way of

testing the reproducibility of the sideband structures, as described below. '

-Figure 2.4 displays the same sequence of pulses in:a way that allows for easy and:accurate

~measurements of frequency separations and relative line amplitudes. Each picture shows a 0.5s (or

=.more).average of the spectrum. In each row, the first plot:(A scan) comes from an average over the



10

first, and the second plot over the second maximum in the pulse. The averages are taken over the
“+ s time intérvals marked by solid horizontal bars at-the bottom of each picture shown in Figure 2.3.
..Comparison of two A scans in the same row shows how reproducible the spectra are. The vertical
. lines in each plot locate multiples of 60 Hz where low-intensity. PLR may be present. Figures 2.4a and
: i 2.4b show the 20 dB ratio spectrum. The structure-is almost what should ideallybe expected: The-
‘ ; two carriers create ha.r.monics, which in turn create several half harmonics between them. Frequency
distortion is minimal, all lines being at their theoretical positions within one filter bandwidth (1.56
Hz). Figures 2.4c¢ and 2.4d show the 30 dB spectrum. Because of enhanced growth at the upper -
carrier, frequency distortion increases both for harmonics and sub harmonics. The bandwidth of
each spectrum is also slightly decreased. Figures 2.4e and 2.4f show the 40 dB spectrum. The
upper carrier would. not be seen in this plot without the help of large temporal and differential
growth with respect to the lower carrier (32 dB average). The lower carrier also goes through a
pronounced growth process, adding to frequency distortion effects. Since growth is a function of
the instantaneous electron distribution, reproducibility of the spectrum decreases (Figures 2.4e and
2.4f are fairly different). Increased initial amplitude asymmetry between the carriers enconrages the
appearance of sub harmonics different from the simple half harmonic. The harmonics initially seen
in the 20 dB and 30 dB transmissions have now all but disappeared, more closely spaced harmonics

being seen instead.

“2A detailed analysis of Figure 2.4e reveals-the following line configuration: Line 2 is a-harmonic

#i:-7.0f b-and 7..Line 4 is a harmonic of 5.and 6. Line 3.is a half-harmonic of 2 and-4.. Line:9-is.a.one-thirdsm:

-~ harmonic of 7, the upper carrier, and 10, a PL harmonic. Line 8 is a half harmonic of 7 and 9. Line
6 is sirnultaneously a one-fourth harmonic of 1 and 7, and a one-third harmonic of 5 and 7.

Lines such as line 9 are strongly excited because the sequence of sidebands behaves in this case
as an incipient triggered emission. Energy is transferred upward from the carrier, is reflected at line
9, lingers around line 8, and is partly returned to the lower carrier, as shown in Figure 2.3, . %

Figure 2.4f has approximately the same structure as Figﬁre 2.4e with some lines missing.-i Line:
§ in Figure 2.4f is a half harmonic of 4 and 7.

Figures 2.4g and 2.4k show the single carrier spectrum. All sidebands now are coming from
interactions between the carrier and the residual PLR present in the duct. Since PLR forms a system
-of harmonic lines, . we should expect the presence of multiple lines to influence the spectra.

In Figure 2.4g, line 4 is a half harmonic of 3 and the adjacent PL harmonic (not numbered in -

- the picture). Line 7 is a one-third harmonic of the same PL with line 8 which also is'a PL-harmonic. *

+ Line 5 is simultanecunsly a half harmonic of 3 and 7, and a one-fourth harmonic of 3 and 8. Line-
"6 is a half harmonic of 5 and 7. Line 2 is simultaneously a harmonic of 4 and 6, and a one-third -
harmonie of the two PL harmonics immediately above and below it.

In Figure 2.4k, lines 4 and 5 are one-third harmonics of 3 and 7. Lines 2 and 8 are harmonics

- of 3 and 5. Line 6 is simultaneously a half harmonic of 5 and 7, and a one-fourth harmonic of 3 and
- the'next PL harmonic above 7. Line 1 is a case of intermodulation: line 6 interacting with two PLs .
- {theory fequires them to be line 7 and the PL immediately above it), creates a line below itself at a .

. distance of 60 Hz, the PLs’ frequency separation. . . .
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Fig. 2.4. Average specira obtained from pulses shown in Figure 2.3: (a) and (&) 20 dB

ratio, (c) and (d) 30 dB ratio, (¢) and (f) 40 dB ratio, and (g) and (k) single carrier pulse.
"The first picture represents the first average; the second picture, the second average over
each pulse. The vertical scale is linear and arbitrary. 0 Hz in those pictures corresponds to
2220 Hz absolute frequency. The carriers are denoted by small circles at the maxima. The

+ windows in each picture ¢ontain a table of frequency differences: at the left of each equal
i« sign are.two digits representing two spectral lines; at the right is their frequency difference.
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Fig. 2.5. Sequence of 3-s pulses with carrier separation equal to 37 Hz. 0 Hz in those
pictures corresponds to 2460 Hz. The arrows point to the location of the two carriers. The
horizontal bars at the bottom of each picture indicate the time intervals over which the

~average spectra shown in Figure-2.6-were taken. :In all spectra the filter bandwidth was™
1.56 Hz.

Figure 2.5 shows a sequence of pulses with carrier separation kept at 37 Hz, the most irrational
possible function of 60 Hz, with amplitude ratios varying from -20 dB to minus infinity. Figure 2.6
-shows the corresponding sequence of A scans from which average frequencies and amplitudes are
: measured. Due to the irrationality of the frequency ratios involved, few rational sub harmonics are -
-excited, allowing for the creation of a particularly simple and repeatable spectrum: For each pulse®
~there is now a single average made over the region where sidebands are present.
Figure 2.6a shows the basic structure which is a,pproxim:;,tely repeated in Figures 2.6b and 2.6¢.
Line 1 is simply a harmonic of 4 and 7. Line 5 is special: it is the mirror image of 4 in the interval
defined by 2 and 7 (it is therefore a three-line effect involving two carriers and one PL harmonic).
- Line 3 is a harmonic of 4 and 5. Line 6 is simultaneously a harmonic of 2 and 4, and the mirror - .
“image of 5 in the interval defined by 4 and 7. '
Figure 2.6b shows essentially the same structure as in Figure 2.6a, with two added lines. Line -
w0 15 the harmonic.of 5 and 6, and.line 8 is the harmonic. of 4 and 6.
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Fig. 2.6. Average spectra obtained from pulses shown in Figure 2.5: (a) 20 dB ratio,
(b) 30 dB ratio, (c) 40dB ratio, and (d) single carrier pulse. The vertical scale is linear and -
. arbitrary. 0 Hz in those pictures corresponds to 2460 Hz absolute frequency. The carriers -~
~-are denoted by -small circles at the maxima. The windows in each picture contain a table of -+
frequency differences: at the left of each equal sign are two digits representing two spectral
lines; at the right is their frequency difference.
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Figure 2.6¢ shows that carriers can influence the spectrum even when they are too weak to be

- seen, Line 6, which is the upper carrier, does not appear in the specirum. Nevertheless, its effect,
+rwhich- is the creation of mirror image line 4 in the interval defined by 1 and 6, is readily apparent.

~Lines 2 and 5 are harmonics of 3 and 4.

"Figure 2.6d shows the single carrier spectrum. Due to the weakness of the PLR:lines, three-line "

- effects are not seen, a series of harmonics and half harmonics making up the spectrum, instead. Line -

‘1 is a harmonic of 4 and 8. Line 2 is a half harmonic of 1 and 3. Line 6 is a harmonic of 3 and 4. -
Line 7 is a half harmonic of 6 and 8. It is far-fetched to think of line 5 as the mirror image of 4,

since its position is almost 5 Hz off from what would be required for that interpretation. Line 5 is .

- “almost exactly halfway between lines 4 and 8, and should therefore be thought of as a half harmonic

of those two

lines .
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2.5. Summary

- The sideband spectra described above can be summarized as follows:

1. Sideband spectra are a consequence of the interaction of two or more lines.. No real single-
- frequency sidebands have yet been identified.
2.-Lines which are not readily seen in the measured spectra (30 dB or more below the stronger
lines) can have an appreciable effect in sideband formation. -
. 3. PLR is involved in virtually all sideband spectra. Its presence is fundamental in the creation of .
. “single carrier” sidebands.
4. If several lines with frequencies €;,7 = 1...n, measured from one of the carriers, interact

creating a new line, its frequency 2 will be given by equation (2.1):
m=miQ + -+ mpl,

" where m and m; are arbitrary integers (m # 0).
5. New line amplitudes depend on the combined effects of parent line intensities, frequency sep-
arations, and the electron distribution. The instability of the latter is thought to be the main
cause for the imperfect reproducibility of the sideband spectra observed and described in this

chapter.

- 2.6. Concluding Remarks
<« In this chapter, spectral - data were presented together with an equation -from-which:the observed "
..+ Irequencies in the spectra can be derived. The striking results are that vanishingly small lines-can::

s ke contribute. to.spectra. formation, .with no such thing as a single-frequency sideband spectrum being -
. ever found in the data analyzed. This may explain why theories for single-frequency sidebands have

not met with success when applied to sidebands observed in ducted radiation received from Siple
Station.
Theories, such as the ones put forward by Nunn [1974], Brince [1972], Das [1968], etc., describe

--sidebands as coming from interactions between a single carrier and the underlying continuous electron: -

distribution present in the magnetosphere. Their predictions do not match the data in two main
respects: First, the resulting expressions for the sideband-carrier frequency separation depend on

vy, the projection of the electron velocity in the direction perpendicular to the magnetic field of

s-bhe Farth. This -velocity has.a.continuous distribution, .and after.integration, should create a hump

«:next to the carrier, instead of a sideband. This does not agree with the observed data, which show i~
w-very well defined lines with widths comparable to the carrier line width. ‘ Second, such theories™*
~ have as their only frequency parameter the trapping frequency of the carrier, dependent on its

- amplitude. This implies that any calculable frequency in those theories will be a function of the-

carrier amplitude, making impossible the description of sidebands that do not shift when the carrier
oscillates in amplitude as seen in the data in this chapter or in papers such as Park [1981].

--The approach presented in this chapter, describing sidebands as coming from a line-line interac--

- tion, does not suffer from any of the mentioned drawbacks and is in good agreement with the data.”
+The following chapters describe its theoretical roots and implications in a systematic and general *

manner.
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3. Description of
External Resonances

-3.1. Introduction

-+« The purpose of the next three chapters is to provide a comprehensive description of the processes -

leading to the formation of sideband waves associated with discrete frequency transmissions origi-
_nated in the VLF transmitter located at Siple Station - Antarctica and received at Lake Mistissini
- Canada after ducted wave propagation. Those sidebands are found both in single- and double-
frequency transmissions. In the preceding chapter we have shown that “single-frequency” sidebands
are due to the comnbined effect of a transmitted wave from Siple and radiation present in the duct at

multiples of 60 Hz probably, but not certainly, coming from the Canadian power distribution system.

w4+ This-allowed us to understand the VLF-sideband proeess-as being-always-¢siigéd by the effect on the

magnetospheric electrons of several discrete frequency carriers, that disturbing the electron motion,
change the electron distribution in such a way that radiation always occurs at certain well defined
frequencies, given by a simple formula (see equation (3.34)).

The reader will notice that the next three chapters rely heavily on nonlinear mechanics formalism

and methods uncommon to the VLF field. They are, however, essential to the problem we will

- treat, as can be shown by some simple considerations: The sideband process in the magnetospheric ™

" plasma is-a combined effect- of accelerated charge radiation; regulated by Maxwell’s equations, and ***

charge acceleration, described by the Lorentz force equation. Maxwell’s equations are linear and ™
spredictiradiation-only-at the.frequencies at which charges oscillate. (Following Feynman [1964], we -
write Maxwell’s equation in a vacuum, and include in the source densities all charges presént in
the plasma.) Sidebands clearly contain radiation at frequencies different from the incoming wave

frequencies. Nonlinear forces, therefore, must be at play, producing accelerations at frequencies:

.. different from those present in the incoming wave field. The solution of the Lorentz force equation, -

that describes such an effect, is an exercise in mechanics, and is the main effort of the following
- three chapters. An understanding of the radiation coming from the accelerated charge distributions,

complements the effort. The resulis are fruitful: the main aspects of the radiation described in

the previous chapter are easily obtained. The reader that wants an overview of nonlinear oscillator
- Systems together.with.references .to recent.research on the subject, should consult Lichtenbery and
Lieberman [1983].

«o. o In section 3.2 of this chapter we will show how some simple symmetry properties-of the duct in"

-the absence of an external wave field imply the existence of a non-radiating electron distribution. In
section 3.3 we show how an injected electromagnetic field, breaking the symmetry, creates radiation. -
In section 3.4, the equations governing the electron motion under the influence of one or more RHCP
whistler mode waves are introduced and an interpretation of their solutions is made. In section 3.5,

. the equations of motion are solved numerically and the solutions are displayed with the help of

. Phase plots. Emphasis is put on effects occurring outside the potential well of each incoming wave -

- and, more specifically, on the occurrence of resonances of the electron motion at the frequencies

.. where radiation is observed {external resonances). An example of “bunching” produced by those:
p g
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j
- resonances is presented. Section 3.6 begins the analytical treatment of the wave interaction process,
# with the application of the KAM theorein for nonlinear systems to the interaction we are describing.
".As a result we obtain an extremely general and simple expression for the possible frequencies of
- the sideband waves. Section 3.7 describes a perturbative method based on Lie transforms which is’
.- used for a detailed study of the electron motion.:Section 3.8 applies the Lie perturbation method to:
non-resonant electrons. Section 3.9 describes the lowest order resonance, the half harmonic, a second -
- order effect produced by the interaction of any wave pair in the incoming wave system.-Section 3.10 .
- describes third order effects associated with two or three interacting waves. Section 3.11 contains a

description of higher order effects and section 3.12, the conclusions.

3.2. Duct Symmetries and Non-Radiating Electron Configurations

. WWe - will-assume.that in-the.absence of .cutside incoming radiation:the hot:electron distribution is so

e

stirred up that all points in a perpendicular cross section of the duct will have the same electron
density. Moreover, we will assume that this local electron distribution is isotropic, that is, the
number of electrons observed moving in any direction of the cross section is the same, independent
of the direction chosen. At each point, the observed electrons will also have different velocities
of motion in the direction parallel to the axis of the duct, vj. We will have to assume that the
«..distribution is homogeneous and isotropic for each v)j, otherwise by selecting a specific v we would -

»-v:be:able to-define-a specific direction in the duct, contrary to the assumption that all directions:are:

.. equally important. This assumption of homogeneity and isotropy will provide us with the means to .-
- build the electron distribution in the duct..
Figure 3.1 shows a perpendicular cross section of the duct with some electrons singled out.
Those electrons will be moving in a helical orbit due to the presence of the magnetic field of the
Earth. Let the projected motion of all electrons be counterclockwise. We will show that every.:
.-.electron in the distribution belongs:to a DC current loop. Suppose that at point P; we comsider
a volume element dAdl of electrons moving in the direction and sense defined by the arrow in the
picture. Let the circle in the picture be the projection of their helical orbit on the plane of the cross
section. At another point P,, arbitrarily located on that circumference, we draw a volume element
identical to dAdl. Due to the homogeneity of the duct the number of electrons in this volume,
.. ANz, will. be equal to dN;. If we now draw a third volume element dAdl with dl tangential to the
- circumference, the number of electrons, dN3, moving in it-and having the circumference as their. ..
<= projected:trajectory will ‘be ‘equal to dNy due to the isotropy of the duct..‘Therefore,’d Ny = dNg:
Since P; is arbitrary, we conclude that the circumference we have drawn is uniformly populated by
electrons, and moves as a rigid body in the direction of the Earth’s magnetic field with velocity v .
If we assume that the duct is in stationary equilibrium (the distribution is translationally
invariant in time}, the plane of the cross section will be continually crossed by those DC loops,
identical to each other, indicating that the distribution is in reality made up of cylinders with -
- constant charge density on their surfaces and moving with velocity v as in figure 3.2. Such a charge"
configuration will not radiate due to its rotational symmetry. Symmetry considerations, however,

oo -cannot. constrain the value of the surface charge density to be the same for cylinders with different
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~-Fig. 3.1.. Duct isotropy:and homogeneity. Due to symmetries in the duct geometry, i
the electron distribution in a perpendicular. cross-section of.the. duct can be broken down - 74w
into a set of DC current loops. :

L amshyy o or different radii, In reality, in a real electron distribution, the cylinders will have surface charge -

varying as a function of their radii and v;. This is a very important fact since we will see that a -
gradient in the surface charge density as a function of vy is necessary for the radiation due to the sum -
- of all cylinders to be different from zero when an electromagnetic wave interacts with the electron:
... distribution. As electromagnetic radiation reaches each cylinder, the isotropy of the forces will bes
broken by the vector fields of the wave, the electron distribution will lose its isotropy and radiate.

3.3. Effect of Radiation on the Electron Distribution

- To simplify our analysis of the radiation generation process, we assume that the interaction between

i the.electron distribution and the incoming waves.occur in a region with.sharply defined boundaries,

4 i T

...and that the incoming electromagnetic radiation is a snperposition of monochromatic whistler mode . °

# waves.'The region of interaction, located around the equator, will have -dimensions such-that-inside#.

it, the inhomogeneity of the magnetic field of the Earth can be neglected. It will be extremely

. convenient fo observe the interaction from a reference system with no translational motion, rotating

around the axes of the charge cylinders with an angular veloéity w1, equal to the frequency of oneof

the waves, and having its z axis pointing in the direction opposite to v), the velocity of the electrons
resonating with the electromagnetic field.

