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Monte Carlo simulation of runaway MeV electron
breakdown with application to red sprites and
terrestrial gamma ray flashes
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Abstract. A three-dimensional Monte Carlo model of the uniform relativistic
runaway electron breakdown in air in the presence of static electric and magnetic
fields is used to calculate electron distribution functions, avalanche rates, and the
direction and velocity of avalanche propagation. We also derive the conditions
required for an electron with a given momentum to start an avalanche in the
absence of a magnetic field. The results are compared to previously developed
kinetic and analytical models and our own analytical estimates, and it is concluded
that the rates used in many early models [e.g., Lehtinen et al., 1997; Taranenko
and Roussel-Dupré, 1996; Yukhimuk et al., 1998; Roussel-Dupré et al., 1998| are
overestimated by a factor of ~10. The Monte Carlo simulation results are applied
to a fluid model of runaway electron beams in the middle atmosphere accelerated
by quasi-electrostatic fields following a positive lightning stroke. In particular,
we consider the case of lightning discharges which drain positive charge from
remote regions of a laterally extensive (> 100 km) thundercloud, using a Cartesian
two-dimensional model. The resulting optical emission intensities in red sprites
associated with the runaway electrons are found to be negligible compared to the
emissions from thermal electrons heated in the conventional type of breakdown.
The calculated gamma ray flux is of the same order as the terrestrial gamma ray
flashes observed by the Burst and Transient Source Experiment detector on the

Compton Gamma Ray Observatory.

1. Introduction

Red sprites [Sentman et al., 1995] are large-scale lu-
minous glows occurring above thunderstorms at alti-
tudes 50-90 km, exhibiting predominantly red color.
Terrestrial gamma ray flashes have been observed by
the Burst and Transient Source Experiment (BATSE)
detectors located on the Compton Gamma Ray Obser-
vatory (CGRO) [Fishman et al., 1994] and are believed
to be associated with lightning discharges [Inan et al.,
1996]. In this work, we apply a new Monte Carlo model
to evaluate the connection of the red sprites and terres-
trial gamma ray flashes with high-energy (20 keV to
10 MeV) runaway electrons, produced above thunder-
storms and driven upward by the thundercloud electric
field.

1.1. Runaway Breakdown in Gases

When the energy of an electron in a gas exceeds a
certain value, the friction force resulting from its colli-
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sions with the gas constituents begins to decrease with
increasing energy, as shown by the solid line in Figure 1.
If a strong enough external electric force is applied to
such an electron, it becomes a “runaway” electron and
initiates a breakdown process.

The runaway electron breakdown was previously stud-
ied not only in relation to non-ionized air but also in re-
lation to high-energy plasmas, such as in tokamaks and
astrophysical plasmas. Analytical studies considered
uniform breakdown [Sizykh, 1993; Gurevich et al., 1992],
spatial propagation and diffusion of a runaway beam
[Gurevich et al., 1994], breakdown in the presence of a
magnetic field [Gurevich et al., 1996], and the runaway
process in a high-energy plasma [Bulanov et al., 1997].
The numerical solution of the kinetic equation describ-
ing the relativistic runaway breakdown in the absence
of a magnetic field was obtained in air [Roussel-Dupré
et al., 1994; Symbalisty et al., 1998] and in high-energy
helium [Babich and Kutsyk, 1995]. One-dimensional (1-
D) Monte Carlo models of thermal runaway with strong
fields E/N > 3 x 10~1° V m? were applied to nitrogen
[Kurnhardt et al., 1986] and neon [Shveigert, 1988].

In an earlier study of runaway electrons [Lehtinen et
al., 1997], the avalanche rates were taken from a non-
magnetic kinetic model [Roussel-Dupré et al., 1994],

24,699



24,700

10

Energy Loss, MeV m’ kg'1
[
=)

-

—
(=)

1
Energy, MeV

Figure 1. Dynamic friction function used in our
calculations: salid line, full dynamic friction function
Fp given in equation (2); dashed line, dynamic friction
F'p exal With excluded ionization given in equation (8).

and the direction of avalanche propagation was calcu-
lated from the equation of motion of an individual elec-
tron [Gurevich et al., 1996].

It has since been shown [Symbalisty et al., 1997] that
the avalanche rates as reported by Roussel-Dupré et al.
[1994] were not accurate, both because of numerical
problems in the computations and owing to the fact
that the effects of the magnetic field were neglected.

In this paper we use a Monte Carlo technique in order
to model runaway avalanche in the presence of a mag-
netic field. This more general method also allows us
to address existing discrepancies between the results of
different models of this phenomenon. Avalanche rates
and the direction and velocity of avalanche propagation
are accurately determined from our Monte Carlo model
and then used in the 2-D Cartesian runaway model in
the middle atmosphere.

1.2. Runaway Breakdown in the Middle
Atmosphere

The relativistic runaway breakdown field E; in air
above thunderclouds [Gurevich et al., 1992] is smaller
than the conventional breakdown field [Papadopoulos et
al., 1993] by a factor of ~10. The runaway electrons are
thought to be accelerated by quasi-electrostatic fields
in the middle atmosphere following a positive cloud-to-
ground (+CG) discharge [Bell et al., 1995]. The seed of
the relativistic runaway electron avalanche is provided
by MeV electrons from a cosmic ray shower [McCarthy
and Parks, 1992].

In our previous work [Lehtinen et al., 1997], we stud-
ied the production of runaway electrons in thunder-
storms using a cylindrically symmetric model with ver-
tical axis and vertical geomagnetic field. Red sprites
have been observed at magnetic latitudes ranging from
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10° to 50°, and terrestrial gamma ray flashes have been
observed throughout the equatorial region covered by
CGRO, namely +20° geographic latitude. These low-
latitude regions are characterized by a large angle be-
tween geomagnetic field and the vertical, which makes
the cylindrically symmetric model inadequate to de-
scribe energetic electron discharges, since the magnetic
field influences the electron motion to a large extent at
high altitudes [Lehtinen et al., 1997; Gurevich et al.,
1996).

The Monte Carlo model considered here allows an
arbitrary direction of the geomagnetic field. The model
is also two-dimensional but is translationally symmetric
in a horizontal direction and is applicable to the case of
lightning draining positive charge from remote regions
of a laterally extensive (> 100 km) storm front. The
length of the cloud must be at least the size of the region
modeled. The discharge in our model is characterized
by the removal of a linear charge density (in C/km).

We calculate both optical emission in the Ny first pos-
itive band system, which is dominant in red sprites, and
gamma ray emission from energetic runaways [Lehti-
nen et al., 1996]. The gamma ray flux and spectrum
are compared to BATSE observations |[Nemiroff et al.,
1997].

2. Breakdown Simulation

In this work, we use the following notations:

E, B external electric and magnetic fields, assumed
constant and uniform in the Monte Carlo
calculations;

p, £, v electron momentum, kinetic energy and veloc-

ity, respectively;
v =1/y/1=12/cZ = 1+ -£; electron relativis-
tic factor;
molecular density of air;
= 14.5 average molecular nuclear charge for
air;
e magnitude of the electron charge;
m electron mass;
¢ speed of light;
ro = e%/(4megmc?) ~ 2.81777x 10715 m electron
classical radius.
2.1. General Description

Np,
Zm

The Monte Carlo model of runaway breakdown makes
use of a set of test electrons, for which phase space co-
ordinate information is stored. The motion of energetic
electrons is described by the Langevin equation. It in-
cludes the electric and magnetic forces and a stochastic
force T'(t), which describes the elastic and inelastic scat-
tering of electrons:

dp e

The model is based on solving equation (1) numerically
for each electron in the set, with a time step At. The
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collision term I is divided into two parts, one described
in terms of a dynamic friction function and the other
determined on a statistical basis. The latter involves the
nonzero probability that some of the collisions lead to
the generation of new energetic electrons by ionization,
which must be added to the existing set of test electrons.
Typically, there are many more electrons at lower en-
ergies than at higher energies due to the (£')~2 depen-
dence of the ionization probability for creation of an
electron of energy &£’, as is shown later. For simplicity,
we only consider electrons with €& > &, and choose
Emn = 2 keV. Any electrons for which the kinetic en-
ergy decreases below &y, are dropped from the set.
For an ionizing collision leading to the production of a
secondary electron with energy € > &Eyin, momentum
vectors of both electrons after the ionizing collision are
calculated on the basis of the ionization cross section.
For £ < Emin, the processes of energy loss and velocity
direction change are described in terms of the dynamic
friction function and angular diffusion, respectively.

2.2. Dynamic¢ Friction Function (Stopping
Power)

The energy losses for energetic electron motion in a
collisional gas are due to excitation and ionization pro-
cesses and can be described in terms of a dynamic fric-
tion force Fp(E) [Bethe and Ashkin, 1953, p. 254], ef-
fectively acting in the direction opposite to the electron
motion:

muv2€ _
T2 02/

2 1 (v=12 1
(1+;—?)IHQ+W+? , (2)

K = 2nréme?(c/v)? (3)

Fp(€) = NpZmk {1

where

and [ is the average ionization energy, I ~ 80.5 eV
for air [Roussel-Dupré et al., 1994]. This force has a
minimum at electron kinetic energy £ ~ 2.39 x mc? ~
1.22 MeV, which is equal to electric force due to the
runaway threshold field F;, determined by

Ey

L~ 21.7 x 20 Zprime
m

26_1 ~

~

8.05 x 1072! Vm? = 8.05 Td, (4)

where Td is a townsend, a convenient unit of E/N.