. Figure 3.3 shows the described situation, and our approach to the analysis of the problem: We

~imagine each cylinder to be composed, outside the interaction region, of a sequence of DC loops.*

«As.each of .those .current loops enters and propagates through.the. interaction region; it will be
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Fig. 3.2. Undisturbed electron distribution. Because the duct is in stationary equi-
librium, each loop belongs to a cylinder with constant surface charge density, &, which
propagates along —z with velocity vj.

deformed by the forces of the incoming electromagnetic waves acting on it. Since vector fields define
. preferred directions in space, the distortions will be such that the isotropy of the cylindrical charge -
o iewiezac-distribution will belost. As a consequence, -each cylinder.wﬂ;l now be made up of a sequence of ACH"
" current loops, and radiation will start to be emitted.- (An accurate analysis shows that, due to the -

i WAy the. electrons and the electromagnetic field interact, each loop is distorted in the z direction as
. it propagates along the interaction region. The AC loops that make up the distorted cylinder are
not simply individually distorted DC loops, but a combination of parts of several of them, each one .
having entered the interaction region at a slightly different time.)
.. If the incoming radiation is monochromatic, with frequency w,, and if the reference system ‘.
rotates with the same frequency wq, the whistler-mode wave will have a static configuration. All
current loops will see the same forces and will have the same distortions as they reach the same
points in the interaction region. The distorted charge configuration will be independent of time,
will behave as a rigid body with an asymetrical charge distribution rotating with angular velocity

sk, s wi,-and will.radiate.at. the.sameifrequency -as the incoming monochromatic radiation. The emitted

. ... radiation will in general have variable phase and variable amplitude (especially in the initial transient - -
g stage-when the wave first meets the electron-distribution). . This might give rise to some spectral “-
broadening, but no well defined sidebands.
For two or more waves, even after we adjust our reference system to rotate with one of them,
© the resultant electromagnetic field will be explicitly time dependent. Each loop as it penetrates
the interaction region will see a different electromagnetic field configuration. At each point the
charge densities on the surface of the cylindrical electron distribution will be time dependent, and
.- a8 the cylinder rotates, frequencies different from w; will be generated. The problem of sideband
formation will be reduced to the study of radiation created by the rotation of this time dependent

< ¢ylindrical charge. distribution.. For.that purpose a cylinder is. divided into loops fixed in space (at
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0
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D -TFig. . 3.3. Effect of electromagnetic field on electron distribution. .As each .cylinder =
o penetrates the interaction region, forces due to-the electromagnetic field, cha,nge its charge” .+
distribution, breaking its rotational symmetry and creating radiation. A ring obtained by -
wne-slicing. the. cyhndrlcal charge at z = 0 will have constant.charge density, another one at-
z # 0, will not. The wavy horizontal lines represent schematically the electron streams into
which the cylindrical charge distribution can also be decomposed. With the conventions
used in this dissertation, z is negative in the picture.

w.-a constant z), and the radiation that comes from each of them is studied. The total radiationsis’: -

. obtained by integrating all loops over different values of v|;, for the same z, then integrating over

different z values, over cylinders with different radii, and over different locations of the symmetry
axis. The charge conﬁguratioh in each loop is obtained from the electron’s equation of motion under

the influence of the incoming electromagnetic field. The solution of this equation, a function of

w(25¥y );:can beiobtained either numerically; through the use-of- phase plots;or-analytically, with the

:-help of perturbation theory.

-3.4. Equations for Electron Motion Under the Influence of Several

Monochro matlc Waves

Figure 3.4 shows an electron at a point P, moving with velocity v = vyuy+viuy. uyis a unit vector

~ pointing in the direction opposite to B,, the Earth’s magnetic field, and u, is a unit vector pointing

along the projection of the electron velocity. on the plane (x;y), perpendicular to B,. (Eq;By)

represents the electric and magnetic fields of one of the N waves in the incoming radiation singled

.out.as.a reference. for.the electron motion. . ..cocove oot e
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AX

Uy

_ . Fig. -3.4. Diagram of relevant-field -and -electron variables. - Notice ‘that the waves::
~propagate in-the +z,-and-the-electrons, in the —z direction. - - o SR

If we define ¥
E=) E (3.1)
i=1
N
B,=B,+B, =B,+ ) B; o (39)
i=1 o

The equation of motion can be written as:

V= dpuy o+ bru +osiy = ~—(vAB + Ey) (3.3)

It is possible to show that
iy = (0 +wi + kryu, (3.4)

<.where wy.and. k1 are-the angular frequency ‘and wave number of the reference whistler-mode wave;i#:

~and # is the angular velocity of the electron referred to thé same wave field. It should be noted ™ -
that § is a convective derivative. Its value takes into account the change in relative wave-clectron
position due not only to the electron rotation as it moves along its path, but also to the different -
orientations of the wave field at different points in space and different instants of time. From the

last two equations we get, neglecting terms important only for very small pitch angles,

. v-u eB : :
= — ~- k1v|| + V——-P- =--—k1'v" — Wi + _— = —kl(’U” - vrgs) (35)
vl m

ol W) = Upes, We say that the elgctron.is in resonance with the wave. This implies g=0.
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From (3.3}, the Lorentz Force equation, we get

o=V = e::: (4 - By) (3.6)
.+ which can be simplified to - . . . _
iy = o Z; Bysin(0+ AG;) LT e (37)
-with
Ab; = Akz — Awit + Ady (3.8)

oy

where the A operation means taking the difference between a parameter of wave ¢ and the same
parameter of reference wave 1. Putting in z = —u)(f ~ ¢,), where ¢, is the time the electron enters

the interaction region, we get after some manipulation,

Ab; = -t + ¢ (39)
with
Q; = ( + 1) Aw; (3.10)
and
i = (4 — Aw;)t, + Ady (3.11)

- 4% = Where vy is-the wave group velocity at the average radiation frequency,-and ;s the: Doppler :shifted %

-frequency difference between waves ¢ and 1.

- Finally, from (3.5), (3.7) and (3.9),

EQ sin(f — Qit + ;) (3.12)

i=1

-~ where Q% = ev) k1 B;/m is'the square-of the trapping frequency associated with wave 4. Reminding "

ourselves that

d2 5 d* d2
we can also write
L r0u\? )
Wy (v_t) [a + ( ) 2 = Awito + A¢] (3.14)
il Yit

i=1

‘The last equation emphasizes that the variation in angular position of the.electron depends on:howii.

far it has traveled inside the interaction region, that the electron oscillations to be discussed in the

“ following sections do not occur at a fixed point in space as function of time but are spread in space

as the electron travels along the z axis, and that their periods do not modulate the electromagnetic . -

waves in any direct way. The solution to the equation will be

0= 06(8,,0, 2,1,) . . (315)

- The trajectory described by the electron will depend on 8,, its initial orientation, #,, which is related -

;s b0 the.initial value.of v), and on £;, the time the electron arrives at the interaction region. If only one
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. wave is present, all Aw; will be equal to zero, there will be no dependence on t,, and the trajectories -
“*will be the same for all electrons starting with the same initial angular ﬁositions and same vj. As
-.stated in section 3.3, the charge distribution will behave as a rotating rigid body radiating at the

..single wave frequency.. If more than one wave is present, the equation predicts the existence of a°
.:set of trajectories, with initial point and derivative given by &, and ¢, which are slowly (compared *

. with wy, the frequency, of the reference wave) being distorted in time. The electron distribution.
.. can be decomposed into a sum of loops rotating with velocity w; and having time dependent charge .
distributions. This charge distribution can be obtained by studying the solution # at a fixed point:
_in space, z,, as a function of the initial angular position, initial v}, and moment of entrance in the
interaction region. :

For actual calculations, it will be more convenient to use the time dependent form of the equation
of motion, keeping in mind that observation of the motion at a fixed position in space is equivalent
to an observation at a time #,, = |z,|/9) -+ 1,, a function of the electron travel time and instant
of arrival at the interaction region. We assume in that expression that v is aproximately constant

over the electron trajectory.

3.5. Phase Plots

To study the evolution of the.electron distribution, we assume initially that all electrons arrive at

i .. time #, at the interaction region, having a random distribution in 6, and 6'0 with constant probability ..

. density in each variable. This distribution will not give rise to radiation ‘because-its-gradient as a =

- function of 8, (initial v)) is zero. However, if we follow the evolution of each electron trajectory-in - -
“-space and plot its projection in the (B,.G') plane, we will arrive at a clear qualitative understanding
of the radiation process.

Figure 3.5 shows the resulting phase plots for the case of two equal amplitude waves separated
by a frequency €. Different values for ¢, were chosen in each plot so that the waves in the beginning
- of the interaction region are rotated relatively to each other by an additional 60° from one plot to™
another. They are in phase in the first plot.

To create the plots, for a given initial time t,, several trajectories are started at random values
of (90,630). The time evolution of each trajectory is calculated and the electron position (B,é) is

plotted as a point in the plane at times

2nw

t:to+v, n=1,2,...oo (316)

* . This must be done because, as seen by looking at the different plots, all trajectories posses a con--
tinuous upwards motion which would blur the pictures, if all moments in time were plotted. The-
choices of ¢ given by the above equation are such that the waves’ relative angular position is always
the same and the trajectories are always at the same position. A complete description of the motion
would consist of the set of all phase plots for all values of ¢,.

- The plots show various resonances. Those are sets of electron trajectories which have been
strongly affected by the presence of the two waves. The trajectories have been changed from vertical

...straight.lines to sets,of . concentric. distorted ovals,: defining regions from which we should expect
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Fig. 3.5. Resonances created by two equal intensity carriers. The presence of each
carrier rescnance at § = 0, Q is readily apparent, together with additional resonances at
0 = Q/3, /2, and 2Q/3. As the carriers rotate relatively to each other, the additional
resonances are seen to rotate and radiate at frequencies w/3, w/2, and 2w/3. Their dis-

--tortions, created by the presence of the carriers, will modulate their radiations, modifying-
the spectrum as described in the text: (a) Relative carrier phase = 0°. (b) Relative carrier
phase = 60°. (c) Relative carrier phase = 120°. {d) Relative carrier phase = 180°.

most of the radiation to come. There is one resonance at ea,cﬁ incoming wave frequency, one halfway
between them (half harmonic), two at one third of the distance from one wave to another, and many
more, that would be seen if the plots were more accurate.

- - Figure 3.6 shows. a phase plot of the same two waves after their amplitudes are increased by a™
factor of 12.5 (22 dB growth). Due to the greater amplitude values, the previously seen resonances
have been destroyed, chaotic electron motion being present, instead. However, outside the chaotic
region, two resonances are present. They are separated from the main waves by a frequency € and
will radiate at their first harmonic frequencies.

Figure 3.7 shows plots for a more realistic situation. The region of phase space chosen for
observation is located, as shown in plot 3.7a, around the half harmonic reésonance. The chosen
-electron distribution is constant in # at z = 0 but has a constant gradient in 6 (that is; in vy), as

4. shown.in, plot. 3.7b. Plot 3.7c shows the effect .of the waves.on the electron distribution at a point z,
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- Fig.-3.6. Chaotic motion and first harmonics created by two strong waves. The car- ...
. -riers-are at 0 and €, and their relative phase is 0°. ‘Their common trapping frequency is
- 2 /2. ‘The first harmonics are.at —Q and 2Q. -Due to the high intensity of the carriers,’ -
organized electron motion in a large region containing the carrier potential wells is com-
i pletely. destroyed and replaced by chaotic motion, where wave growth cannot take place.:
The first harmonic resonances would be destroyed only if they were wide enough to overlap
the chaotic region. Chaotic motion is believed by the author to be one of the main causes -
of triggered emissions observed in magnetospheric data.

well into the interaction region. The gradient in 8, has been partially transformed into a gradient in:

8. The gradient in @ is equivalent to an inhomogeneous charge loop at z,, rotating with the average
- frequency of the two waves, and giving rise to radiation at the same frequency. We see that not

all bunching comes from inside the resonance. Plot 3.7d shows the wave effect on a distribution
~with zero gradient. In this case there is no bunching, indicating that an initial density gradient is

1. necessary for radiation to be generated.

-+ 3.6. General Solution of the Equation of Motion - KAM Theorem -

When writing the equation of motion

N
f=— Z Q% sin(6 — Quit + 61) (3.17)
. i=1 .
we have assumed that the reference wave has been wave 1 and that all Aw; are measured relative to
it. It will be convenient in our next considerations, to measure frequencies from an arbitrary origin.
With that in mind, we will shift our origin to an infinitesimally weak wave having an arbitrary

.. frequency, w;., which will serve only as a frequency reference,:-being ignorable for all other purposes.

s Lhis will imply Aw; # 0 and that all Aw; will be defined up'to an overall additive constant.
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Fig. 3.7. “Bunching” of electron distributions created by half harmonic resonance. ‘The

. carriers are at frequencies 0 and Q. The dark lines in (b), (c) and (d) are the approximate

. two branches of the separatrix of resonance (a): (a) Phase plot of half harmonic resonance

- which produces the “bunching” effect in the following pictures. (b) An initial electron

distribution with constant gradient in the # direction. (¢) Effect of resonance (a) on electron

distribution (b) after it has propagated for some distance along the interaction region. It

can be seen that “bunching”, when it occurs, is as pronounced outside as inside a resonance.

The charge rarefactions at ~ #/2 and ~ —7/2 are slightly different from each other due to

distortions in the resonance, as mentioned in section 3.9. Because of it, a net amount of

... radiation will be created. (d) Effect of resonance (a) on an electron distribution with zero
. gradient. It is null, as shown by this picture made at the same 2 position as in (c).

. The above equation of motion is equivalent to the Hamiltonian

N
H(g,p,t) =9°/2- ) Q; cos(g ~ Qut + ¢1). (3.18)
i=1
as can be seen by Hamilton’s equations:
OH
=2 =p 3.19
e=r (3.19)

o X '
p= b = — 29’2*' sin(g — it + ¢;) (3.20)
=1
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The system we are studying has N 4 1 degrees of freedom: the phase of the N waves, and the

"o electron angular position. This is explicitly shown by the fact that it ¢an be described by the N +1

~dimensional Hamiltonian,

N N |
CH(Gi i) = PReaa /24 Y Qupi— Y Qi cos(qngr — ti+ i) e - (321)

i=1 i=1

which has the following equations of motion:

o
; = = : ~(3.22
IN+1 3PN+1 PN+ ] ( )
. OH o, .
PN4L= g = Z QF sin{gny1 — ¢ + &) (3.23)
_8H
= 55 =% (3.24)
and oH
P = —-b—(; = Qu sin(gn1 — ¢ + ¢:) (3.25)

The p; are dummy variables and can be ignored. The equations for the ¢; give:
g = i (3.26)

~Substituting those values in equations (3.22) and (3.23), eliminating pyy1, and making gy, = 9

byowe:get the.original equation of motion. If we.now define .« .vws i oo s

N
Ho(Pi) = P?\r+1/2 + Z Qipi : : (327)
i=1
and .
Hi(gi,ps) = = ) QF cos(gne1 — i + ¢1) (3.28)
i=1
we can write
H(q;,p,-) = Ho(p,-) 4 Hl(qg,p,;), i=1... (N + 1) (3.29)

:where Hy(g;,p;) is periodic-in all ¢;, and H,(p;) depends only ‘on the p;.* Under those circum-

.stances, the KAM (Kolmogoroff, "Arnold, Moser) Theorem for nonlinear ‘systems states that the
= motion described by H, (free electron motion) will be apreciably affected by H; only if the following <

relationship holds for the variables describing the free motion:

N+1

> midi =0, (3:30)
i=1 .
n; being arbitrary integers. Making ¢n4: = f = Q, we will have:

N
a2 =) nQ (3.31)
- =1
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Now, the interaction between the electron and the system of electromagnetic waves should not be

“-deperident on the chosen origin of coordinates. Theréfore, if we make a shift §Q in the coordinate

=ugystem, the new equation obtained should also be a valid description of the interaction: - -

N _
(R +892) =Y nilQ+69) o e (3.32)

i=1

. Since §{2 is arbitrary, the two equations can be true only if -

N
n= z n; : (3.33)
i=1
Since w; = wr + Aw; = wr + Uiy + vg) /vy, the formula that gives the frequencies for strong

electron-wave interaction, that is, the resonant frequencies, is:

N
i=1 Wi
= iz T (3.39)
Zizl L
where w = wp + Q(v + vy) /vy is both the frequency of a wave resonant with an electron of ¢ = Q.
and the frequency at which such an electron would radiate. The allowed resonance frequencies are

just the weighted averages, with arbitrary integer weights, of the incident wave frequencies. This

~:simple formula, independent of the detailed form of the Hamiltonian describing the motion, and =

i, mentioned in the introduction of this chapter, was the one succesfully used in the previous chapter **

-+t describe the Siple sideband spectra.

o

5-3.7. -Analytical Solution - Lie Transform Perturbation Method

To study specific resonances, a more sophisticated mathematical treatment is required. We choose -

the Lie Transform Perturbation Method, applicable to any Hamiltonian system, which has the

following advantages: It does not use mixed variables in its formalism, allowing the perturbation

expansion to be extended to arbitrarily high orders. It does not generate secular terms or small™

‘denominators if a judicious choice of the associated generating function is made. Its formalism,
being based on Poisson brackets series, is canonical and invariant in form under any canonical
change of coordinates.

The method has been described in several places. Here we follow the notation used by Cary

2 [1981] (Deprit perturbation series), and summarize it as follows: -

-4 We assume that the known Hamiltonian, A, is expressible as a power series for a small quantity-

[
o0

h(g,p,t) = D ha(g,p, 1) (3:35)

n=0

and we look for a new and simpler hamiltonian, K:

K(Q,P,t) = i & Ka(Q, P,t) | (3.36)

n=0
through a change in coordinates
Q=T(g,p1)4e (3.37)



P=T(q,p,t)P

‘where T is an unknown operator expressible in powers of ¢:
(=]
T(q,p,t) = Y _ " Tulg,p,1)
n=0

.-The sclution is found with the help of a generating function

W(QJPJ t) = Z En Wn+l(q;'p?t)

n=0

and a sequence of operators L, defined by

Lﬂf(‘]spst) =.{Wﬂ:f}: n=1...00

where the curly brackets represent the Poisson bracket operation.
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(3.38)

-(339)

-(3.40)

(3.41)

The new Hamiltonian, expressed in the new variables (@, P), can be obtained up to third order

from the following set of equa‘.tiOHS:
K,=h,
oW
S WLk = K- iy
SW:
T2 W ho} = 2 ~ ha) — La(Kr+ ha)

L 8Ws

—— + {Ws, ho} = 3(.K3 - hs) — Li(Kq +.2h2)'-;- Ly(Ky + h1/2) - L.‘fhl./2 :

ot
and the inverse transformation, to return to the original (g, p) pair is
¢=T7'Q

p=T"tp

T-YQ,Pt) = ie"Tn'l(Q,P,t)

n=0
..where
Tot=1

_1 9 .
Tyt = L/2+4 L2)2

Ty = Laf3+ L1L3/6 + LaL1 /3 + L3/6

(3.42)

(3.43)

- (3.44)

(3.45)

(3.46)
(3.47)

(3.48)

(3.49)
(3.50)
(3.51)

(3.52)

We see that the set of functions W, defines the change of coordinates completely. Since the set of

equations defining the new Hamiltonian has 2r unknowns, up to order n, we are free to choose the-

- W, as we please, defining the change of coordinates arbitrarily. After a choice is made, the K, can

- .be calculated together with the T;;"! that define the inverse transformation.. The choice of the W,
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should be made judiciously, however, since they have to be bounded for the perturbation expansion

- to be valid. The equation for the W,, can be written in the form:

ow,

57 T {Waihol = aKa(Q, P,1) - fa(Q, Pt} = gn(Q, P, 1) (3.53)

. Assuming we are solving the equations recursively, f,, is known because it depends:on h, ... hy; "
- which are given, and on W,_;...W; and K,_;... K, which are found at a lower.order. The

solution to such an equation is given by Cary [1981]:

t
Wh = / dr gn [@ + QT — 1), P, ] (3.54)

with oh
o= (3.55)

It seems clear that if g, has terms which are slowly varying in time, as, for example, a constant ot a
resonance for a certain value of P, W, will vary approximately linearly in time, will be unbounded,
and the perturbation expansion will fail. This gives us the guidelines for choosing K, and implicitly,
the desired change of coordinates: K, must absorb all constant terms present in f, together with
any term representing a resonance in the neighborhood of the P we are interested in. This will-
make Wy, a bounded function and,-at the same:time, will transfer:to &, the resonances we:intend
to study.

The process of solution of our equations is therefore defined: -Starting with K,, and proceeding

i to successively -higher orders, we put in‘the K, all constants présent in thé functions f, of our.*

equations. At the same time, we inspect each f,, for a resonance of interest. If we do not find it, we

calculate W, and proceed to a higher order. If we do find it, we add it to K, and stop the search.
"The new Hamiltonian, K, will be composed of constant terms plus a single, higher order, term
+ describing -a resonant-process, and will be valid for-all values of P away from resonances skipped
- and incorporated in the lower order W,,’s. Expressions for the (¢, p) can be obtained by calculating
the operator T—! and applying it to (Q, P).

-3.8. Electron Motion for Non-Resonant Values of v

-, 22 1f we-nse the explicitly time-dependent form of the Hamiltonian, and put Q%= eA;, we have

h(q’p’t) = ho(qu! t) -+ Ehl(Q:P:t) ) (356)

with
N !
ho=p*/2, hi==)_ A;icos(g—t+ o) (3.57)
i=1
. To study non-resonant terms, we ignore all resonances, and put in the K, only constant terms.
To get the simplest non-trivial transformation of coordinates we have to go up to second order in
-.-the perturbation expansion. Doing this, we get K, = h, and X; = 0 (because hy has no constant -

__terms).
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This implies
t N o4
_ f dr b [Q+9(r —1), P,7] = ) 5l sin(@ — it + 4) (3.58)
i=1 *
since £ = P for our h,.

- We then choose

- where the pointed bracket operation means that the constant part of the function enclosed in brackets -

should be taken. A straightforward calculation shows that

5 Ty 008 20— (4 0)0+ 61+ 5] — o (0 = )t = (61— 4}
e (3.60)
Therefore,
2 .
Ky = (W) = 5 Z o (3.61)
and

P 2 X A? _
I{—T-I.I;W' : S - (3:62)

vt Thertrasformation ‘back 'to (g, p) is given by

0= Q+cWe,Q) + SIWL (W, Q) +.. (369

p= P +e{Wo, P} + S (W, (W5, PY} + .. (3.6

Keeping only first order terms and constant second order terms,

_ ow, € aw,
1= Q- e5p — 5 {W, 55 h (3.65)

BWI 62 6W]_
p=P+e—— 30 “5({W1, 50 h - (3.66)

and
N Ai . .
g=0Q ¢ ; (_P_—-W Sll’l(Q =t + 45,) . (367)
p= 22 Q)3+e;(P Q)cosQ it + i) (3.68)
- Hamilton’s equations of motion for K can be solved : '

p=-2K_ 0 (3.69)

. 0Q
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0K €2 A?
=T =P T LFoar " @10
“The solution is
P=P =0 (3.71)
Q=2+0Q, . o (3'72).

- . The meaning of & (and @,) can be obtained by noting that Q@ — ¢ as € — 0. For a free electron, -
.- ¢ represents the angular position of the electron measured from the reference wave as the electron
- propagates along the —z direction. We will consider electrons with a vy such that its motion is in ™
resonance with an infinitesimally weak wave of frequency Aw above the reference wave frequency
(this imposes no constraint on the motion). If the electron is in resonance with such a wave, their
relative angular position will be constant, and the electron’s angular position with respect to the
- reference ‘wave will be the- difference in phase betwéen the two waves; Af: This expression is known

from equations (3.9) and (3.11), allowing us to write
R=qg=A0=00—1{,}+ Awt, — Ad = Awt, + ¢, (3.73)

We see that © is the Doppler shifted frequency difference of the two waves seen by the electron as

it moves along. (t —{,) is the constant time it takes each electron to go from the beginning of the

--.-interaction region to.the point. of observation,.z,. Substituting those values.in the expressions for g+ -

and p,
: N A.
g = Awto + gs, + e; msin [(Aw — Aw;)to + 6] - (874
N ) A
p=Q+¢ ; m cos [(Aw — Aw;)E, + ¢..] (3.75)

. Where ¢;, = (Q—Q;)(t ~1.) — (Ad — A¢;) and g,, are arbitrary but constant phases at the point of -
observation z,. The equations state that a stream of electrons starting with a constant phase relative
to the infinitesimally weak wave of frequency Aw will in the limit ¢ — 0, have an intersection with
the plane z, = —uv) (¢ — {,) which turns, as ¢, varies, with angular velocity w = w, + Aw. If those
streams are initially equally distributed in phase, the resulting intersection will form a DC current -

loop and will not radiate, as expected. If ¢ > 0, the equations predict conditionally periodic changes

.:;+ away from constant frequency rotation. Those distortions are the first order approximation to the::.

«...bunching created by the incoming waves outside their potential wells. Each term in the summation -

- . tepresents the effect on the electron of one wave, and will produce radiation at the perturbing wave -

frequency. Because we have kept only the first order terms, the effects add up linearly, and the
bunching from one wave does not affect the bunching created by the others.

An important effect, here due to the adiabatic invariance of P, must also be noted: If we average
away the oscillatory terms, and assume that a certain particle has p = P = Q, for € = 0, and that

- the wave fields are adiabatically turned on, then P will remain constant, and p will vary as:

a el A? ' :
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The particle will be shifted due to the presence of the waves, the forces being such that each wave
* tends to pull the particle towards it. ‘The combination of such an effect with the natural fall-off of

+:»ithe electron distribution density with increasing v (that js, increasing w), can explain why sideband

.. growth is more pronounced on the upper frequency side of a carrier. Figure 3.8 shows the effect: of =

;i - a single wave on the electron distribution. The electron shift flattens it on the low frequency side)"

| --and steepens it on the high frequency side. Since wave growth increases with the electron density

" gradient, growth will be expected to be more noticeable on the high frequency side of the carrier as

-1s seen In most Siple data.

electron densi

frequency

Fig. 3.8. Distortion of electron distribution by electromagnetic wave. The dotted line
shows the effect of the carrier on an otherwise constant electron distribution. The dashed
line represents a typical unperturbed distribution. The continuous line shows the resulting
flattening at lower frequencies and steepening at the higher frequenc1es present on the final

.electron distribution as a consequence of the wave forces.

3.9. Half Harmonic Resonance
- If we look for resonances using the perturbation expansion up to second order, we will get first : -
K,=h, (3.77)
We will have then to put
Ki=0 (3.78)

because k; has resonances only for § & ;. Those are resonances at the incoming waves’ frequencies
which we do not intend to study now. They will be focused in chapter 4 with the help of different

. canonical variables.
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With those choices, W, will be the same as for the non-resonant case. The possible second

. % . order resonances will come from the term Ly hy. This term was already calculated (equation (3.60)),

-and is made up of two sums. The second sum contains, among other things, a constant term which

.. we must include in K3. The first, has several resonances, all of the same form.: We will study one

.. such resonance for a pair of waves (¢,j),i # j. (For i-= j the resonance again falls-on -one of ‘the:

.- incoming carriers). By choosing

N, A2 AsA; A A . .
Ha=g Z P-0 [2(p —oyt o 5j)2]'°°s Q-+ )t + i+ 5] (3.79)

and defining Q; = (Q; + Q;)/2, we get,

P 2 4 2A; A 1
ta s I{— ""é"’ "l?q.é=1 (P— Qi)2 S ] [(P Q )2 (P Q )2:[ COS(2Q— zn%t + ¢:' + ¢J) (380)

Hamilton’s equations applied to K, will give:
Q:a—z z +O(P-Q3) (3.81)
2 Q )3 k

: OK 2AA 1 . e
PG = Tt om0 Myt ar e GE)

-*Since we are considering only:points close to the resonance;

PrQ~Qy (3.83)
and the equation of motion will be
p 86 A A;
with
AQ =2Q — QQ%t + ¢ + &5 , _ (3.85)

This is the familiar pendulum equation, describing a resonance region of width (in the variable Q)

) 4\/56\/}1,;/1_?'
Ty = o (3.86)

‘The equilibrium points are given by AQ = 2nm, or:

$E9% o n=01 (3.87)

Q=0ut— =

Substituting ¢; and ¢; for their values, and defining:

Awy = (Aw; + Aw;)/2 (3.88)
b = Qy(t—t,) - 2H A% (3.89)

2
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we have,
- ='Aw%to + ¢y +nwr, n=20,1 (3.90)

¢i; is a constant phase, dependent, however, on the point of observation z,. The equation describes

. . tWo resonances oppositely located in phase, which rotate in the @ direction with -velocity":Aw\%

.. Because the two branches are oppositely phased in the. (@, P} plane, we see-that to obtain net"
. radiation we will have to depend on the existence of different electron populations in each resona,nce“

branch. -Expressed in terms of the original variables, -

A
¢ = Awyt, + +¢sg + ez (91 Q e sin [(Aw% = Awplto + -2—Q + ¢ijk] - (3.91)
= —]——A—Q+e§:—--—4k—cos (Awy — Awg)t +é-c-2-+¢--] (3.92)
P=y ) oy (s — A+ ST+ '

where ¢;;; does not depend on time. The AQ/2 term in ¢, shows that the relative position of any
two electrons can be changed by as much as #, making bunching effects appreciable.

The radiation from each charge can be obtained if we go to configuration space. Each charge
is obtained by the intersection of the electron stream with the plane z = z,. In that plane, each

charge will be rotating with an angular velocity, w, given by:

= Y
w= gt (3.93)

(Note that p is irrelevant for this calculation, since it-describes each individual electron motion as it -

# moves. in-the;~z.direction, and we are interested in the stream at afixed point). The radiation will -

be circularly polarised. To obtain the frequency spectrum, we will project the motion in the (2,2)

plane. If we define

wy —w,.+Aw: = (wi +w;)/2, (3.94)
Aw,-_,-k = Aw% — Awk, (3.95)
Ag
bp = o———, 3.96
and
N ;
0 = Z by sin(Aw,-_,-,g.to + qk), (397)
k=1
we can write AQ
3=w%to+T+¢;j + &b, (398)
+ To first order the electron’s acceleration along « will be
i = —-rwi cosf = —-rwg cos(wits + -922 + ¢si;) + €6y rwi sin(wyt,) (3.99)

or

: A
&= —rwl cos{wyto + —-Q + é3;) + erwl/2 E b,g{sm [(wi + Aw; — Awp)to + n1] +sin [weto — ne]}
k=1
(3.100)
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The equation shows that radiation will be mainly produced at the frequency w1, as should be

v . expected by the location of the resonance in frequency space, but that there are smaller contributions

--at the frequencies wy and w; + Aw; — Awg, k = 1...N. Those are radiation on top of wave k and

at the mirror image position of k in the interval defined by ¢ and j. We will see that radiation at

- those frequencies is generated by other resonances in a more efficient way, and will therefore neglect
-.. those small corrections. With this approximation, we can consider all radiation coming from the

+ half harmonic resonance as being located at the frequency Wi

-+ If both resonance branches are equally populated in the (@, P) plane, for each particle with"

“ position AQ) it is always possible to find an equivalent particle with position AQ+#. Those particles i,

have opposite accelerations and cancel each other’s radiation in the z-direction. However, at the
beginning of the interaction region the two branches will be located at slightly different positions
in the (g,p) plane due to the distortion effects created by the incoming waves. - If the electron
distribution has a gradient in p different from zero, the population of the two branches will not be
the same and a net amount of radiation will be produced (see Figure 3.7c). We note, alsd, that all
points in the resonance radiate at the same frequency wy, despite the resonance finite width, and
that the 2-branch resonance structure is inconsistent with the presence of radiation. As soon as

radiation starts, it will form an additional resonance, rotated by —=/2 from the radiating resonance,

. changing the initial electron motion and resonance configuration.

.>3.10. Third-Order Re_sonances

3.10.1. General Expressions
+ To look for third-order -resonances, we choose K,, Ki, Wy, and K, the same as in-the non--"

resonant case. This implies

- we _
Wy :i;:l 2(P — ;)2 [ng_ %+ Qj)] sin [2Q — (Q; + Q) + ¢ -+ é;]—
al AiA; (3.101)
..Z 2P = Q-;2(;2- ~a;) sin [(Q; — Q)¢ — (¢ — ¢5)]
T A -

Among the third order terms, Ly K can be ignored for it contains resonances only at the incoming

carriers’ frequencies. Third order resonances must come, then, from the terms Lsh; and L3hy. After

M wwofa straightforward but rather lengthy calculation they ‘are found to be: -

N

b
Lahy = Z ;k o5 [3Q — (O + Q; + )t + ¢ + &5 + éi] +
et (3.102)
i — @ikj — bij
D ML TH 0k cos[Q— (% + 9 — D b+ ¢ — ]
4,,k=1
N eip = dis
L3k = Z Lé‘*-ﬁcos[f)'Q— (% + Q5 + Qe+ i + 65 + dr]+

B (3.103)

N :
) o ; Giti ¥ Qi oo (@~ (R 4+ — Y+ i + 65 — 1]
: ,i,j,k:l ) : '
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with .
= 18540k
WS P-r@ ) (8104
bijk -_ A,‘AjAk:£3P - (QQ,' + Qj ))2 (3105)
(P—)3 2P — (% + Q)]
o AsA; Ay
it = BP0 (3.106)
Az Az Ay
L Qi = 3.1 7
ik = TP TP (#1070
:',Ka will have to be chosen from the terms in - '
Lohy +L2h;
—61"— = Z ok €08 [3Q — (5 + Q5 + )t + b + ¢ + Sl +
k=t (3.108)

N .
D Burcos[Q— (i +Q — Q)+ b+ 85 — ¢x]
4,4,k=1 :
For ¢ = j = k all terms in the above expression are resonant at the incoming carriers’ positions and
are not of interest. We must pick terms with at least one index different from the other remaining

two. They will provide the third order resonances we are looking for.

+.-3,10.2. Two-Wave Resonances

One-Third Subharmonic.

i For #.==4j+# ¥ the termi symmetrical under permutation of the three indices gives:-
K3 = (o + apg; + ;5 ) co8 [36) — (29; + Qe )t + 26 + o] (3.109)
Defining Q2 = (2Q; +£4)/3, and calculating the o’s:

243 A2 Ay

Ka=- 16(%; — ;)8

cos (3Q — 304t + 2¢; + ¢k) (3.110)
The Hamiltonian will be:

P a2l g s 243424,

AT I L oar - )

cos (3Q — 303t + 264 + 1 (3.111)

- -which will give the equation of motion:

243424,

o e 23A%As
AR =~y — )

sin(AQ) (3.112)
with
AQ = 3Q — 303t + 2¢i + ¢ (3.113)

- The motion will have three points of equilibrium for AQ = 2nr, indicating a three-lobed resonance
in G
i Q =53t

2¢; 2
s_:~?t’>+<!5;;+ nw

—, n=0,1,2 3.114
3 30" 0,1, (3.114)
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In terms of ¢,,
° 244; + Agy  2na

3 3
with Aw g = (2Aw; + Awi)/3. Observed at a fixed point in space, the resonance will rotate and

Q = Awgto + Qg (t ~1,) — , n=0,1,2 (3.115)

radiate at:
_ (wit )
3

and will create a line in the frequency axis 2/3 of the way from wave i towards j. Since the labeling

wg =wp Aw " (3.1186)

-.of the waves is arbitrary, there will be another resonance, identical to this one, but with wave indices
« permutated. It will be a resonance creating a sideband wave at a frequency 1/3 of the way from’i"
to j. The full width of the first resonance in the (@, P) plane will be:

e A /Ay
Ty _9\/'(Q e (3.117)
and of the second one,
_ €§Am/
Ty = 9\/'(Q Qk)z (3.118)

The different dependence of each resonance on the variables A;, and A; is clearly very important

when one of the carriers in the interacting pair is much weaker than the other.

-.JFirst Harmonic Resonance

- “Again assuming i = j # k in equation (3.108), we find from the term-asymmetrical in‘ ;¢ kthe s

-, following resonance:

K3 = Bip cos [Q — (20 — Qi )t + 2¢; — ] S (3.119)

If we define Q15 = (26 — @), and caleulate B;i,

Ka= - 2% (0~ Dunt + 21 — b0) (3.120)
. 3— 16(9{ . Qk)4 1k 3 & .
‘The full Hamiltonian will be:
pz 2 a2 s At

K= cos (@ — Qupt + 2¢; — d¢) (3.121)

PR~ N G (ORI AT

- In a way similar to the one-third subharmonic, we get the equation of motion:

- 2
AQ = 31“%%?“@@ (3.122)
with
AQ = Q — Qunl +26; — ¢ (3.123)

There is only one equilibrium point, A@Q = 0, and only one lobe in this resonance (making i, a more

efficient radiation source). For the equilibrium point, as a function of {,, we have:

Q = Awipt, + th(t - fo) — (2A¢, e Agbk) (3.124)
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where Awyp, = (2Aw; — Awy). The resonance has width

3
e A/ Ay
Iy = -t 3.125
1h (Qg’ _ Qk)2 ( )
and rotates with frequency
S wip = wr + Awgg = wi (W - wyi) ‘ (3.126)-

« .-Lhe radiation will be a first harmonic of the two wave frequency separation, located next to wave:
-..i. Again, because the labeling is arbitrary, there will be another first harmonic resonance next to+
wave k, rotating with frequency wy + (wi — w;) and having width €% Ax/ZA; /(9 — Q)2

3.10.3. Three-Wave Effects
Arithmetic Mean

Assuming i # j,j # k,k # ¢ we get from the symmetrical term a single type of interaction:
K3 = (ouji + ajie + irj + oraj + onji + ojri) cos[3Q ~ (R + Q5 + )t + ¢ + &5 + d]  (3.127)

- which can be calculated to give:

35 Aid; Ap(AL + D Ajr + AR) ' e
Ky=—>— - 4 cos [3Q — (% +Q; + Qe )t+ i + ¢j + da] -
SR T T G ¥ A2 F Bg) 2By — A BQ = (% 4.0 + O}t + i+ bt de]

‘ (3.128)
where Ai; = Q; — Q; and Aj; = ©; — Q. This resonance has a three lobe structure similar to the -
one-third subharmonic, and radiates at the frequency

_witwi twy

w= T (3.129)

that is, at the average frequency of the three waves. The resonance width will be

1
374, 4; Ap(AF + AijAji + AY,) i

Toppn = 2\/§ H
aréth @Ry + 25 Bt + 8By — Aa)?