Because the ionization with creation of electrons with
energy £ > Enin is included explicitly in our model, we
must exclude the energy losses associated with it from
the dynamic friction:

FD,excl(g) = FD(E) - FD,ion(g)- (5)

The ionization loss is (we neglect the ionization energy
Ik Smin):
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£/2
Fpon(€) = NmZm/ & (&,E)dE, (6)
gmxn

The cross section for ionization oy is given by Mgller
formula (see expression (14) below). Electrons emerging
in a collision are indistinguishable, and we label the
one with the lower energy as the secondary electron.
Therefore the maximum energy that can be lost in a
collision is £/2.

After substituting the Mgller cross section we find

_ £  (y=17?
Fpion(€) = NmZmk {ln T + R
gminz 2 1 2(5 - gmin)
e R L
E .
1 _ min } , 7
- gmin ( )
2Eminmv?
FD,excl(g) = NmZmk {ln m—
142 Y&y Emm ¥
vy ’72 . £—- Smin £- gmin 02
8min2
min L 8
+2(mc2+8)2} ®

Note that equation (6) is meaningful only for & > 2€,,,
and therefore for Enin < € < 2Enin we still use ex-
pression (2) instead of equation (8). Both Fp(€) and
Fp exc1(€) are plotted in Figure 1 as functions of £.

For the electron energies of interest in the mesosphere
(< 100 MeV, as limited by the electric potential dif-
ference between the thundercloud and the ionosphere),
the radiative losses due to bremsstrahlung are negligi-
ble [Jackson, 1975, p. 718] and are not accounted for in
our model.

2.3. Angular Diffusion

The angular scattering of electrons is mostly due to
their elastic collisions with nuclei. The contribution of
this process is by a factor of atomic charge Z, = Z,,/2
greater than the contribution of collisions with elec-
trons.

Although the elastic collisions are frequent, the aver-
age angle of scattering is small, and we can choose our
time step At much greater than the time between col-
lisions. We incorporate small-angle collisions into the
Monte Carlo model as random changes of p direction
by an angle AO.

To find A® for given At, we calculate a random vari-
able p = cos(A®), which has a probability distribution
f(p,t = At). This distribution is normalized to 1:

1
/_lf(u,t)du =1
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and satisfies initial condition such that f # 0 only at
A© = 0 (the direction of an electron is fixed):

f(ﬂat =0) =6(p— 1—)a

where by 1_ we mean that the delta function is fully in-
cluded when integrated with upper limit 1. The proba-
bility distribution function f(p,t) satisfies the diffusion
equation [Roussel-Dupré et al., 1994]:

of 90 2,0f

o =Pa 0=
The diffusion coefficient is connected with the time rate
of change of the mean square angle:

1d(©e?%)

D(p) =-——

an explicit expression for which is derived below. The
solution to the diffusion equation is

o

£ 80 = 3 (043 ) Pali)e 2002, ()

n=0

where P, are Legendre polynomials. For DAt 2 1 in
calculations we take into account only the terms n =0
and 1 in equation (9). For DAt <« 1, equation (9) can
be approximated as

1 p—1
A ~ 5 Rs P (2DAt) ‘

For very small scattering angle A©, equation (10) is not
well suited for computation because of a small number
in the denominator. In such cases we take a fixed A©
[Risken, 1989, p. 60]:

A® = /(62) = \/%@:)At.

Equation (11) is valid for multiple scattering for a dis-
tribution of the random single-scattering angle with a
finite variance. This is true here because the singular-
ity of Rutherford formula for the scattering cross sec-
tion at small angles is absent due to screening which is
discussed shortly.

The rate of time change of the mean square angle for
electrons, scattered by neutral atoms is [Jackson, 1975,
p. 649]:

(10)

(11)

d(e? _ d(e* _
7 =v 7 —27rNav(

2Z,r0C? ) 2 In Omax

o , (12)

emin

where N, = 2N,, is the number density of atoms. The
angle i, is the minimum angle of scattering, below
which the scattered angular distribution falls substan-
tially below the Rutherford formulas for a Coulomb po-
tential. It is determined by Fermi-Thomas screening
of the nucleus by bound electrons. The angle 0y, for
electrons is ~1 for electrons in air with energy less than
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~50 MeV, so that the size of the nucleus is not impor-
tant [Jackson, 1975, p. 646]. The minimum angle is
Oin = Z/3(me/p)/x, where ¢ = 192 [Jackson, 1975,
p. 645], or z = 65.3 [Mott and Massey, p. 469]. In our
code we choose (C. L. Longmire and H. J. Longley, un-
published report, 1973) Omax = 2 and Opin from [Mott
and Massey, 1965]. Upon subsitution, we find

o 164.7£
s ZX3 me )

2.4. Production of New Electrons

d(@z) 4nN,, Z2% rd3ct
dt 1342

(13)

Production of secondary electrons in ionizing colli-
sions is described by the Mgller formula for relativistic
scattering of two free electrons, one of them being ini-
tially at rest. In this way, we neglect the ionization
energy I < Emin. The cross section into unit energy
interval is

aaion

8! (€& =
11 (2€ + mc?)mc? 1
ME2 T (€-ENE (E+m)2 | (E-E)2
1
+ (€ + mc?)? } ! (14)

where « is defined in equation (3), £ is the initial kinetic
energy, and £’ is the kinetic energy of secondary electron
after collision.