(3.130)

¢+~ The denominator is divergent, effectively increasing the resonance width up to second .order when':
:.:one of the two waves is-approximately halfway between the other two. The perturbation expansion -
will break down (due to the formation of chaotic motion) when the resonances associated with any

.. two waves begin to overlap. This imposes a minimum displacement of the sideband location away
- from wave j: P = j + 2\/e4;. This implies Ay; — Aji & 61/e4;, and |Ai;| & |Aw|/2. The

resonance width will be under those conditions approximately equal to

26\/22,’2]‘ '

W (3.131)

Tarirn &

- o ;hich is of the order. of $he half harmonic resonance width. . .



39
Intermodulation Effects
- For i # j,j # k,k # i, we get from the asymmetrical term in equation (3.108):

Kz = (Biji + Bigr) cos[Q — (i + Q5 — )t + és + 65 — 1] (3.132)

which gives, when the coefficients are calculated:

1 AjAj Ay
2 A (Agy + Ay )?

Ky =— cos[@— (Uu+ Q- WYt + g+ 45—} - (3.133)

- The above term creates- three different resonances,- dependi:ﬁg-on the wave that is singled ‘out=as
wave k. All resonances have a single lobe and, therefore, are efficient radiators. Figure 3.9 shows
the three possible radiation frequencies. The effect is equivalent to the intermodulation of one wave

i B v et oty bhe. frequency.: difference.of the. other. two, either sign being possible:. The frequencies of radiation
will be

w = wi 4 (Awj — Awg) = w; + (w5 — wi) ' (3.134)

and the resonance widths will be :

%%\ /24;4; Ax, (3.135)

\/[Aﬂe”AJk”A:k + Ajzl

int =

- When wave k is approximately halfway between the other two interacting waves, the resonance width #:

= increases without bounds. If wave k is specially weak, the observed phenomenon will be similar to &

sweanamplification of the said-wave with'a slight shift'in its frequency. -The limiting position ‘of the-
~‘resonance is given by P & Q3 —2+/eA4;. This implies A;y, -E-A_;,k = 421/ €Ar, and Ay & Api & Ay [2,
The resonance width will be approximately

w 26V/24i4; (3.136)

which is of the order of the half harmonic resonance width., Under those conditions, and due partly
to its single-lobe structure, this resonance will be the most efficient radiator among all we have seen

in this chapter,

-:3.11. Higher Order Effects

It can be seen from the lower order terms and from the way they are generated that the general -+~

expression for the resonance frequencies of order n will be given by equation (3.34) with Zf\;l [nil =n
as a constraining condition. This shows that an nth order effect can involve at most n different waves. :

The expression for the frequency of the second harmonic resonance of a pair of waves (£,4) is
€ = Q; +2(% — Q;). The order of this term will be n = |3| 4 | — 2} = 5. The second harmonic
is, therefore, a 5% order effect, and very likely will not proﬂuce directly observable radiation. Its
creation through the present mechanism can be possible only through a two step process in which
-the first harmonic is created, grows, and then interacts with one of the carriers to produce another

ez et ez f108E harmonic which is the second. harmonic, we are looking for...-. -
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I /\/ intl
int 1 : : fl C

(a)
int,
£ f

frequency

inty o, inty

..........................
dae

Foy

. process: (a) f1, fa, and f3 are incoming carriers and int;, intg, and ints are the three different =
- sideband waves produced by the intermodulation process. -For the spacings shown in the : -,

picture, inty is always greater in amplitude than int; and ints. (b) Intermodulation is a -
:non-local effect:. If.f;. has variable frequency, the sideband waves created by the interaction
‘are able to follow its shift in frequency, despite the fact that f, and f3 remain fixed. intg is =

time time

- Fig. 3.9, Frequency distribution of sidebands created by third ordér intermodulation .~ %

represented by a dotted line because it weakens as f; moves up.

3.12. Conclusions

---As main features of the sidebands just studied, we can quote:
- 1

Sidebands are created only by a line-line interaction process. No single-line sidebands appear’

in the formalism.

- Sidebands can be created only at certain specific frequencies given by

N '
i1 Ny
i=1 "

W =

. Sidebands can be created only if the electron distribution has a non-zero gradient in TR

. Each sideband wave is associated with a resonance of the electron motion which, in an adequate

systém of coordinates, is always described by the pendulum equation.

. Radiated sideband frequencies do not depend on v, , only the amplitudes do. Integration over

different pitch angles will not smear out the resonances increasing the radiation linewidth.

. The frequency of individual electron oscillations (“trapping” oscillations) does not directly affect

the observed sideband frequencies in any way. Those oscillations are convective, occurring as -

_ the electrons, as part of a stream, move along the interaction region. Although each electron

. oscillates, .the stream .as'a. whole, constitutes a. DC current line and will not radiate unless
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distorted or accelerated by some additional cause. The overall emitted radiation will be a
combinéd result from the acceleration of all such current lines, and its spectrum will reflect the
frequency structure of the externally accelerating forces.

+- T.. Growth will affect line amplitudes appreciably. The resonance widths calculated in this chapter-

. will give only an order of magnitude estimate of the observed relative radiation intensities. :

= 8. -Due to its recurrent law of formation, the sideband system has a fractal structure, exhibiting'

-+ many properties associated with randomness. ‘Only for cases where the recurrence process of

- ..new wave formation stops-due to limited wave growth, do we obtain spectra with a cleariy.'?
-+ recognizable order in the frequency. distributions. - ; ‘ R
9. Chaos, present when the potential wells of different waves start to overlap, as seen in Figure 3.6,
is an important factor in the formation of the final radiation spectra. This author believes that,

- combined with inhomogeneity effects, chaos is the cause for the triggered emissions frequently
associated with Siple, and other narrow bandwidth, signals as they propagate through the
magnetosphere (see section 6.2 for some conjectures on the subject).

In this chapter we have focused on resonances created outside the potentidl wells of a set of single-

frequency carriers interacting with the ionospheric plasma. Those resonances are narrower than

the ones directly associated with each carrier, and are, therefore, more susceptible to disruption
by forces coming from-the inhomogeneity of the Earth’s magnetic field. In chapter 4, we will see*

~that radiation, at the same frequencies as the ones we have studied in this first part, can also be™”

created by resonances inside each carrier potential well. Those:resonances are more: protected from:#

dnhomogeneity effects and should produce radiation over a longer interaction-length than the ones: = .

considered here.
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4. Description of Internal
(“Trapped”) Resonances

4.1. Introduction

- . In this chapter we will concentrate on the study and classification, together with an analysis of the -
~ sideband radiation they produce, of cyclotron resonances created by the electromagnetic fields of an
“ . jeresiti incoming set of carriers acting on plasma electrons inside the carriers’ own potential wells (“trapped”::.
. resonances). A previous reading of chapter 3 is recommended, since the same analytical methods
-are ‘used to solve the equations describing the electron motion and the same type of phase plots are
used for displaying numerical results. Most of the notation used in this chapter is identical to the
one used and defined in chapter 3.
et We-begin-chapter4 by displaying, in section 4.2, “trapped” resonances with the help of phase
plots, and discussing qualitatively the process of radiation formation. In section 4.3, as a preparation
for the work to follow, the equations describing the electron motion are rewritten using action-angle
variables which are more adequate for the study of motion inside the potential wells. The KAM
theorem is applied in section 4.4 to the Hamiltonian expressed in action-angle variables and general
expressions for the resonant frequencies of motion and associated radiation frequencies are obtained.
+/ In section 4.5, the Lie perturbation method is applied to solve the equation of motion for non-*"
resonant electrons. Section 4.6 describes analytically an infinite set of first order resonances coming

from the interaction of any wave pair in the incoming wave packet-and radiating-mainly at. their first

admvharmonic.frequencies:.. Weaker radiation at the subharmonic:frequencies is also obtained. Section4.7 "

describes two- and three-wave second order effects. Two-wave effects consist of the second harmonic

and a series of subharmonics. Three-wave effects contain intermodulation effects, together with the

infinite series of their associated subharmonics. Section 4.8 describes sideband interference effects
. due to the direct interaction of resonances located inside a same wave potential. Section 4.9 looks«

at higher order effects, and section 4.10 contains the conclusions.

4.2, Phase Plots and the Process of Radiation Formation

Figure 4.1 shows the time evolution of one of the trapped resonances we are going to study, seen
... .. by an:observer at a fixed point.in space. The resonance is created by a main wave, inside whose
: potential well it oscillates; and by a weaker wave not visible in the plot. The resonance motion i
* it phase-locked to the weaker perturbing carrier and its rotation is at twice the carrier-carrier frequency =
difference as is indicated by the vector diagrams at the corner of the pictures (it is a second harmonic
resonance). The trapping frequency of the main carrier is slightly higher than twice the two-carrier -
frequency difference, as should be expected, since the average rotation frequency of the resonant
electrons is undisturbed by the presence of the resonance, A band of chaotic motion is seen around
the resonance, and will be present in all cases where internal resonances are formed. Electrons in this
chaotic band cannot be bunched, and its presence will contribute to the main carrier saturation by
limiting its growth. We will see in the following sections that radiation from this trapped resonance

-o¢ Will fall mainly outside. the carrier potential well., Those.two facts imply that, for this value of the
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Fig. 4.1. Trapping resonance created by two interacting carriers. The main carrier
is located at # = 0 and the weaker, perturbing one, at § = Q. The main carrier trapping
frequency is & 20, and the weak to main carrier amplitude ratio is 0.2. As the carriers
totate relatively to each other, the internal resonance rotates at twice their frequency
separation: (a) Relative carrier phase = 0°. (b) Relative carrier phase = 60°. (c) Relative
.carrier phase = 120°. (d) Relative carrier phase = 180°.

trapping frequency, few of the electrons that are directly affected by the main wave will radiate at its

e fr@quency. In other words, for this electron population,the main wave has practically saturated due

yit owwtowow oo b0 the presence of the weaker perturbing carrier. On the other hand, the weaker carrier is located -

. inside the main carrier potential well, one quarter of the way from the center to the separatrix, but®

no resonance directly associated with its presence is seen. This means that the weaker carrier is not
able to bunch electrons on its own and grow. We say that, under those circumstances, the weak
carrier growth has been suppressed by the strong carrier.

The radiation process can be understood if we remind ourselves, from chapter 3, that resonances,
coupled to the existence of an electron concentration gradient in vy at all points in space, can cause
bunching when they act on the convective motion of the electrons moving along the duct. Observed
at a fixed point in space, the trappped resonance will exhibit some bunching causing a localized

--sperburbation.inside thejpotential well.-Now;:the-resonance.is phase-locked to the weak carrier, and,
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as time flows, its position, together with the perturbation in electron concentration associated with

it, will oseillate inside the main carrier potential well. This oscillation will modulate in frequency

. -the radiation produced by the main carrier, creating sidebands. An important fact to be noticed is

that the radiation process is a collective phenomenon coming from oscillations of distorted electron

-...concentrations inside the potential well, occurring as a function of time at a fixed. point in space, -
- independently of the existence of full .oscillations for individual electrons as they move along the

duct.

Figures 4.2.a and 4.2.b have a pictorial deseription of the resonance radiation mechanism.. We ..

" assume that the internal resonance, due to the disturbances it creates in the electron concentration;

constitutes a localized source of radiation, with a periodically varying frequency. If the carrier has
frequency w; and the resonance turns inside the carrier wave potential with frequency Aw, radiation
will be observed at frequencies w = w; % nAw, 0 < n < oo as a consequence of the frequency
modulation process.

Figures 4.2.c and 4.2.d show the case when the internal resonance has two lobes. Each lobe will
radiate the same frequency spectrum shifted in phase by 180°. The modulation around the carrier
frequency will now repeat itself twice as fast, creating a spectrum of lines separated from each other

by the frequency 2Aw if the perturbations in electron concentration are exactly the same for the two

- lobes.. If some difference occurs,.due e.g. to variable distortions caused by the perturbing carrier;

" the spectrum will also have odd multiples of Aw which will show up as weak half harmonics between
the main even multiples of Aw.

. 4.3: Electron 'Equation of Motion in Action-Angle Variables -

From chapter 3, we know that the equations describing the electron motion under the influence of
N waves are

N
6= 0%sin(0 - Ot + ;) (4.1)
i=l
Qi = (L +1)Aw;, , 4.2)
Yg .
b = (i — Aw)ts + Agy (4.3)

.= where Q% = ev) k1 B;/m is the square of the trapping frequency associated with wave i, §); is the -

= Doppler shifted frequency difference between wave i and reference wave 1, and v, is the wave group'+

velocity at the average radiation frequency.

~ For the study of internal resonances created by the wave-wave interaction process, it will be
extremely convenient to single out one of the waves, that can always be wave 1 by an appropriate
labeling of the carriers, and rewrite the equation of motion using (j, ¢), action-angle variables for
electron motion under the influence of that single wave. The meaning of (j,¢) can be seen from
Figure 4.3 and the defining equations:

L L 20max
= jfede_ 14X 4y (4.4)
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Fig. 4.2. Radiation from oscillating trapped resonance: (a) As the resonance oscillates -
with frequency Aw in the potential well, it creates variable frequency radiation with period -.
2w /Aw. (b) Demodulation shows a spectrum of lines separated by Aw. (c) If the resonance -

- is.two-lobed, the radiation will have a period of 27 /(2Aw). -(d) Demodulation will show
lines separated by a frequency 2Aw. Since the two resonance populations are not identical,
weak half harmonics will be found between any two main harmonies.

j is proportional to the average value of 8 over the electron phase spa.ce trajectory and equal to the
area enclosed by the trajectory divided by 2w. ¢ is defined from the main wave trapping oscillation
“frequency:

¢ = (i)t ~1t,) (4.5)
¢ goes through one cycle in the same time the electron goes through one oscillation inside the
potential well, and can be thought of as describing the phase of the motion. By an appropriate
choice of {,, the relation between € and ¢ is:

= 2sin~? [n sn (M)] (4.6)

T

with sn the Jacobian sine function and K the complete elliptic integral of the first kind. « is defined
by

8= (L4 ho/03)/2, (4.7)
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Fig..4.3. Action-angle variables used for descnptlon of trapped resonances. 27j is the -
area enclosed by the phase trajectory and ¢ is the phase of the motlon Although ¢ iga-
; ...constant, § hasa complex dependence on time. ‘

. ho being the energy of the motion. j is given by

= 84 [50) - (1 - ) ()] (48)

where E' is the complete elliptic integral of the second kind. The trapping frequency can be expressed

as

tiﬂ' .
= < < .
Written in Hamiltonian form the equation of motion becomes:
h=0%/2 - Q2 cosf — ZQ cos(f — Qit + ¢;) (4.10)
i=2

As a function of (§, @), it can be rewritten as:

h(i, )= ho(§) - ZQ cos [0(8) — Dt + ] (4.11)

i=2

The cos terms inside the summation can be explicitly written as a function of (j,¢). This was done

in Smith and Pereira [1978] and the result is reproduced here:

cos[0(d) — Qut+ &l = Va(i)cos(ng — Qut + ¢:) (4.12)

N =00
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0 0.25 05 . 075 K2

‘ ' Fig. 4.4. Plots of the potential ¥, as a function of x? for n = 0...4. Negative values - - -
of n can be obtained by noticing that V_,(j) = (=1)*V,(§). Co

with
T 2 nf2
= (i) o @#0. (4.13)
| Vo(4) = 2E(k)/K () - 1, (4.14)

and g = exp [-7K(v1— «%)/K(x)]. An important symmetry property of the V,,(5), is that V,(j) =
2o(—=1)*V_p(4). Figure 4.4 contains plots of ¥}, as‘a function of #2 for a few values of n.

.. The Hamiltonian can be finally written as:

N oo
h(5,8) = ho(3) =D D QiVa(s) cos(ng — Qit + ;) - (4.15)

izm2n==oc0

4.4. General Solution of the Equation of Motion - KAM Theorem
As in chapter 3, the system we are studying has N + 1 degrees of freedom: the phase of the N waves,

and the electron angular position. But since we have arbitrarily defined the origin of frequencies as

iz Deing. wave 1, we are-left with only.an-N-degree of freedom system that can be described by the N
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dimensional Hamiltonian:

hn(gi, pi) = ho(p1) + ZN:QsPs - i i Qi Va(p1) cos(ngs — s + ¢4) (4.16)
i=2 i=2n=—os
‘with the following equations of motion:
%i-;—‘:f- 31% - inimﬂ ;Va(p1) cos(ngy — ¢ + &) S 4Ty
n = —?Tf =- gagogﬂﬂffvn(m) sin(ngr — ¢ + ¢;) - (4.18)
g = ."g‘T":’ = (#1) (4.19)
—and

B pi= ah” _Z Q2 Va(pr) sin(ngy — gt + d5) (i £ 1) (4.20)

The p; for i # 1 are dummy variables and can be ignored. The equations for the ¢; give:
=0t ‘ (4'21)

- Substituting those values in -equations {4.17) and (4.18), making p; = j, and ¢;.= dS, we get the .

right equation of motion. If we now define

N
CHo(pi) =ho(p) + D Qupy e (4.22)
i=2
and
N oG
Hi(gp)=-2, Y SQhValpr)cos(ng — g + ¢1) (4.23)
i=2 n=—co
we can write
hw(g,pi) = Ho(pi) + Hilgi,ps), i=1...N (4.24)

where Hi(gi,p;i) is periodic in all ¢;, and Ho(p;) depends only on the p;. Once again, the KAM
(Kolmogoroff, Arnold, Moser) Theorem for nonlinear systems states that the motion described by

i #..Ho .will. be appreciably ;affected by Hy only. if the. following relationship holds for the variables -

. " deseribing the unperturbed motion:

N
> mig =0, (4.25)
i=1
.. n; being arbitrary integers. Making ¢; = ¢ = Q, we will have:
N
Q= Z n;Qi/n (426)
=32

That is, the bounce (trapping) frequency of the eleciron resonates with the Doppler shified wave

frequency differences. Since we have already fixed the origin at wave 1, there are no free parameters

.+:left_and no additional constraint is imposed.-on. n.
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To see the effect of the resonances at a fixed point in space, and derive an expression for the
“radiation frequencies, we need to define an electron stream. For that, we take a set of electrons
iawith trapping frequency §? and an infinitesimally weak wave with a Doppler shifted frequency offset
. also equal to 2. Such a wave is said to be resonant with the electrons because their relative phases
- are constant. Next we define the stream as a subset of those electrons having a chosen fixed phase-
relative to the electromagnetic wave at all points in space, and, consequently, at all instants of time.
-Since the wave at a fixed point in space turns with frequency Aw = Qv,/ ('v” “+ vg), so will the pha.se"l-- :

¢ of the electrons in the stream, which can now be written as:
¢ =t —to) + Awlty + ¢ (4.27)

where {, is the moment the electron at z = ~ o) (t ~t,) enters the interaction region. The radiation
axcoming fromsuch a stream can-besubstituted for the radiation coming from tli¢ accelerated electrons.