The total ionization cross section for the secondary
electron energy £ > Enin is

£/2 4.,
/ 85ion (£, dE'

o'tot(g) B!

_ n{ 1 1 + E — 2&min
gmin - 8min 2(mc2 + 8)2
mc?(mc? + 2€) In Emin }
E(me? + £)? € — Emin

(13)

The probability of ionization during time step At by an
electron is then

P = Ny Zpvoor(E)At. (16)

The random secondary electron energy €, in the code
is found on the basis of the random variable

X (Eec) = awt(é‘) / Emin

uniformly distributed in the interval [0,1]. Inversion of
(17) to find &sec is done using approximate expressions

 O0ion
oE!

(£, €)dE', (1)

a‘7'ion K
dE’ £z

£
sec anon 1 1
5 ! ! ~ - =
~/$.mm 88, ( ,8 )dg & (gmin Ssec)

Utot(g) ~

(€,€)
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so that
“/'gmin

T X(E€ —2%mm)

Numerical inversion of X (&) using the exact expres-
sion (17) can be done using Newton’s method, but does
not give significantly increased precision compared to
using equation (18). In fact, the error in & as deter-
mined with equation (18) does not exceed ~ 5%.

The components of the electron momenta after the
collision are determined from the conservation of en-
ergy and momentum. The angles are most efficiently
found from scalar products of energy-momentum four
vectors of electrons before and after a collision. For
example, if pg, Prest, and p;, p2 are respectively the
energy-momentum four vectors of the moving and rest-
ing electrons before and after a collision, then pg =
{mc’)’o,Po}, Prest = {mca 0}, p1 = {mC71,P1}, p2 =
{mev2, P2}, and Press + po = p1 + p2. Using the fact
that p2 = p-p = m?c®y? — |p|? = m2c? for any electron
state, from (po — p1)? = (p2 — Press)? We promptly find
Po - P1 = m?c (o1 —72) and

SSGC

(18)

o E1(&o + 2me?

cos(Po, P1) = —E;EET — 2m62§ , (19a)
e me2(& — &

sin(Po, p1) = ARSI 81( J‘r’ 2m612)) : (19b)

where & = mc?(y, — 1) are kinetic energies of cor-

responding electrons and where we have used |p| =
mey/y2 — 1 for each state and v, = y9+1—7;. The di-
rection of the momentum of the other electron is found
by substituting indices 1 — 2. The angles for electron
directions were also given in previous works on runaway
[e.g., Roussel-Dupré et al., 1994].

2.5. Dimensionless Variables

To simplify numerical coefficients in the equations de-
scribing collisional processes in the program, we use di-
mensionless values of electron momentum, energy and
velocity, and time:

3

b
mc?

Ea=

\% t
Pd = ) VdE,B=—, td=;a (20)

P
mc C
where

T = (20N Zpyrie) ! (21)

is a characteristic time of the process. With this choice,
NpZmk/(mer) = f72 and the equation of motion (1)
does not depend on N,, and therefore on the altitude
at which the process occurs. The sea level value of
N, =~ 2.688 x 1025 m~3 corresponds to T &~ 172 ns.

We calculate avalanche rates and average velocities
as a function of electric and magnetic fields and the
angle between them and use the following dimensionless
substitutes for these parameters:

E cB

= Ea n0=E7 Ho =COS(E’B)'

(22)
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3. Runaway Breakdown Results
3.1. Calculated Avalanche Rates

We choose E = E X+ E,z and B = B,Z and store
momentum components pg, py, P, and coordinates z, y,
z for each electron in the set. The calculation is started
by introducing a few electrons of energy 1 MeV in the
direction opposite to E. In the absence of a magnetic
field the number of electrons grows as shown in Fig-
ure 2 for three different values of normalized electric
field dg. One can see from Figure 2 that the growth is
exponential. Assuming time dependence of N,(t) to be
proportional to ef* we can find the avalanche rate R.
Figure 3 shows the calculated avalanche rates expressed
in a dimensionless form for different &g as a function of
normalized magnetic field 7y for B L E. The data for
this plot are given also in Table 1. The statistical error
in R is calculated using the fact that the error in the
number of particles is v/N;.

Calculated rate values R at 79 = 0 are ~ 10 times less
than those of Roussel-Dupré et al. [1994], which were
used in our previous calculations [Lehtinen et al., 1997],
and which were apparently inaccurate [Symbalisty et al.,
1997] as discussed in the introduction. With the lower
values of R, larger electric fields or longer avalanche
distances are required in order to produce a significant
number of runaways in the middle atmosphere. Figure 4
shows how particles are distributed in momentum space
for different values of 79, for B L E. Results indicate a
significant E x B drift in addition to the motion in the
plane of E and B. Figure 5 shows the calculated self-
similar electron momentum distributions in the absence
of a magnetic field for two different values of §p. The
electron momentum distributions are calculated using
a total of 2 x 10* Monte Carlo particles, by counting
the number of particles in each bin of A(In€) ~ 0.22,
A(cosf) = 0.2. The statistical error estimate for the

Number of electrons

10 - - - - :
0 1 2 3 4 5 6

t 3 dimensionless
Figure 2. Growth of the number of particles in the

Monte Carlo calculations for different values of 8.
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Figure 3. Runaway avalanche growth rate R

multiplied by the characteristic time 7 defined in

equation (21). Shown here is magnetic field dependence for different values of electric field for

E_LB.

6 = 0 curve is shown with horizontal dashed lines. In
form, the distribution functions resemble those obtained
by kinetic calculations [Roussel-Dupré et al., 1994].

3.2. Analytical Analysis of Avalanche Rates

Let us consider the case without a magnetic field,
with B = 0. The motion of electrons is then axially
symmetric with the axis of symmetry being along E =
—FEz. An electron whose initial momentum po = po%
is opposite to E, can become a runaway or start an
avalanche, or can gradually lose energy in collisions and
thermalize. Its “fate” is determined by the rate of fric-
tional energy loss (dynamic friction function) and by
the rate of parallel momentum loss (redirection to per-
pendicular components) due to elastic collisions.

The electronic collisions are a stochastic process; there-
fore we can only assign a probability for an electron to

become a runaway or start a runaway avalanche. Us-
ing the Monte Carlo technique, we can estimate this
probability by running the simulation many times and
approximating the probability with the fraction of runs
in which the electron eventually gains energy 2 50 mc?.
In Figure 6, we plot the probability for an electron with
given initial momentum vector to become a runaway,
calculated in this way. The electric force —eE on the
electron is upward. The probability for an electron to
start an avalanche (i.e., create several new electrons)
was also calculated and turned out to be almost the
same, within statistical error. The white line is a sep-
aratrix of the runaway region calculated from a de-
terministic equation of motion (1) with I' = —pFp,
which neglects stochastic scattering [Gurevich et al.,
1992; Roussel-Dupré et al., 1994]. Above it, in the ab-
sence of angular diffusion, electrons are in the runaway
region, whereas below it, they are gradually slowed

Table 1. Dimensionless Avalanche Rate Ry = Rr for Different Parameters dp = E/E; and ny = ¢B/E; for

ELlLB
do

0\ 2 5 8 15 30
0 0.955 + 0.053 494 +0.27 10.3+0.6 225+1.3 60.4 + 3.6
1 0.867 + 0.051 5.08 £+ 0.29 9.68 + 0.57 229+1.3 56.9 + 3.4
2 e 4.93 4 0.29 104+ 0.6 232+14 53.8 £3.5
5 4.05 +0.24 9.68 + 0.55 23.2+14 59.4+4+3.7
8 0.151 £ 0.009 8.12 4+ 0.47 22.74+1.3 57.0+3.3
15 .. 0.741 4 0.041 20.9+1.2 57.8+ 3.6
30 e 9.87 +0.58 56.9 £ 3.4

Three dots correspond to a situation without an avalanche. All results are derived for 1500 particles.
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(b)

px/mc

Figure 4. Electrons in momentum space for orthogo-
nal E and B, dp = 5: (a) no = 0 and (b) np = §. There
is no avalanche at ny = 24;.

2
10 N

101 ' (a) 2

runaways

f(E,0), arbitrary units
fa—y
=)

| |— 8
10 | |= - g=45
P O=60°
10 ' ' '
10° 101 102 10® 10 10°
Energy, keV
Figure 5.
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down. We see that, since the motion of the electrons
is stochastic, this boundary is in fact diffuse. There is
a finite probability for an electron with a small energy
(less than the minimum energy given by the white line)
to become a runaway, if it by chance experiences less
energy losses than average. On the other hand, there
is a possibility for electrons with higher energy to lose
all of their energy in collisions and thermalize. The
boundary of the runaway region, which was calculated
using Monte Carlo calculations, lies at a higher value of
p than predicted by the deterministic separatrix, due to
elastic scattering. This value is estimated analytically
as explained below and is represented in Figure 6 by
the circle.