Since Aw; = g /() + vg), the expression for the resonance frequencies can be rewritten as:
N
Aw =" niAwi/n (4.28)
i=2

where Aw is the oscillation frequency of a cross section of the stream we have just defined. The-

. electron stream oscillations will FM modulate the reference.wave monochromatic radiation, -as-men-

tioned in section 4.2, adding lines at w = w; + mAw, m being an arbitrary integer. The radiation -~

:frequencies will then be:

w=w + — Z n; Aw; (4..29)
i=2

Since Aw; = w; — w; and n; can be substituted for mn; because both are arbitrary integers, we can

write:
w1 ("' -, n,') + Z;N;z N
w = (4.30)
n
Defining n; = (n — Y"1, n;), we finally get:
N
_ Zoim Wi (4.31)

N
z:‘:l n;

«~which is the same formula for the frequencies as obtained in chapter 3.

4.5. Electron Motion for Non-Resonant Values of Vj

If we use the explicitly time-dependent form of the Hamiltonian, and put 23, = €A;, we have

h($,4,t) = ho(é,7,t) + ch1 (4, 4,1) (4.32)
with N
ho =ho(f), Bi==)> 3 AVn(j)cos(nd — Qt + ¢:) (4.33)

imZn=—o
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- 'To study non-resonant terms, using the Lie perturbation method described in chapter 3, we ignore

+ all resonances, and put in the K,; only constant terms. To get the simplest non-trivial result we have

«te go up to second order in the perturbation expansion. Doing this, we get K, = h, and K; = 0
(because h; has no constant terms ).

This implies

/ dr @+ Qu(r = 1), J,7] = Z > - g;‘l(‘;)(i)g sin(n® — Qit + ;) - (4.34)
i=2 n=—00
We then choose
2.K2 -_ (L1h1) = ({Wl, h]_ }) (435)

A straightforward calculation shows that

< OWy ahl : '6W1 8hy

8% 87 8J od
N

=1/2 E Z Aj(mai,Vin — nain V) cos [(n + m)® — (4 + Q)¢ + ; + é;]

{Wl:hl} =

f,i=2mn=—co0 (436)
N oo
~1/2 Z E Aj(maj, Vin + nainVi3) cos [(n — m)® — (4 — )t + ¢ — &l
i j=2mmn=—o0
where AVlT)
—m .5 (4.37)

wiwdysand. thetprime indicates differentiation’ with respect-to J:+1f # ~8;(no -symmeétrically placed “+

waves in the system),

CKe= K3 = ({Wl,hl}) - ZA (nai, Va + naip Vi) = ——ZA n{ain V) (4.38)
i n £ ST
and AVE Fav! 94
n n
K = -t .
K= ho(J) - 4 E nQs — O [ Vo 0f—0 ] (4:39)
- Hamilton’s equations of motion for K can be solved :
. oK .
J = 3% = 0 (4.40)
D= 3,] 57 +e 57 =0 (4.41)
The solution is
J=J, (4.42)
2 OK3
@ == Qt'}'@o =Qt(Jo)t+€ t+¢° (4.43)

aJ
The trasformation back to (¢, 5), keeping only first order terms and constant second order terms, is

given by
aw, oWy

¢ = P —e—0r- 37 ({Wl, 57 -~} (4.44)
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j=J+ e%%l- + € (s, % il ) (4.45)
. BEvaluation of the Poisson brackets gives
s, ) =0 (146)
- and 5 _
{w, _bi%}) = ;Amzas‘naén : . (4.47) :
which gives
b=~ ez - é iVn [V:' - Q’:Q' ] sin(n® — Qit +¢;) (4.48)

2172 (] !
o d=d + Z e Al ‘g 3 [V: : ng’fg ] +e Z ng‘j ¥ cos(n® — Dt + ¢;) (4.49)
We see that up to zeroth order {j, ¢) is equal to (J,®), and the motion is just the normal oscillation,

with frequency :(J,), of the electron inside the potential well.

The first order oscillatory terms in the above equations predict the existence of a conditionally
periodic jittering motion superimposed on the main electron motion, maximized when n$, & Q; for
% some £ and n. Under those. conditions, the particle-motion will add to the bunching associated with:-

- .such a resonance.
.. .The second order corrections describe an-important effect,-here-due to the-adiabatic invariancess -

of J: If we average away the oscillatory terms, and assume that a certain particle has j = J, for=

¢ €= 0, and that the wave fields are adiabatically turned on, then J will remain constant,-and. ¢ will-=

vary as:
b= lo) + e EE) (4:50)
If J, is such that n(J,) = Q;, for a certain i,
j=Jo+Asz°—f;% - (451)
and '
é m Qu(Jo) + QAT 2 D(Jo) — ¢ WAIVIOP (4.52)

2 (n0 — )
- ... The particle will be shifted due to the presence of the waves, the forces being such that each wave ©
+ " tends to pull the particle towards points where the wave Doppler shifted frequency offset is a multiplé -~
.. of the particle trapping frequency. This shift will create a gradient around those points, increasing
| the growth rate of sideband waves associated with resonances located at those frequencies. (Those
will be the first order resonances described in the next section).
Since radiation is a collective phenomenon, it will be extremely convenient to observe the effects
of the electron motion, using a stream defined according to the outlines established in section 4.4.
The whole electron distribution can be broken down into such streams, their bunching and distortions
~determining the radiation characteristics of the system. Those streams will also be the loci of the

wequilibrium points. for. the resonances to be studied in the following sections. The stream will be
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composed of electrons with trapping frequency €, and its cross section will oscillate at the frequency
" Aw = Qug /(v +v,). The phase of the component electrons can be obtained by conveniently defining

P, in the general solution for &:
D=+ B, =t —1,) + Awl, + Ad (4.53)

The electrons in such a stream have equal radiation characteristics, because they all describe the-

- ;. same path in the wave potential (with the right phase delays to account for the finite radiation

i« propagation velocity). The stream forms a rigid DC current line consisting of a spatially periodic

- -distorted straight line wound around a spiral path, and its motion can be studied in a variety of
ways. The most convenient is to observe the motion of its cross-section at a fixed point in space.
From the above equation it can be seen that such a motion will be oscillatory with frequency Aw,
producing radiation at multiples of the oscillation frequency. We see that individual electron motion
after integration over the stream, becomes only indirectly relevant. The stream can be so short
that no electron in it will have time to perform a full oscillation in the potential well. However, the
stream can still continuously execute full oscillations, radiating at well defined frequencies, if the

electron flow is never interrupted.

4.6. First Harmonic Resonance and Associated Subharmonics

To study first order resonances we put : . o
Ky=h, : . (4.54).

and choose
Ky = —A;Viy (T} cos(m® — Q;t + ¢;) e " (4.55) -
i Q; # —€, for all i. This implies
_ A;’Vn (J) . R . -
Wy = (;)‘:, msm(n@ Qt + i) (4.56)
(n#m)
and .
K = ho(J) = cAj Vin(J) cos(m® — Qt + ¢5) (457)
Hamilton’s equations applied to K, will give:
. - JK . _
J= T —emA; Vi (J}sin(m® — Q;t + ;) ' (4.58)
. OK  Oho(J) i
&= 3T e €A;Vip(J) cos(m®@ — Q;t + ¢;) (4.59)
= 3%he(J]) . O%ho(J) .
@ #J = —e—aj}wi—mAj Vi (J) sin(m® — ;¢ + ;) (4.60)
Defining
AD = m® - Oyt + ¢ (4.61)
we can write the equation of motion as:
0 2
A® = —em?4; MV,,,,(J) sin(A®) (4.62)

0J%
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: This resonance has a full width, in the & variable, equal to:

82ho(J 3
Ty =4 [EA, > )Vm(J)H (4.63)
The width in. J is obtained by noticing that
®=Qu—J/8+... (4.64)

which implies T1(J) = 8T (&).
It m < 0 .and odd, the equilibrium points will be A® = 2kn, otherwise they will be given by~
= (2k + 1)7. The electrons at the equilibrium points will oscillate with frequency & subject to

the following constraints: 9
=_05<i)=;1i59ﬂ (4.65)

which gives a minimum value for || for a given wave trapping frequency:
lm{ > 182;]/9: (4.66)
Using the expression for ¢; from equation (4.3), we get for the motion of the equilibrium streams: -

¢ =

ijto 4 Qj(t —to) + (2)'3-}— 1)71‘— Ag
m m

- , k=0...(Jm|-1) : (4.87) -

”Thé.-equation;describes a |m|-lobed resonance oscillating inside the ‘potential well-at-a fixed point

i in space with frequency Aw;/m. To look at the.stream motion in the.(,¢) variables, we need the-.

transformation equations:

A Vi V! nd,
P—c E —t 8 2 : ] P — Qi + ¢ 4.68
= (-#:)or [Vn ally — Sln(n # ) ( )
(r#Em)

(i#d)or (th Q; )2 Vo o — (T nfd; — Qs

_nAVE [V g AV,
i=J + Z [— —’ﬁ-:] +¢ z u-{;os(n‘I) Qit + ¢;)  (4.69)
(n#m) (n#m) :

Since mQ = Q5 and m® — Q;¢ + ¢; = (2k + 1)7, we can put

Cond -t 4 =

Aw; — mAw; :
(n w_, mm wa)to"i'@{jnmk . . (4'70) s

--From the equations of motion we can also get:

Combining those equations, we have the expressions for the coordinate transformations:

ma;V, A mnfdl . [(nAw; — mAw;)
t - L J 1 1 -
o + Poxe c@;)u [Vn nQ,-—-mQ,-] sm[ — o + By k]

{nFEm)

(4.72)
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5= 8(Qu1 ~ Qi /m) +BeAs Vi +e >

(i#f)ox

{n#Em)

nmA; ¥, cos [(nij — mAw;)
m

Qj — mQ,; to + Qijnmk] (473)

“"The equations show that points in the resonance rotate with an average frequency Aw;/m and are
shghtly shifted in j towards regions of higher potential, V;,. This rotation in phase space is equivalent
. to oscillations around the mean rotation frequency of the electron stream in real space, creating an
- FM modulation of the radiation coming from the carrier. The resulting radiation spectrum has
Cween o o lines with frequencies wy + LAw;, —o0o < n< oo, fora single lobe. . The multiple lobed structure -,
“changes the spectrum. appreciably. -If all lobes have exactly the same electron distribution, the™
~system will repeat itself at m(Aw;/m) and the spectrum will have frequencies w; + nAw;." Since "
different lobes will have somewhat different electron distributions, subharmonic radiation will show
up at frequencies wy -+ %ij, 1 £k < m. Since the differences in electron population will not be
e stheids st redva VLY large, those.subharmonics willin general have smaller amplitudes than the integer harmonics
| of Aw;.

‘Since the maximum frequency shift in the instantaneous radiation frequency, Aw,n e, is equal

to 2Awt1-, the resonance half-width that the electron stream sees, and Aw < Awyy, where Awyy =
Quvg /(v + v,) is the carrier trapping frequency for the electron stream, the modulation index,
-Auwsp st /Aw, can easily be of the order of 1, generating quite a wideband spectrum.
- I €y # mEY for all i.and.n, the.time dependent distortions of order ¢ present in the transforo -
mation equations for (f,4) will give contributions of order ¢-¢¥ to the radiation and will be negligible
ey et eneup-to-the second order effects we-will-be -analyzing in this-chapter+~They might ‘be-important; howss.

. iihs . vever, when compared to higher order terms. If, on the other hand n8Y; ‘2 mfY; for some i and n,

then resonance overlaps are present and the choice for K; has not been correctly made. -

4.7. Second-Order Resonances

4.7.1. General Expressions

To look for second-order resonances, we choose K,, K, and Wi to be the same as in the
non-resonant case. 2K3 will be obtained from terms in {Wy, b} :

N oo
{Wi,hi}=1/2 Z E Aj(maf, Vin — nain Vi, ) cos [(n + m)® — (Q + QY + 6 + 6]
ij=2mn=—oo
N. oo
—1/2 Z - Z Aj(mal, Vi + nain V) cos [(n — m)® — (s — ;)¢ + s — é5]

ij=2mn=—co

(4.74)

.+ Kg-will always consist of K$, the constant term obtainable from {Wi,h:}, plus a chosen resonant
term. In all cases, Ky can be written as:

Ky = K3 + K3 cos(I® — ;14 ;) (4.75)

and .
K = ho + K3 + 2 K} cos(1® — Qujt + ¢i) : (4.76)

with @i; = (Q; — Awij Yo + Adyj.
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Hamilton’s equations will be:

K

J = ~55 = €U sin(I® — Qyjt + 6i5) (4.77)
& = %ij_ = %_30‘(7—']_)- + 2K + K3 cos(I® — Qijt + ¢4j) (4.78)
i azho(J) z 2 32ho(J) 1.- .
Y Ve J = €%l 577 K2 sin(i® — Qit + ¢i5) : (4.79)
Defining
A = 1D — it + iz (4.80)
‘we can write the equation of motion as:
e 2
Ad = 5212%}3(2:-’lff5 sin(A®) (4.81)

The resonances have full widths, in the & variable, equal to:

I_= _45_”32;}(2” K} r . - (4.82)
-+ Since ﬁi‘%ﬁ < 0, the equilibrium values of A& will be: . ==
A, = (2k+ )x if Kj<0 : (4.83)
Ad, =2k if Ki>0 (4.84)

with £ =0...(|I[ - 1}. For those equilibrium points, which define |{|-lobed resonances, & will vary -

as: & Qi — ¢;_, + Ad, (4.85)
which can be rewritten as:
o= Aw;:‘io + ﬂ,:j(tl—to) _ Ay ; A%, (4.86)
The resonances will oscillate in the potential well with frequencies
Aw = % (4.87)
and will radiate at the frequencies
W =wy + 1‘%5’_1 (4.88)

swith.enhanced amplitudes at frequencies such that n/l is an integer. - . -
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_4.7 .2 Three-Wave Resonances: Intermodulation

" Frequency Subtraction

If we take two distinct waves with frequencies 2; and €;, the term in {W7, h1} asymmetrical

. under permutation of the indices ¢ and j gives:

4Kz —K3)=— D (Bijmn + Biinm) cos [1® — (i — )t + ¢5 — ;] (4.89)
n=-m={
with
Bijmn = Aj(mal, Vi +nais VL) \ o - (4.90)

Calculation of the #’s leads to the following expression for Ks:

Aidy = W Vi(n~Dn
N g e lekir nvn
Ky Ki==3% 3, T—m)Q; 1 nt;

» ﬂ=-;3 o (4.91)
n n—i 1 — ¢ — ) c e D
[+ e+ | 10— OBt
or oo
Ky—K§= Y d(n)cosi® — (Q — )t + ¢; — 8] (4.92)

N=—00

w2t i possible to rewrite-the.summation.in-such a-way:-that one of its limits-is finite and terms=ofir

- same magnitude are added together. To do this we notice that if { is odd, -

o o0

Y dm = Y dm)+d(-n) G

n=—00 n=(I+1)/2
and if [ is even,
o0 =9 o] 6 1
Yo dmy=d/+ Y. dm)+di-n)= > (1- %) [d(n) + d(I — n)] (4.94)
n=—oo ’-.‘:U:H.l n=l/2

where & represents the Kronecker delta function.
Evaluation of d(n) + d(I — n) for odd [ leads to the expression:

A,‘Aj ' f: IZVﬂVn_j(ﬂ - I)n(Q,, + QJ)
BNEr e ig Qi Q; + n(l — n)(Q; — Q;)2
- { Va o Var @n-D@i-9) o\ - (495
aVo o (n-DVao " PQGQ 4+ a(l—n)(—Q;)2 ¢
cos [I® ~ (€ — )t + ¢; — 4]

Ky = K3+

and for even [:

Ads & b1 WaVaoi(n=)n
e i A; _%nd n¥n
K=K+— ,,Z_uz(l 2 PO + 0l - )0 = O

Va Va- PQF +02) - 2n(l —n)( @ —9)2 | (4.96)
{ [nVn i (n— 1)‘:" —I] (2 = (0 =05 + PQi; +n(l — n)( — Qj)zj IQ,} '

Ccos[1® — (R — )t + s — ¢4
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In both cases, K2 can be written as:
Ko = K3 + Ky cos[I® — (i — Q;)t + (¢ — ¢4)) (4.97)

- The resonance described by K3 has a full width, in the & variable, equal to: -

ho(J
. =4¢ [ a}g )K2 ] , (4.98)
-it will oscillate in the potential well with frequency -
Aw=Bwi—Bwj _ wi—w (4.99)
[ {
and will radiate at the frequencies
w0 =y g BB w5) (4.100)

l
If for odd I we take the case of two waves extremely distant from the main carrier, but having
a finite frequency separation, we can find an approximate expression for K3, by taking the limit
; ; — oo with Q; — Q; finite:

A A;

ey = K3 + —S;(J)cos [I¢I) (i — )t + ¢: — ¢5] - Co(4.101) -
with - _
2SNy = Z =DV VataV, Vi, 0 T{4.102)
n=(1+1)/2
- This resonance will have a width
de 82h 5
. = \/ET [A ; Aj 572 ] {4.103)

Since T'_ o 1/+/%%;, the resonance width may be sizable even when large distances separate the main
wave from the perturbation. In particular, if a large set of weak and equally spaced waves perturbs
the main carrier, the total perturbation will be a function of a large number of those weak waves,
and the overall effect, although in practice only a few times larger in magnitude than the one created

by.a single pair of lines; will be/non-local, with properties not entirely ‘atributable to any wave pair -

in particular.