We now confirm the results of our Monte Carlo com-
putation by finding the avalanche rates analytically
from the Fokker-Planck equation [Roussel-Dupré et al.,
1994] for the momentum distribution function f(p,t) =
f(p, ,t), where pu = cosf, 9 is the angle between the
electron momentum and electric force ¢gE = —eE. This
equation can be written in the form:

8 18
6—{ = Fa—p{P2(FD—qE#)f}+

a% {(1 — 1) (—%f + Dg—ﬁ)} + Si(p)
(23)

where ¢ = —e, Fp is the dynamic friction force, D is
the angular diffusion coefficient due to small-angle colli-
sions, S; is the ionization integral depending on electron
distribution f:

d ion ,_ ¢/ ! /
SiP) = 5.(0.1) = [ NoZont 226/, ) F(3) %P
(24)
—. 0=0
- = 9=45°
c= 9=60°
104 10°

Energy, keV

Electron distributions for two different electric field values in the absence of a

magnetic field: (a) do = 2, (b) o = 15. Also shown is the runaway region of electron energies,
calculation of which is discussed later in the text. The horizontal dashed lines show an estimate

of a statistical error for 8 = 0.
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.?3

Figure 6. The probability for an electron with a given momentum to become a runaway for
8 = 5 and no magnetic field (no = 0). The direction of E is downward (electrons accelerate
upward). The white line is the boundary of runaway region if the motion of an electron is

deterministic. The circle has radius p, (see text).

Note that here primed variable p’ is the momentum of
the primary electron and p of the secondary electron,
contrary to the convention of (14) and equations fol-
lowing it. In equation (23), the derivative terms in the
right-hand side can be interpreted as follows. The 8/dp
describes changes in p without changes in direction, due
to dynamic friction and an electric force component
gE cosf. The 8/8 describes changes in the direction
of p, due to an electric force component gE sin 8, which
“bunches” electrons in the forward direction, and the
angular diffusion which scatters electrons away from the
forward direction. Let us assume that the equilibrium
in angles is achieved much faster than the changes of p
take place, due to the relatively high value of D. This
condition must be true in particular near the boundary
of the runaway region, where p changes relatively slowly.
The equation for the angular equilibrium is obtained by
equating the 8/0u term to zero:

- (o)

the solution of which is

gE
, 14, t) = C(p,t — . 25
f(p, 1) =C(p )exp(pD) (25)
We now return to equation (23). After substituting a

self-similar distribution function such that 8f/0t = Rf,
and averaging over angles, (23) can be rewritten as

o]

% (26)

1
pr=—2

5 {P*[Fp — aEM (D) fp} + Sip(p),

where

1
fp(P, t) = %/;1 f(ps “st)d“a

1
M(p) = = / pf (D, p, t)dp,

2 )t
and ) )
S0 = 3 [ Seusa

The function M(p), which is just the average value of
u at given p, can be found from equation (25).

The growth rate R can be found from equation (26)
using analysis analogous to [Gurevich et al., 1994]. First,
note that after we integrate equation (26) over p (with
weight 47wp?), by taking the lower limit at momentum
p, such that Fp(ps) = ¢EM(ps), the 8/0p term disap-
pears, i.e. there is no electron flux through the sphere
p = ps. We should thus take p, to be the boundary of
the runaway region. The equality Fp = ¢EM also intu-
itively means that the friction is balanced by the electric
force component gF cos @ parallel to p. The value of p,
as calculated for the case of Figure 6 is represented in
Figure 6 by a circle.

Following Gurevich et al. [1994], we assume that in
the ionization integral S,, the electrons are described
by a monoenergetic beam:
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N
4mp?

@) = é(»" — po),

which reduces the ionization integral to

doion
dp (p01 p)

1
Slp = 47rp2 NNmZm'UO

We now integrate equation (26) from p; to oo (with
weight 47p?) to obtain:

oo *® do;

R [ fpamp*dp = NNpZpvg / . (Po;p)dp
Ps Ps P

Equating the total number of runaway electrons in the

left-hand side to N, we find, after changing the integra-

tion variable to energy &:

* do;
R=M%m/ ton
0 ), “dE

where & is the critical runaway energy, corresponding
to ps, and & (corresponding to pg) is the typical energy
of electrons in the beam. This expression is similar
to that obtained by Gurevich et al. [1992], however,
there is a significant conceptual difference. Gurevich et
al. [1992] neglect angular diffusion and use instead of
&s the minimum energy of an electron moving initially
perpendicular to the electric field necessary for it to run
away. The cross section of ionization into interval d€
(for small £) is

doion
d€

New electrons can be produced by a beam of energy
&y only in the interval £ < £ < &/2, therefore
(doion/dE)(€0, £) = 0 outside of this interval. We find

(&o,E)dE,

2wrgmct
(&0,&) =~ e

ON
R =%
_ 2aNpZprimet /2 gg
- Vo /‘s; E
_ 2aNpZprgmet (1 2
- Bl (2-2).

or in dimensionless units

1 1 2
Ri=Rr=—~ -2
4 Bo (’Ys—l ’70—1)

Using a more exact expression for the ionization cross
section as given by (14), we find

1 1 1
Rt (1
Bo\1s—1 Y%—"

Yo—27s +1 2790 -1 [vo—vsD
— In 27
273 WBwo—-1)  |1—1 @7)

For v9 — oo, we have

Ry =1/(ys —1).