: The general expression for K3 is a sum over n, of terms containing as a denominator the
expression 12040 + n(l — n)(Q; — )% = [(! ~ n)% + nQ;} [(1 — »)Q; + n€Y]. If for some n we have
either

“_2" (4.104)

n=mn R

or

(4.105)

- the summation can be approximated by the term that has such a value of n alone. Since ny +nq =1,

W iaien L Bz pand o > 1/2, at most one.value of n will satisfy any of the two equations. Such value
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if it exists will be n = Max(ny, n2), which we will assume for simplicity to be n;. Because the
oo perturbation “expansion ‘converges ‘only if there is no resonance oveilap ‘iniside the carrier potential
well, which causes chaos, and the enhancement of the term we are looking at is caused by the

existence of a [n]-lobed first order resonance caused by wave ¢ alone, we must have as the closest

possible spacing for the two resonances:

: &:f& - % = 2/eAi[V,,[/8 - (4.106)

‘Under those conditions K§ and K5 can be rewritten as:

K i} (4.107)
Ky~ % cos [I® — (R — )t + ¢ — 6] (4.108)

or
K =ho+ et 8 4+ et f7 cos[I® ~ (O — )t + i — ¢5] (4.109)

This will lead to an enhanced resonance width:
8?ho(J)

I =¢i [ 372 —5—J7

.putting the resonance halfway between a first-and a-second order effect in terms of its magnitude.:*

]' w10

We note that the width of this type of resonance when created by .the.processes described in-+
-...-.chapter 3, is a totally symmetric function of the wave amplitudes, i.e, the width remains invariant s

o1 any ‘permutation is made among the interacting carriers. - This is not the case when the same i

e

effect is described by a trapped resonance, since it is highly convenient that the wave that contains -
. the resonance be the strongest of them all, so that the required value of |{] is minimized and the ‘-

radiation is as strong as possible.

Frequency Addition

If we take two distinct waves with frequencies ; and £, the term symmetncal under permu-
tation of the indices ¢ and j gives:

4([{2 - .Kg) = Z (a,;,—m,, + aj:'mn) cos [1@ — (Q; + Qj)t + ¢ + ¢J] K (4.111)
m4n=i
with
Qijmn = Aj(mag, Vin — nai, Vi) (4.112)

Calculation of the a’s leads to the following expression for K,:

Ad; & WVaVia(l—n)n
R - > = =/ n
2~ K3 4 _E P — n(l — n)(Q; + ;)2
n=-oo0

v L PQF +93) — (I —n)(u + Q)
{(2?%—1)(9 + 8y )[ V. (1_:1)1/;_,,] - 129,:9;* n(f-—ﬂ)(ﬂaerQi)2J m}

cos[1® ~ (@ + @)t + i + 4] (4.113)
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or
[==]

Ky—K§= > c(n)cos I — (2 + Q)¢ + ¢: + ¢5] (4.114)

n=—0o2

Since ¢(n) = ¢(l — n), we are led to the following simplifications:

For odd I,
0]
o Ke=K5S+ % Z c(n) cos [I@—(Q,'—I-Qj)i-l-qﬁi +¢j] (4.115) :
n=(l+1)/2 '
For even I,

1 & ' ..
Ko= K3+ 1 Z (2—b,p)c(n)cos[i® — (L + QY+ + ;] (4.116)

n=if2

In both cases, K2 can be written as:

sy = K§ 4 KF cos[1® —(Q & QY+ {d: +¢;5)] (4.117)

The resonance described by K3 has a full width, in the & vatiable, equal to:

1
I, = 4e [ 32;’;9)1{; ] Y (4.118)
-+ it will oscillate in the potential well with frequency
Aw = D+ Aw; TA“’J', (4.119) -
: aﬁd will radiate at the frequencies
w =y AWt Awy) (4.120)

i

An example of this type of resonance is shown in Figure 4.5 for | = =2, ;= 7Q, and ;=

. —98Q,, with Q4 = §2;1. In this example it can be seen that the main wave trapping frequency imposes

no constraints on the required perturbing carrier frequency separations or on the bandwith and line

separations of the radiated spectrum. The perturbing carriers are positioned several times ; away

from the main wave potential, and the resonance produces a spectrum with main lines separated by
20, > 1.

e i ooimilarly to.the previous subsection, due;to. the poles in its denominators, K5 will be enhanced

“if

n=ng g mr (4.121)
Under those conditions K$ and K& can be written as:
f2
{9y 22
K3 ~ 7 (4.122)
+ 0 05 QM b b b
K = T cos [1® — (i + 4 1t + ¢i + ¢5] (4.123)

or

K =ho + e+ 3 fiF cos 18— (Qu + Q)t + ¢i + 65 (4.124)
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—1TT -
[] [] []
"'291;1 0 ZQtl é
- Fig. 4.5. Frequency addition intermodulation resonance for'!{ = —2; Q; = 7, ‘and:
"8y = —9Q,, with Q, = 6/78;;. The résonance consists of the.two crescent shapes symmet-" !

" rically placed relative to the # = 0 axis, and centered at § = (. As time flows; they will turn =
.+ with frequency Aw =.(Q + Q5)/1[vg/(vy + vy)]. The three lobes at the right, located at-
6 = 243 and @ = 0, +27/3, represent an external 1/3-harmonic resonance created by wave -

¢ and the main wave. At the left the external resonance for the interaction w = w; +wy—wy

(9 = —28, and @ = 7) can also be seen. A sizable chaotic band is seen circling the main -

resonance. Its presence will decrease main wave growth.
—2 >t
2

[
4.7.3. Two-Wave Effects: Second Harmonic

Which also leads to a larger resonance width:

O2ho(J)

ht

I_=e r  (4.125)

If in the expression for {W1, h1}, we select the terms symmetrical under permutation of i and

iJ, but assume ¢ = j, we get a new type of resonance. Since we do not want this resonance to fall on *

- top of any already present first order resonances, we choose m + n = I to be an odd number. The -
expression for K can then be either directly calculated or obtained from the frequency addition
resonance by putting ¢ = j and dividing all terms by two. We then get:

o, A7 = WaViip(l—n)n [ V! Vi, {9
I{z = 1{2 + ? Z W [m — (I— ‘n)V}_n - (2n — I)Ql] COSU@ - 29,t+2¢3)

n=(i+1)/2
(4.126)

Which can be written as:
K2 = K§ + K3 cos(1® — 20t + 2¢5) (4.127)
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The resonance described by K4 has a full width, in the o variable, equal to:

I'y = 4e [ azg JEJ)IQ ] , (4.128)
- it will oscillate in the potential well with frequency
Aw = A“” , (odd 1) | (4.129) |
-and will radiate at the frequencies
w=w 4 2"‘?“"', (odd 1) (4.130)

=

This is a second harmonic resonance, that will produce most of its radiation at even multiples of the

“#¢{requency separation;Aw;.+ There will ‘also be some‘radiation”at subharmonic frequencies, adding to

the spectrum weaker lines separated by multiples of 2Aw; /1.

4.8. Interference Effects

In the case of first order resonances, if we happen to have two waves, [ and j, such that @ = —Q;,

- the same value of & will be simultaneously resonant with both.. We are faced with the case of- g

:“*resonance interference.- For a first order Hamiltonian :‘we must then choose,

Ky = —A Vo (T) cos(—m® — Ot + é1) ~ AjVin(J)cos(m@ — 'th + t;éj—‘) S (4131)
which is equal to:
Ky = —A4(~1)"Vin(J) cos(m® — Qit — ¢1) — A;jVia(J) cos(m® — Qt + ¢;) - - -(4.132)

and can be rewritten as

Ky = rcos(m® — Q;t - @,) (4.133)

with

_ Al(=1)"sin¢; — A; sin ¢;

tan &, = (=D cos i T 4, cos (4.134)

and

e = Alz + A_? + 2(—1)mAjA; cos(; + &) _ - {4.135) -
If (;bj + ¢ =m,

r = [V ||4; (-1 — 4] (4.136)

. which is minimized if m is even, and zero if additionally A; = Ap. In this case, all even m, first

order radiated subharmonics will have zero amplitude, and odd ones will be reinforced.
If ¢; + 61 =0,
= [Vl 4 (-1)" + 4] (4.137)

which is minimized for m odd, and zero if A; = A;. If this happens, all even m first order radiated

ssubharmonics will .be reinforced, and:-the odd.ones will be'weakened. The odd ones will not be
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. completely eancelled because it is always possible to get radiation at their frequencies from an even
-~ resonance with an appropriate m. - ' -
Those interference effects, are a simple consequence of the well defined parity properties of the
Hamiltonians generated in the wave-wave interaction process. Such reflection properties will also
- be present in higher order terms. For instance; it is possible to show that for all of the already
calculated second order terms, the parity of the Hamiltonian is equal to (—1)". As a consequence,
- interference effects, similar in nature to the ones above described, should also occur among them, "

- 4.9. Higher Order Effects

From the examples seen in the previous sections and from the way each term is obtained, it is

possible to extrapolate the possible frequencies for effects of order n:
N
Aw =Y nihwifl (4.138)

with Z?;z |n:f = n. It is clear that terms of order n contain at most n + 1 interacting waves.
Two given waves can generate a n order harmonic by two different processes:

1. First harmonic radiation by a n order harmonic resonance.

~-2.:High order harmonic radiation from-a low-order resonance. -
- The n order resonance widths are of the-order ¢3. The amplitude of their first harmonics should *

" therefore go down exponentially with n.. High order harmenics coming from a low-order-resonance®:

i3 aghave amplitudes proportional to.the.Bessel functions J, which decrease ‘in value, as'a function’of *

--n, faster than an exponential, and can therefore be neglected. We are led then to the conclusion *
that harmonic sidebands created by two waves through trapping effects should have an exponential

- amplitude slope as a first approximation, as is indeed borne out by the data.

4.10. Conclusions

As main results from trapping effects we can quote:

1. Because their frequencies are independent of vy, and because if |n| is large enough a resonance

will fit in any wave potential, sidebands have narrow linewidths and well defined frequencies,

#i.0 . w2 . .and can be produced independently of carrier amplitude values or variations. However, weaker
+waves will- have a spectrum more finely divided by subharmonics because higher values of: ]ni
will be involved. Integration over different pitch angles will not smear out the resonances.

2. Electrons interact with Doppler shifted wave separations which may be larger than the nominal
frequency separations by a factor of three or more. The resulting effect can be understood
as either a decrease in the time constants of the system or a decrease in the interacting wave
amplitudes.

3. Since around the equator electrons can always be temporarily trapped, i.e. they will describe -
part of a closed orbit if put inside the main wave potential well, electron streams can always
exist giving rise to trapping effects with arbitrarily wea.k'ﬁelds, independently of inhomogeneity

. effects.
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. Due to the FM modulation process, sidebands are created in symmetric pairs. Line growth can
" change their amplitudes and symmetry appreciably. = ‘

Trapping predicts an approximately exponential fall-off for the harmonic spectrum, line-line
interference effects, and a slow fall-off with distance (in frequency space) of the interaction
strength for some resonance types. This last point indicates that a comb of weak, equally
separated lines can a.ppre(:Ia.bly affect sideband formation if the number of fines is large enough"
(the effect is. divergent for an infinite set of lines). ' ' '

-B:-Although line amplitudes are different, sidebands due to trapping effects are-created at the same™"

frequencies as the ones due to external resonances:

N - >
iz it (4.31)
i=1 T

w=

. Sidebands due to trapping also need a non-zero gradient in )| to be created.

- Individual electron oscillations and the continuous spectrum of their frequencies (“trapping”

oscillation frequencies) do not directly affect the observéd sideband spectra. Those oscillations
are convective, occurring as the electron, as part of a siream, moves along the interaction region,

and may not even exist for a full cycle. Radiated frequencies are associated with oscillation

. frequencies of the streams to which the electrons belong. Those oscillation frequencies are only.*

*_indirectly related to the trapping frequencies, and the frequencies they radiate may be almost an+:;

~order of magnitude away from available trapping frequencies. The total emitied radiation will~*"

be a combined result from all such stream oscillations, and its spectrum will reflect the frequency -~

--structure of the externally accelerating forces, and not of the overall electron population.

10.

. Chaos, always present when internal resonances are formed, is an important factor in the for--+

mation of the final radiation spectra, contributing to saturation effects.

Trapped resonances are more protected from inhomogeneity effects than external resonances -

~+-and should produce radiation over a longer length of the interaction region around the equator. ©
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S. Effect of The Inhomogeneity
on Sideband Resonances

5.1. Introduction

- This chapter will analyze the effect of the inhomogeneity of the magnetic field of the earth on the
..resonances studied in chapters 3 and 4. The analytical and numerical methods used are the same -
~~-asin chapter 3, and so is the notation:.A familiarity with chapters 3 and 4 is required.. »e - e
In section 5.2 of this chapter, phase plots are used to show graphically. the effects -of the ‘in-
homogeneity on the resonances we had previously studied in a homogeneous medium. ' It is seen
that those effects consist mainly of phase shifts superposed on the resonance positions, coupled with
cornplete resonance destruction if the value of the inhomogeneity is large enough. In section 5.3 the

resmotiobcertelectron equations of motion are tewritter to intlude the inhoricgeneity, anil in section 5.4 the Lie

perturbation method is applied to them to study analytically the effect of the inhomogeneity on the
“trapped” resonances. In section 5.5 we explain how the phase shifts created by the inhomogeneity
can, even when locally constant in time, produce frequency shifts and line broadening in the sideband
radiation received at the end of the interaction region. In section 5.6 we apply the Lie perturbation

- -method to external resonances obtaining results similar to the ones found in sections 5.4 and 5.5 for -

“internal resonances: Section 5.7 takes a look at:some general properties of higher order resonances; .

-~ and section 5.8 contains the conclusions, a chief one among them being that ‘the inhomegeneity is a~
ot e o principal cause for the peculiar but experimentally observed factthat ~vanishingly small ‘carriers-can

st o0 nCE6a4e: sizable sidebands if the sideband producing interaction includes at least one strong carrier.

5.2. Phase Plots and Relation Between Frequency and Phase Shifts

Figure 5.1 shows phase plots for an ! = 2 first order “trapped” resonance created by perturbing
the main wave with a weaker carrier Jocated at ¢ = Q. This resonance will radiate mainly at the
frequencies +8 and +$/2. Figure 5.1.a shows the phase plot for the zero inhomogeneity case, where
we can see the two lobed structure of the resonance inside the main wave potential well, and the
perturbing carrier to the right, shifted 180° in phase relative to the main wave,
Figure 5.1.b shows the effect of a positive inhomogeneity (a positive gradient of the intensity of
... the magnetic field of the earth) on the resonances..The resonance associated with the perturbing
-carrier has been completely wiped ou.t, and therefore such a carrier will experience no growth.
- -However, the “trapped” resonance that it creates is still present and can give rise to growing lines.<
Since the origiral amplitude of the perturbing carrier is only 2% (-33dB) of the main carrier, the
weak carrier will not be easily seen in the sideband spectrum, but the sidebands it creates will. In
the same picture it can be seen that the outermost phase trajectories have been stripped away from
the main carrier resonance and that the two lobes in the “trapped” resonance have acquired different
negative phase shifts. The first effect is widely known, the second one will be described in detail in
section 5.4. There is also a small inward shift of the trapped resonance and a positive phase shift
(upward displacement) of the main carrier resonance. This phase shift can easily be shown to be

..equal to,sinT1(r/Q%) where 7 is the torque associated with the inhomogeneity (see section 5.4), and
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{241 is the main wave trapping frequency. The internal resonance phase shift will affect the frequency
separation between radiated harmonics and sub harmonics. The phase shift in the main resonance
~will affect the main carrier frequency. (The mechanism for translation of phase shifts into frequency
shifts is discussed in section 5.5.)

Figure 5.1.c shows the consequence of moving the perturbing carrier from € to —~.. The"
equlhbnum points in the resonance are reflected around a vertical axis going through §=0. Asa
consequence, both their phase shifts become positive. ' o '

Figure 5.1.d shows the effect on the phase plot of changing the sign of the '-inhomoge'néity, but-

- keeping the perturbing wave at the:frequency Q.  The resonance -equilibrium points are’ reflécted®

around a horizontal axis going through § = 0. That implies a change in sign of each phase shift in
the “trapped” resonance and & change in sign of the main wave upward shift. The total phase shift
-associated with each radiated sideband is consequently multiplied by minus one.
Figure 5.2 compares the effects of the inhomogeneity on “trapped” and external resonances
-having the same approximate initial widths.
Figure 5.2.a shows a three wave resonance, already described in chapter 4, for the case of zero.
inhomogeneity. Figure 5.2.b shows the effect on it of a fairly large inhomogeneity. As in Figure 5.1,
it can be seen that the external resonances are completely wiped out, that there is a phase shift,

¢ .nowpositive, added to each resonance lobe, that external phase trajectories are stripped away, .and

~that, now in a more pronounced way, there is an upward shift of the main wave resonance:together,

-~.with an-appreciable inward motion of the internal resonance. " This-inward -displacement protectg® :

* ..-and extends the lifetime of the resonance by moving it away from the outward trajectories ‘that are.;:

' soon destroyed by the inhomogeneity. The inhomnogeneity in this case is 0.18 022,
Figure 5.2.c shows several external resonances between two equal intensity carriers-for the case "
of zero inhomogeneity. Figure 5.2.d shows the effect of an inhomogeneity just strong enough to
destroy all external resonances including the half harmonic. The value of the inhomogeneity in -
~this case is only .03 Q2.  Since the resonance shown in Figure 5.2.a is in reality still present for -
inhomogeneities of the order of .25 Q2,, and since the size of the interaction region is proportional to
the maximum inhomogeneity that a resonance can withstand, we arrive at the important conclusion
that “trapped” resomances can exist over an interaction region almost 10 times as large as external

resonarnces.

.~.8.3. Modification of the Electron Equation of Motion by a Non-Zero

Inhomogeneity

The effect of the inhomogeneity on the electron motion can be locally described by a time dependent -
torque [Dysthe, 1971; Inan et ol., 1978; Bell and Inan, 1981; Serra, 1984} applied to the perturbed
pendulum equations developed in the preceding chapters. The equation describing the electron

motion under the influence of N waves will be then

§=r(t)~ ZQ sin(8 — Qit + ¢;) - (3.1)

i=1

s, where 7 is the inhomogeneity.
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Fig. 5.1. Effect of the inhomogeneity on a half harmonic “trapped” resonance .- The -

main carrier is located at § = 0. The main carrier trapping frequency is slightly above /2,

- and the weak to main carrier amplitude ratio is 0.02 (-34dB). The weak carrier is shifted
" in phase by 180° relative to the main carrier: (a) 7/Q2 = 0. The weaker carrier is located

at 6 = . Chaos, the perturbing wave resonance, and the two-lobed half harmonic can be
readily seen. (b) 7/Q# = 0.08. The weaker carrier is still located at = Q. Chaos and the
perturbing wave resonance have been swept away, but the resonance that the latter creates
is still present. Both resonance lobes have acquired a negative phase shift. The main wave
resonance has a slight shift upwards. (c} 7/Q2 = 0.08. The weaker carrier is now located

... at 8 =—0, The resulting plot can be obtained from.(b) by .a reflection around a vertical

axis going through @ = 0. As a consequence, the two lobes have their shifts swapped and

“‘changed in sign. (d) 7/Qf = —0.08. The weaker carrier is at § = Q. The plot can be-

obtained by reflecting (b) around a horizontal axis going through # = 0. Both lobes and
the main wave resonance have their phase shifts changed in sign.

For the study of external resonances, the (4, 6)) = (q,p) pair of coordinates is maintained and

an equivalent Hamiltonian can be written:

N
h{g,p,t) = p*/2 — g — Y Q% cos(q ~ it + ;) (5.2)

i=1

w..Bor the study of internal resonances created by. the wave-wave interaction process, we will use
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where

Fig. 5.2. Relative effects of the inhomogeneity on “trapped” and external resonances:
(a) 7/ = 0.0. Second order two-lobed resonance created by the interaction of three

different carriers. (b) 7/27 = 0.18. ‘Despite the existence of a fairly large inhomogeneity, -
“the resonance is still intact. The most apparent effects on it are the creation of a positive +

- phase shift, and a displacement of its orbit towards the center of the main wave. An upward
shift of the main wave resonance can also be seen. (¢) r/Q2 = 0.0. Half and one-third
harmonic resonances created outside the potential wells of two equal amplitude waves. (d)
7/Q2 = 0.03. An extremely small inhomogeneity completely wipes out the one-third and
almost completely destroys the half harmonic resonance.

.1, thei(¢, 7) pair of canonical coordinates that gives rise to the following Hamiltonian:

N oo

h(,5,t) = ho(§) ~78(8,5) = Y > QZVa(j) cos(ng — ut + ¢:)

=2 n=-—00

§ = 2sin™? [fi: sn (M)]

T

can be rewritten as [Chirikov, 1979]:

0= z ba(F)sin[(2n — 1)¢)
sl

(5.3)

(5.4)

(5.5)
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with .
: , 201\ Vapa1(j) :
b, =2 -] /e 5.6
=2 () =) (5.6)
“Those equations will be used to study analytically the inhomogeneity effects observed in the phase

plots described in the preceding sections.

5.4, First Order Internal Resonances
If we put QF; == eA;, we can write the Hamiltonian as
W ,8) = ho(f) + eba(,51) I )
with
N o0
hy=—78(8,5) = Y Y AiVa(d) cos(ng — Qut + ¢;) (5.8)

i=2 n=-—o0

i i{ We -have substituted er for. 7-in -h(g,4;¢) to explicitly show ‘that perturbations from the inhomo-

geneity and from the additional carriers on the main wave have the same order of magnitude.)

To study first order resonances we put :
K, = h, (5.9)
and choose ‘
Iy =~ A V(T ) cos(1® — Q5+ ) : S (B0
This implies
= f Cdr ( [8 Q= ), J, 7] = Ko [ 4 Oulr 1), T, ]}

Qr
=]

W= Z o (J) y cosl(n ~ 1)@ + D aimsin(n® — Qit+¢;) - (5.11)
Qt(‘]) ( {i#5)or
(n#l)
with AVa()
Qin = m’%ﬁ-_—m (5.12)

The corrections to the resonance due to the inhomogeneity, are second order terms that must be

transferred to Ko from
6W1 B(hl -+ ffl) _ an 6(h1 -+ I{]_)

{Wl,hl +I{1} = (513)

% aJ 8J a®
. where hy + K1 can be written as: ' : :
hy + Ky = —78(®,J) - Z(l + 8ij8n1)A; Vi, cos(n® — it + ¢;) (5.14) -
in

- Differentiating the above expression with respect to ® and J, inserting the results in equation (5.13),
transforming products of trigonometric functions into sums and differences, and putting into K, all

resulting time independent and resonant terms, we get:

o _ope_ Tod $ o
26 =2K3 — 5o § :bn-[-
1
(5.15)

TA, (b’ bm 21) ’ v ;
Z (4 Vay + 0 VL) + bV, — Vi) | sin(i® — Q¢ + ¢;)
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.. where ng = I £ (2m — 1). Computer analysis shows that keeping only the first term in both

~summations leads to a very good approximation to the equation ‘above. If we take into consideration
~that

! i
B = by ( ‘12 -3;‘) (5.16)
we get for Ky:
72 db?
—Fo_ L2
K=k~ 5, a7
b A Vi 5 . N
; ;2: { (Vi - -2--3.2—:) [T+ DV + (= DWVina) + (W — Vl’-l)} sin(1® — Q;t +¢;) "~
(5.17)

It will be convenient to transform the derivatives in the above expression into derivatives with respect

to the adimensional variable x?, using the operator identity

a _ 9 0

a7 ~ 202, 9s? (5.18)
We can then write:
1/ 1 \?dp? Aj
—fgo 2 1} 24 ZN Y gl -0 .
Ky = K} 3 (Qﬂ) ok T‘thl fi(k*) sin(I® — Qi + ¢;) (5.19) “

with
2 Vi 80y B e
(k%) = A so [+ DV + (= DViEE]) # (W =~ V) “(5:20) -
-where-a primed variable, in the above equation-ionly,’-rmeans it-is -differentiated with respect to k2"
The total Hamiltonian will be

€ db? ; .
K = ho—eAjVicos(1® — Qst+4;)+* K — & (ﬁ;‘;) ot 2T9—2’1ﬁ(*~'2)81n(1<1’—9ﬂ+¢j) (5.21) -
If we define f( )
®,(1,8%) = IV(fcz) Qt21 B orm (5.22)
and assume sin(i®, ) =~ {®,, we can finally write
K=#h -i-egK"-—EE — ot ~ €A; Vi cos [I(P + Do) — 25t + ¢4] (5.23)
° 28 Qu di? ° I )

- Figure 5.3 shows plots of @,,.; as a funiction of x2 for a few low values of [ and also the asymptotic -
value when I — oo,

From the way ®, was calculated, it is possible to have an understanding of the meaning of
such a phase shift. Because the inhomogeneity is only a perturbation, the electron stream motion
1s mainly controlled by the main wave. The oscillatory motion imparted on the stream inside the
main wave potential well makes the potential from the inhomogeneity, which is linear in 9, seem
oscillatory with a frequency ®. The first term in the series for this effective oscillatory potential is

equivalent to a first order resonance with / = 1 and ; = 0. The phase shift we are looking for is a

~sysecond order.effect that comes from the interaction of this effective resonance with two first order
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0.25 0.5 " .0.75 X2

.Fig. 5.3. Plot.of @,0rm.= (R /7)®,, the normalized constant part of the phase shift . .- v
_caused by the action of the inhomogeneity on first order resonances. The plcture shows -
plots for I = 1...4 and the asymptotic value { = co. The divergences at x® = 1 indicate
the breakdown of the expressions near the separatrix due to the existence of chaos and the
stripping away of closed phase orbits by the inhomogeneity.

=-resonances having parameters (I41,€;) and ({—1,Q;). Their interaction gives rise to a second order -
resonance with parameters (I, 3;), shifted by ~90° in phase relative to the initial trapped resonance.
~ The coherent superposition of these two resonances gives rise to the phase shifted resonance.

Hamilton’s equations applied to K will give:

J= g‘g —el A; Vi(J) sin [I(@ 4 o) — Qi + ¢;] (5.24)
_OK _dh())  ,dE3 ¢ L)z L
T 87 T dT a7 16 \9Q% ) “d{%)?
d
o4 Tju(rJ) cos [I(® + Bo) ~ Qyt + $5]+ (5:2)

elA; I/}(J) 2 sin [I(® + ®o) ~ Qjt + ;]

Since 06, 0b. ob
= -a—-J-J + Py d+ F (5.26)
we can put )
badBU) i FhelD)) T sin @+ 80) — 25t + 5] (5.27)

iz T T A
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. The equation describes an |l|-lobed resonance oscillating inside the main wave potential well with
~frequency Aw;/l and shifted in phase by —®,. (Aw; is the frequency separation between the

- perturbing wave j and the main wave.)

From the @ equation we also get at resonance:

Qi /1 = Oy + €Ay

2 2 212
d%+ 2d.[{2 € ( T ) d bl (5_28)

d7 T Al 16\Q% ) d(x%)?

w<--Defining Jo as the value of J associated with the resonance as e-— 0, and expanding:,'around this+

value, we get:
dQ;
dj

Substituting the last expression into equation (5.28), we can calculate J and AJ :

a5

() = Q) - i

AT =Q;/1— AJ (5.29)

J=Jo+ AT = Jo + Adyom + Adinsom {5.30)
where .

Adpom = ( €4; ‘?; + 2d£2) '% (5.31)
and ' e 1T \N? d2h2 L

. Since the second derivative of 47 is positive, in the (@, J) coordinate system the inhomogeneity has =

withe:effect of . decreasing the.value of J, i:e, of pulling the resonance towards the center of oscillation. -

To look at the stream motion in the (4,7} variables, we need the transformation equations -
correct to second order:

B 6W1 oWy
p=¢—c ({ Oyl (5.33)
=J+ ean -—({W oW —=1}) (5.34)
i= 5% T 2\ TEg '

where the pointed brackets mean as always that the time independent part of the expression should
be taken.

Evaluating specific terms. we obtain:

W,
a<1>1 =5 Zb sin[(2n ~ 1)8]+ > nai, cos(nd — Qit + ¢;) (5.35) .

(igs)or
{nzl)

= -—TZ (Qz) 1) cos [(2n — 1)®] + Z a}, sin(n® — it + ¢;) _ {(5.36)

(i5)or

(natt)
AW, 2 & B\
(G0 =5 30 () + B ey (537)
. t =1 i (E'gei)rga : .

oW

AW, 5=l =0 (5.38)
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- -For the J — j transformation, we drop the first order time dependent terms, we keep only the first
i i cootermrof the time independent series in the expression for 8W; /8®, and transform all derivatives into
+derivatives with respect to k2. We then get:

e 7\ & e T d Qb
_7 = J}mm +€Q—‘b1 sin $ — 5 Q (ﬁg) d( 2)2 -I- Qu (Qtzl) b]_ P (Tt-) (539)
* where J
dhom = o+ Adnom + Y- 0 ;}” (540
(s3)or
(n#1)
Which can be rewritten as:
2
J = Jhem + e-—-bl sin @ + €2Qy (Q ) Adnorm (5.41)

If 7 is positive, the oscillatory term linear in € is positive when # is positive and negative otherwise.
Its effect is to push all points in the phase trajectories upwards, and essentially describes the phase
shift of the main wave resonance observed in the phase plots of Figures 5.1 and 5.2. The constant
second order term describes a systematic shift of the “trapped” resonance towards a different orbit.
Figure 5.4 has a plot of Ajnorm, which is adimensional and depends on &2 only. The plot shows -
#7460 be-negative.and-therefore. describing:a displacement:of: the resonance towards the-centeiof 7 -
oscillation.

- For the @ -—- ¢. transformation we can write & = ®pom — B, +~Where @ 415 the value-of "®- 7

o vezobtained.from Hamilton’s.equations when 7= .0.-We then throw.away all-explicitly time dependent =+ -

- terms, and keep only the first term in the remaining series expansion for W, /8J, to get:

!
¢ =Ppom — By + €7 (Q) cos P (5.42)
2

-~ We see that added to the constant phase shift —®,, there is a periodic term that for positive 7 is"
positive when § is positive and negative otherwise. For the two-lobed resonances shown in Figures
9.1 and 5.2, this term advances the motion of an equilibrium point at the right of the axis § = 0 and
retards its motion at the left. This term is the cause of the different phase shifts observed for the
two lobes of the resonance in Figure 5.1. Such a term can be understood as a consequence of the
upward shift of the main wave resonance that decreases the j values of the lower part of the phase

“trajectory, increasing the values of the trapping frequency, a.pd does the opposite on top.

"The expression above explains the values and reflection properties of the phase shifts observed
in the phase plots of Figure 5.1:

We can rewrite it as
&= Ppom — o + Tac0os® = Doy + Ad (5.43)

Ppom is the equilibrium point of the resonances for » = 0. For the resonance located at Dpom =0,
the phase shift will be:
“ Ady = —By + racos P, (5.44)
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R e it e e P g B4 Plot of i Jrormy the.normalized -constant shift in -j due to the action of the
inhomogeneity on the main wave potential. The shift is negative and independent of the -
specific resonance under consideration. The divergence at k% = 1 is due to chaos and the
presence of the inhomogeneity that combined destroy the outer electron orbits of the main
resonance rendering the analytical expressions inadequate.

+ and for the resonance at ®p,p, = 7,
Adog = —B, —racos P, {5.45)

We see that in A¢; the two contributing terms have opposite signs and tend to cancel. For Ags,
they add. This makes |A¢z] > |A¢y[ as seen in Figure 5.1.b.
istues Whenthe: perturbing wave is shifted from @ to —Q, I changes to —I. It is fairly easy to show
- that @, is.odd under such a transformation, i.e, ®,(—, &%} = ~®,(1, k?). “The effects on the phase.:

shifts are;
Agy — By + Tacos P, = —~Agy (5.46)

and
Ay ~+ By — racos P, = —Agy (5.47)

Those two equations define the reflection transformation seen in Figure 5.1.c.
When the inhomogeneity is multiplied by ~1, both terms change sign because they -are propor-
tional to 7. This imples
Agre — ~Ad1 2 (5.48)
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that are the reflection properties seen in Figure 5.1.d.
-~ As will be shown in the next section, the relevant part of the phase shifts is the constant part, ®,,
«and the important result to be recalled is that ®, changes sign under either of the transformations

considered above and represented in the phase plots of Figure 5.1.

-.5.5. Internal Resonance Radiation Frequency Shifts

. The internal resonance phase shifts are a sum of two terms: a constant part, d,, common to all points-
=+ 1n the resonance, and an oscillatory part that depends-oh the angular location of -each+lobe. The-

=.-oscillatory part is the cause of the unequal phase shifts in the.phase plots described in section 520

Its presence will modulate the resonance motion producing additional radiation falling on already
established sideband positions. This radiation will not affect the profile of the radiated spectrum to
a great extent and its presence will be neglected. We will concentrate instead on the effect that @,
“has on the resonance radiation. '

If @4 is time dependent, ®, will also be time dependent giving origin to frequency shifts.
Reminding ourselves that Q; remains equal to Q; /1, independently of the variations in the wave

trapping frequency, we can write :

24K (k)

Q
£1 7l

(5.49)

and '
: Qun dK(k) dr?
Qt =

‘T K(x) de® dt (5'5_’0)

- Differentiating @, we will get the frequency drift Awyoear:

& .
Awioeal = o, (I,nﬂ - 2‘?%1‘50 ’ (551) ’
norm t1

Since P )
L @n dﬁ
(I'nof‘m = Tf::;ﬂ_dT (552)

we can write

Awipear = @

S [%,m K(k) _ 2] o (553)
Qtl (I’norm I{’(’C)

where the prime means differentiation with respect to #2, and the time derivatives should be taken

.-at-a fixed poinf in space. |

It is possible to show that the first term within brackets is always larger than 2. Therefore, if -
the main wave amplitude is inereasing, the frequency shift has always the same sign as the phase
shift P,.

Figure 5.5 shows how frequency shifts can be created at a receiver at the end of the interaction
region even when @, is locally constant in time. We assume that electrons propagate in the negative
z-direction, and for simplicity we reduce the continuous interaction region to three localized points
in space where radiation is created. The vertical axes represent the phase of the radiation produced
by the resonances if the inhomogeneity were zero. We assume that the wave configuration is such as
to produce a positive phase shift on the radiation at the beginning of the interaction region (B2) and
. therefore a negative shift at its end (Bp). In the middle point there is no inhomogeneity and the shift
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is zero. We assume that, at a certain moment, By and B, have the same amplitude. The phase of
+ the received radiation, By, will then be equal to zero. If over a time interval At, By decreases and By
--increases in amplitude, the resulting field, B, will undergo a positive phase shift, A®, This will be

detected by the receiver as an increase in frequency, Awspatiat = AP /AL. We see that variations in
~-amplitude of component fields having an inhomogeneity dependent phase shift are enough to create

.. an overall variable frequency field, even when the phase shifts are locally constant in'time. - ="

AD

Fig. 5.5. Schematic representation of the transformation of resonance phase shifts

~“#into radiation frequency shifts.’ B, is the vector sum of By, By, and B, The vertical axes

- represent the vector phases if the inhomogeneity were equal to zero. The upper part of

the picture shows a situation in which the amplitudes of the component fields add up to

- a zero phase shifted B;. The lower part shows what happens when component fields vary

in magnitude keeping a constant phase. The result is a phase shift on B;. If the shift A®
happens on a time interval Az, the frequency shift will be Atgparial = ABSAL.