The justification of the choice of a monoenergetic distri-
bution function and vy — oo is essentially simplicity of
theatment and our estimates indicate that these choices

(28)
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lead to negligible error. The correct rate is obtained
by a convolution of (27) with the electron distribution
function. Using self-similar distributions obtained in
our Monte Carlo model, we find that this convolution
is different from the expression given by simple formula
(28) by a factor ranging from ~ 0.8 at £ = 500 keV to
~ 1.01 at & = 10 keV.

Analytical result (28) agrees well with our Monte
Carlo calculations, as illustrated in Figure 7. The rate
comparisons and values of £; are also presented in Ta-
ble 2. If we “turn off” elastic angular scattering by
substituting M(p) = 1, the avalanche rates are larger
by a factor of ~4, as shown in Figure 7.

3.3. Discussion

The avalanche rates calculated by different authors,
which are presented in Figure 7, are apparently quite
different. While the results of [Roussel-Dupré et al.,
1994], as was shown by Symbalisty et al. [1997, 1998],
were overestimated due to numerical error, the rates cal-
culated with a two dimensional kinetic model of Sym-
balisty et al. [1998] still appear to be greater than both
the predictions of our Monte Carlo model and our an-
alytical computations by a factor ranging from ~1.5 at
g = 2 to ~3.5 at §g = 10. The source of this discrep-
ancy probably lies in the formulation of the ionization
process. Assuming that the scattering occurs only at a
right angle [Roussel-Dupré et al., 1994], the differential
cross section for creation of electron with momentum
p and energy £ by an electron with momentum p’ and
energy £ can be written as

doion

d€

8alion

d(cos &)
HEAN ’

!
(6,8) =0

(£,€,6) =

0 2 4 6 8 10
8,=E/E,

Figure 7. Dimensionless runaway avalanche growth
rate Ry = R7 in the absence of magnetic field, as a func-
tion of electric field, obtained by different models: (1)
analytical expression, (2) Monte Carlo, (3) Symbalisty
et al. [1998], (4) analytical expression without elastic
scattering, and (5) Roussel-Dupré et al. [1994].
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Table 2. Monte Carlo Results for B = 0, Analytical Estimates

do 2 5 10 12 15
R4, model 0.986 &+ 0.014 5.18 £0.08 9.92+0.15 13.30+0.19 17.14+0.25 22.66 £0.33
Es, keV 549 103 41 32 24
Ry =mc?/&s 0.930 4.92 9.41 12.6 16.0 21.2

Model results are derived for 20,000 particles.

where df2 is the element of solid angle, £ is the angle
between p and p’. We can write

cos& = cos @’ cosf + sin 0’ sin 6 cos(¢’ — @),

where (¢’,¢') and (6, ) are the directions of incident
and produced electrons, respectively.

Neglecting the ionization energy, the ionization inte-
gral (24) can be transformed into the form [Roussel-
Dupré et al., 1994]:

0o
O00ion

¢ DEONQ

2
Sz(p) = NmZm'U/dQ, (5',S,§)f(p’)1;—2d£’
2

Integrating over ¢’ using the properties of the Dirac ¢
function, we find

S.(p) = N Zmv -

1 o] do pl2
d ’/ Go(¥, on (£, ENVF(p') S dE,
/_1 W o(W's m)— = ( )f(P)p2

where ' = cos§’, p = cos#é, and

27 2 2
d(cos §) O(1 — " — p?)
Go(y',p) = d¢’ =
O(AU‘ nu‘) /0 o ¢ ﬂ'm,
and ©(z) is the Heaviside step function. Instead of

the above more complete expression, Symbalisty et al.
[1998] have the following ionization integral:

Si(p) = N Zpmv -

oodalon 1 p,2
518, a ,a ! + /1 ,_ _dgla
/28 e EEN @ ) + 1k )]p2

where y/, = +sinf = £4/1 — p?. This corresponds to
a substitution Go(p', u) — G1(¢/, p), where

Gr(p' ) = 180~ VI— 1) + 6 + VI = )]

Physically, the usage of G instead of G means that
only scattering in the plane of E is allowed, i.e., p, p/,
E lie in the same plane. To see the numerical difference
in the determination of the avalanche growth rate R
calculated using Gy and G1, let us take a distribution
with a spread angle 8, in the beam:

f®) = ;;EZZ) S(u — ),

where pup = cos, > 0. We then have

o daion

F /
S(p) = GO,](NbaIJ')NmZm”/Qg 7€ ')

d€’.
2mp?