Since the phase shifts are dependent on €}, and therefore on vy, we conclude that associated
with the shifts in frequency there will be an increase in the linewidths of the sideband waves as they

move away from their original positions in the frequency axis.
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5.6, External Resonances - Half Harmonic

- To study external resonances, we start with the Hamiltonian written as a function of (6, 8) = (g,p):

h(g,p,t) = ho(q,p, 1) + €h1(g,p,1) (5.54)
with
N
ho =p%/2, hym=—rq— > A;cos(q—Qut+ i) . (5.55)
=1

- -where again a factor of ¢ was factored out of 7.
“To’arrive atthe corrections created by the inhomogeneity on the half ‘harmonic resonance, we™
choose K, = h, and K; = —7Q. This implies -

N
A; .
W, = ; ) sin{Q — it + ¢;) (5.56)

- The second order Hamiltonian containing the half harmonic is chosen to be

S A A4 i
= 42(1’ oy~ 43[(P-lﬂ,-)z+(P-n,-)ﬁ]"°S(QQ-29;L‘+¢,-+¢,) (5.57)

+i#The cotrections-to the resonance will-show:up ‘in ‘the K3 terms.depending both on T 'a.nd'on'thé%'-'""
" -argument (2Q — 2911‘ + ¢+ ;). To ca.lculate K3-we need W that can be found: similarly to the:*

: homogeneous case to be:

i

s L AAy
e = ,?:‘12(1’ )2 2P — (U +Q)}S‘“[2Q (Q + Q)+ ¢ + 6] —
N
= e RIS D R 659

21'2 Poa)p Q )3 cos(Q — ;1 + ¢;)

=1

Relevant terms for K3 will come only from §Lyh; and from 2L2h,. They give:

1 3rA;A; 1 1 .
S §L2h1 -~ T 5 J [(P — 95)4 -+ (P — Qj)4] SIH(QQ — 29%1 + ¢ + 963) .(5.59)
and
1 A A (P —Q)(P =)+ (8 — Q)27 .
-2-L¥h1 - L 5 1 [( (P)S- Q;)3gllt(SZj)3 ) ] sin(2Q ~ 2,1 + ¢; + ¢;) (5.60)

K3 can, therefore, be written as

K3 = —7AiA; f(P)sin(2Q — 201t + ¢i + ¢;) (5.61)
with . 1 1P =Q)(P— )+ (2 — )
P =35\ 9)4 TP TE (P aRP—G ) ] (5.62)
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that has the following properties:

24

f(2) = W, f'(ﬂé) =0 (5.63)
~The full Hamiltonian is now
| p? A2
K= T—ETQ"!' 42(}, SHER
: o (5.64)
- AAJ [(P o TP 19 )z] cos(2Q ~ 224t + & + ¢)- B )
€ TA,A_,f(P) sin(2Q ~ 2Q1t + 4; + ¢;)
Defining
SRR 29°= derf(P)(P =) (P 12er (5.65)

P-0P+P-F  @-5)p

where the approximate equality is valid near the resonance, the Hamiltonian can be rewritten as

P2 A2
K__"”Q”E - (5.66)
A A; 1 1 N o -
£ 1 ] '[(P._Qs.)2 *.(P;Qj)z]'COS[Q(IQ ‘—"60)—.29%t +‘¢i+¢j] )

-"We see that apart from creating a small initial phase-shift on ‘the “equilibrium positions, the inhe: ¥
“‘mogeneity acts on"the half harmonic as it does on a regular resonance created directly by a single -

. weak carrier propagating in the magnetosphere. If we calculate the equation of motion, we obtain: =

. 2A.4.
G =er— (_éé_—%%f sin [2(Q ~ 6,) — 20y + g1 + %] (5.67)

The equilibrium points are shifted by

1. [ —9)? - .
A = = L A i .
Qsnpe =0 + 7 sin [ TAd } (5.68)
wifromuitheir original values.sThere: will:be- nooscillatory motion £ wibis wa .
deA; A;
T| > — 5.69
> Gy (569)

This is a very small value for the inhomogeneity meaning that the closed orbits associated with such
resonances will be easily stripped away and the resonance destroyed as shown in Figure 5.2.d.
Frequency shifts and line broadening will also be observed in the radiation coming from external
resonances. They are originated in a manner similar to the shifts and broadening associated with
- internal resonances described in section 5.5, a main difference being that for external resonances

any interacting carrier amplitude variation will contribute to the local time dependence of the phase

.. shifts.
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5.7. Higher Order Resonances

Higher order “trapped” and external resonances can also be studied but the expressions describing
“the effects of the inhomogeneity are extremely complex and can only be arrived at with the help of
an algebraic manipulation computer program. Those expressions will not be reproduced here, but

- a summary of the principal results is possible to make:

5.7.1. Internal Resonances

“oo-Some inhomogeneity effects come directly from the interaction between the main wave-and the'
-~ inhomogeneity and should not depend on the type of resonance under study. Therefore, we should”
expect to have the same expression for Aj describing the motion of the resonance towards the center
of oscillation. The stripping away of the outward orbits of the main wave should remain unaltered,

;»and so.should the upward shift of the main resonance when 7 is positive. An oscillatory component

in the phase shift of the equilibrium points in higher order resonances should also be present and its
mathematical expression should be exactly the same as for first order resonances, since such a shift
is a consequence of the upward displacement of the main wave resonance, and is independent of the
particular “érapped” resonance under consideration. The only effect that can and will depend on the
type of resonance under study is the value of the constant part of the phase shift, &,. Phase plots
~isuch as:the.one.in Figure 5.2.b show.that . ®s-values have all the same order of magnitude, -but.theyw*
--do not-always have the same sign. A phase plot-analysis also shows that the reflection properties.ofi
-z those higher order phase shifts are the same as for the first order ones, 1.e, they change sign when:

. the frequency offset of all interacting carriers; or the inhomogeneity, is multiplied by minus one. ~ -

5.7.2. External Resonances

Higher order external resonances also have phase shifts proportional to ¢ in the position of their -
equilibrium points. Those shifts, although all of the same order of magnitude, vary appreciably from
one resonance to another and can even be zero as, for example, in the case of the 1/3 subharmonic.
Such shifts are, nevertheless, irrelevant because they are readily swamped by the direct effect of the

- inhomogeneity on each resonance. An nth order resonance will have a phase shift of the order of
unity, and will be subsequently wiped out, when under the influence of an inhomogeneity with a
torque 7~ €*~1. This is a very small value indeed, and if no appreciable growth is present, those

- resonances will exist only over a very short interaction region around the equator.

5.8. Conclusions

The inhomogeneity of the magnetic field of the earth has the following main effects on resonances:
1. For an external resonance, it opens up its outer closed phase orbits, destroying it completely
if the associated torque is strong enough, and introduces shifts in the positions of its stable
equilibrinm points. The resultant shifts have the same sign as the applied torque and, even
.when locally constant in time, are translated at the end of the interaction region into radiation
frequency shifts. Since the phase shifts are dependént on vy, the frequency drifts will be

i:.accompanied by an increase in the radiated sideband linewidth. Because the external resonances
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that give rise to sidebands are naturally narrower than the ones associated with main carriers,
they will be able to exist only over a short length of the interaction region located around the
equator without being completely destroyed.
2. For a “trapped” resonance it creates a shift in its angular position inside the main wave and
- moves its orbit towards the center of the main wave resonance. The shift towards the center
is independent of the resonance under consideration, and contributes to extend the lifetime
+of the-resonance -by moving it away from orbits easily opened by the inhomogeneity. “The
. +» phase shifts take wvalues partly -dependent on the resonance under consideration, show- well
=-defined - parity properties under reflection of the perturbing -carriers -around the main ‘carrier-
position, and change sign when the inhomogeneity does. Those shiits, as in the case of external
resonances, will be translated into frequency shifts and line broadenings at the receiving end of
the interaction region.
The difference in resistance to the inhomogeneity between internal and external resonances is one
of the reasons why it is possible to have carriers too weak to be seen in a spectral display creating
easily visible sidebands. Since their own resonances are external and narrow, the orbits are opened
up, the resonance destroyed, and growth eliminated. The wéak carrier is not seen. However, since
they can create resonances inside the strong main carrier, and since those resonances are not easily
.. affected by the inhomogeneity, bunching can .occur,.radiation will be produced, and the sidebands::

seen,
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6. Summary and Recommendations

6.1. Summary of the Present Work

The work presents a theory for whistler sideband formation based on the solution of the equation
- ;. -of motion for an electron under the influence of a set of discrete whistler-mode waves. ' The results
;. ...are_obtained both analitically, and through computer analysis with the help of phase plots. No.
. .integration is necessary to obtain any of the major results. The analytical work consists of a series
| .. .of coordinate transformations to explicitly exhibit the resonances which lead to the radiation of the:
sidebands, and the numerical analysis consists of the generation of phase plots. ‘Phase plots in the
(6,8) plane can be thought of as the set of vectors tangent to the phase curves § = 8(8) [Littlejohn,
1978], and can be obtained directly from the equations of motion without integration. This does

e - TlOL - ean, however, that the electron distributions are also obtained without integration: the results

of this work do not include an exact prediction of the long time evolution of systems containing
resonances. When that is attempted, qualitative arguments are used, and only partial results are
obtained. The long time evolution of rescnance systems is still an open problem and its solution,
very likely, will require massive amounts of numerical computer processing.
The main conclusions of this work are the following:
Vet L LiiMagnetospheric sidebands are duesto:the. interaction of two or more waves propagating in thes"
.plasma. Radiation comes from cyclotron resonances in the electron motion produced by-such >
an interaction.
et i, 2 “Single-frequency” sidebands come from the interaction of a-single carrier, with-PLR harmonics -
present in the duct.
3. Sideband wave frequencies are given by a simple formula:

T naws
w = L=t T (3.34)

D=1 T
Although the formula is simple, it is recurrent, allowing for the generation of extremely complex
spectral structures.

4. Radiated sideband frequencies and linewidths, to a good approximation, do net depend on the

s Sy U distribution, only. the. amplitudes. do. . Integration over different.pitch angles will not smear
out the resonances and increase the radiation linewidth.

5. Sideband waves do not have constant frequencies, but shift and increase their linewidths when -
the interacting waves have time dependent amplitudes. Such shifts are a perturbative correction
to the sideband frequencies, proportional to the degree of inhomogeneity of the magnetic field
of the earth, and should not be confused with the larger shifts mentioned in 1.3.h.

6. Carrier amplitudes involved in sideband formation are not critical. In particular, it is not
necessary that any of the carriers be strong enough to “trap” the electrons in the plasma. I, in
a set of interacting carriers, some have large enough amplitudes (say, 30dB above noise level),
the others can be vanishingly small (at least 40dB lower in amplitude) and still participate in

«.bhe.generation of sizable.sidebands. (comparable in.size.to the large carriers).
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7. The electron interaction time with the electromagnetic waves is not associated with the sideband
spectral frequencies. Such a parameter is ill defined and cannot be the source of sharp frequencies
or time constants in a theory of wave-wave interactions.

8. A wave in the plasma creates forces that pull the electrons in towards the resonance velocity.
. The resultant distortion in the electron density, combined with a natural fall-off of the original

.. distribution as a function of vy, can explain why sideband growth is frequently more pronounced. - -

on the upper frequency side of a carrier. ' '
e eon wlaee- 90 Suppression of a weak wave by a strong wave.can be explained either by massive production:

.+ of chaotic motion inside the weak carrier resonance; or by a complete elimination of the weak*
carrier resonance when it falls inside the strong carrier resonance.

10. A mechanism for amplitude saturation emerges naturally from the present work: a wave satu-
rates when its resonance is made up of “trapped” resonances, radiating at frequencies different
from the wave frequency, interspersed with electrons undergoing chaotic motion.

11. Despite its low amplitude, PLR can produce noticeable effects, either by creating “trapped”
resonances that will not be destroyed by the inhomogeneity, or by acting as a “comb” {o ef-
ficiently produce certain types of resonances, such as the frequency difference intermodulation

resonance described in chapter 3.

*... }2.. Sophisticated mathernatical -techniques: are.indispensable to analyze the.interactions-in-this::.

RS tos iv o work.-Lie Transform Perturbation Theory is chosen because it is applicable:to any Hamiltonian'#
system, and has the additional following advantages: it does not use mixed variables, allowing -+
- the perturbation expansion to be extended to a.rBitra.rily high orders; it does not generate secular "

.. terms or small denominators if a judicious choice of the associated generating function is made; it

is based on a Poisson brackets series, and is canonical and invariant in form under any canonical

change of coordinates. The study of radiation frequency shifts, where the inhomogeneity of
the magnetic field of the earth plays a very important role, and the calculation of high order -

sidebands, could not possibly have been made without its help.

6.2. Recommendations for Future Work

This work was made to be extended. It establishes a groundwork founded on the equations of motion,
=, and. containing .only. the basic. general.ideas:necessary for-the description of sideband formation
-and wave-wave interactions in the magnetosphere. Based on this work, models should be built to
describe specific aspects of phenoinena to be analyzed. In building a model, care should be taken -
that it contains a faithful description of the physical system under study in all its essential points.
Deviations {rom reality, due to required approximations, should occur only in its secondary aspects.
No fundamental property of a system should ever be dependent on model approximations.
Although analytical extensions, such as a generalizatioﬁ to include non-ducted waves, can be
made to the formalism presented in this dissertation, most of the future work will, very likely, consist
of computer simulations in which the long-time self-consistent evolution of a system will be studied.
They will almost certainly require a lot of computer time, since large bandwidth electromagnetic

i WaYeS, interacting for long times with the.magnetospheric.plasma, will be present. The most obvious
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choices for such studies would be:

1. External and “trapped” resonances should be tested for their ability to generate sidebands. Since
B

vy does not affect the sideband frequencies in a first approximation, the electron population

could have only one value of vy, but should have a continuous distribution in vy with an

adequate width and gradient. A continuous electron flux should cross the interaction region for:

- trapping by the waves would not be required.

- ab least the time necessary for the resonances to-undergo several oscillation periods.: Electron™

The saturation mechanism suggested by the present work should be tested by creating a wave:

tron motion. The mechanism will work if the electron distribution has only one value of v,..

It is important to test its validity for an electron distribution having a continuous and realistic

.distribution in vy .

. Sidebands produced by PLR should be computer simulated. It would be important to verify

the formation of growing sidebands by PLR harmonics too low in amplitude to be directly
observable. The importance of PLR harmonic coherence in the formation of certain types of

resonances, such as the frequency difference intermodulation resonance, should be tested.

.- Suppression should also be tested. The easiest way to do it would be to put a weak: carrier

- growth will not be appreciable.

- configuration that will produce the required ‘“trapped” resonances, together with chaotic elec="".

;..inside a strong carrier resonance and see:that, since it.cannot-create-a resonance of its-owngpitsi: .

- PLR contamination is an unwanted phenomenon (as the word “contamination” indicates) that shows -

" manifests itself as an apparent natural time or frequency constant of the system. Since it is unwanted,’

and the connection with 60 Hz is hardly ever obvious, it is tempting to ignore it and try to explain the

phenomenon as a “pure” magnetospheric effect. It is the author’s opinion that the magnetospheric

« o .2 up. frequently in.wave-wave interactions, but:always indirectly and in a subtle iway. It- generally -

- plasma has no well defined time constants in the millisecond range, and that any observed frequency -

difference of the order of tens of Hertz either comes from an external transmission or is due to PLR,

contamination, no matter what the phenomena displaying them look like on the surface. With this

in mind, the following effects should be given a thorough investigation:

1. Effect of PLR on iriggered emissions. A preliminary analysis made by the author indicates that

. ...triggered emission, as.shown.in. the Siple data, is the.last step of a process that starts with a

aBe Y

. the wave by the inhomogeneity, creating the emission. It is possible that a PLR-free plasma

will produce emissions, since wave growth is accompanied by a broadening that also generates
electron chaotic motion, but the wave intensities required for such a process are expected to be
higher than the ones found in the earth’s magnetosphere.

Effect of PLR on band limited impulses (BLI). A preliminary observation of BLI’s indicates
that they are made up of broadened sidebands coming from the interaction between a trans-

mitted carrier and PLR. When there are no other waves being transmitted in the same time

_and frequengy.interval,.and. triggered. emissionsiproduced. by BLI’s, become entrained, the en-

sideband generating interaction between a carrier and PLR. If the sidebands grow sufficiently, -

- their resonances overlap, creating chaotic electron motion. Such electrons are swept away from
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- trainment frequency is a possible sideband frequency (either from a carrier-PLR or a PLR-PLR
interaction).
:3. Effect of PLR on suppression. Supression effects, of the type observed in the CBVA experiment
[Helliwell, 1986] and others, should be thoroughly analyzed, especially because they represent
. a tempting escape from the PLR issue. The amplitude minimum, frequently observed around
+%+.25 .Hz, can be explained by PLR interactions, that'at 23 Hz-(the Golden Mean of 60 Hz)"
= --produce several overlapping resonances that eliminate wave growth and sideband production:*
~+..+The alternate explanation, that the minimum is a consequence of the overlap of the -coherence
. bandwidths of each wave, does not seem consistent with known facts. Phase plot analyses show.
that the range of frequencies over which resonance overlap produces completely chaotic electron -
motion is approximately 10:1 [Menyuk, 1985). If we assume that at 25 Hz the two carriers are
separated by the carriers’ trapping frequency, complete chaos will stili be present at twice that
separation (50 Hz). For smaller separations, chaos will be found even at one fifth of the trapping
frequency (5 Hz). In other words, completely chaotic motion would be found over all frequency
values of the CBVA experiment, little growth and sideband formation being possible, This is
clearly not consistent with what is seen in the data.
4. Effect of PLR on natural line formation. Natural line formation effects pose a special problem
" because their line structures are-not as clearly defined as the ones observed in controlled exper—
-+ iments. -In the past, those. lines were analyzed-with fairly’ wideband filters (20 Hz), and PLR i
‘influence on them was looked for having in mind extremely simplified theories: natural lines, if - -
- created by PLR, would be nothing more than amplified PLR harmonics;:if the line separations .
-+ were not exactly 60 Hz or if the lines drifted, they could not be PLR, related [Paschal, 1988].
The present work shows that in reality small line shifts should always be found in magneto- -
spheric lines and that sideband formation is so complicated that frequently no direct evidence
is found in them of the generating carrier frequency separations. Large line shifts, analyzed
7. by tracking filters [Paschel, 1988], can be explained by variations in amplitude of two or more
lines falling inside the same filter. The filter will be unable to separate them, indicating only
the frequency drift of their weighted average. Amplitude variations can be explained by “weak”
rising emissions of the type discussed by Chang, {1980}, or by simpler variations in the electron
density gradient.

<" As a last comment on methodology, it should be said that if a real scientific understanding of

- phenomena, such as the ones displayed in this work, is wanted, as much emphasis should be put -

on theoretical understanding as on data analysis. The unity and consistency of physics, present
in all natural phenomena, is found only at an abstract level beyond the ones directly reachable by
data analysis. A morphological and phenomenological analysis of the data does not make full use
of the constraints imposed by those higher levels and runs the risk of either being inconsistent with
the underlying physical reality, or of displaying a multiplicity of effects that exist only superficially,
being in reality different manifestations of a same basic underlying process. Application of such
ideas to research in the field would entail a complete reworking of all theoretical results obtained in

the past, until they are either shown to be wrong or clearly consistent with the laws of physics.
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