(€,€)

The rate of change of the total number of particles is
thus given by

ON !
(W) = /Sz(P)dSP o / Go,1 (s p)dps.
ion -1

Therefore the rate Re, calculated using [Roussel-Dupré
et al., 1994; Symbalisty et al., 1998] formulation of the
lonization integral is greater than Rg, by a factor of

1

Re, J. 1 Gilm,pwdp cotd

s = = cot f,
Go [T, Go(pe, p)dp

As the beam gets narrower at higher applied electric
fields o = E/E;, the factor cot 8, grows, and we have
a growing discrepancy between two models.

In view of the key importance of the avalanche rate in
the overall development of the runaway electron beam,
it is important that the more accurate rates Rg, are
used in any qualitative models of this highly nonlinear
process.

3.4. Direction and Velocity of Avalanche

Of practical interest is the case when the breakdown
does not start uniformly everywhere in space, but in-
stead starts at some localized point and propagates
in space. Such case of non-uniform breakdown was
previously studied analytically [Gurevich et al., 1994].
Here we instead use the Monte Carlo technique, since
it traces the coordinates x, y, z of each particle. To
calculate the e-folding distance, in addition to the tem-
poral avalanche growth rate, we should also know the
mean velocity of the beam. In previous works [Gure-
vich et al., 1996; Lehtinen et al., 1997], the mean beam
velocity was calculated on the basis of the deterministic
equation of motion of an “average electron,” neglecting
stochastic scattering, an assumption which leads to in-
accurate results. With our Monte Carlo method, the
beam velocity v, is accurately determined by sampling
average coordinates of electrons that move away from
the starting point.
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4. Relativistic Electron Runaway
in the Middle Atmosphere

We now apply the Monte Carlo method to construct
a new model of relativistic electron runaway in the mid-
dle atmosphere driven by the quasi-electrostatic thun-
dercloud fields [Pasko et al., 1997]. This new model
is similar to the cylindrically symmetric model used in
our previous work [Lehtinen et al., 1996] but is specifi-
cally designed for a Cartesian coordinate system, with
a translational symmetry along a horizontal direction,
representing the simplest model of the runaway process
with which we can account for non-vertical geomagnetic
field. In such a model the charge distribution has to be
linear, which can physically represent a thundercloud
charge distribution with transverse extent. We describe
this model briefly below, by pointing out differences be-
tween it and our previous model.

4.1. Model Description

The 2-D model presented uses Cartesian coordinates
and is translationally symmetric in the horizontal ¥
direction. The geomagnetic field is B = Bcosaz +
Bsinak, B=5x 1075 T, oo = 30°, where z is a verti-
cal axis. The initial thundercloud charge consists of two
infinitely long charges of linear density £\ at altitudes
of 10 km and 5 km, respectively. The separated dipole
charges are assumed to be established over a relatively
long time (> 100 s). The induced static charge distri-
bution is calculated in the same manner as described in
[Lehtinen et al., 1997]. Subsequently, the positive part
of the dipole charge is discharged to ground in 1 ms. We
use an exponential ambient ion conductivity profile, as
in previous work [Pasko et al., 1997; Lehtinen et al.,
1997]. This conductivity profile does not include the
effect of cloud aerosols. For computational simplicity,
we do not account for the change of conductivity asso-
ciated with heating of thermal electrons by the electric
field. This effect would lead to conventional breakdown
and development of streamer channels, requiring grid
size in our model to be smaller than the streamer size,
which is $ 10 m at 70 km altitude [Pasko et al., 1998].

The dynamics of the charge distribution is calculated
in a manner similar to [Lehtinen et al., 1997]. We take
advantage of the relatively slow variation of the electric
field and describe it using a time-varying potential (i.e.,
quasi-electrostatic approximation).

The runaway electron density N, is calculated us-
ing the fluid equation [Lehtinen et al., 1997], with the
source Sg of MeV electrons provided by cosmic rays:

ON.,
ot

+ V- (v.N;) = RN, + 5,(2). (29)
The local avalanche rate R and velocity v, are functions
of dimensionless parameters dg, 19, po defined in (22),
and are interpolated from values calculated as discussed
in section 3 and stored in a lookup table of dg, 10, 10-
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For &y less than a certain value, there is no avalanche.
In these cases, the value of R < 0 is calculated by ex-
trapolation from the calculated R > 0 at higher values
of 8y. These R behave roughly in the same way as those
obtained using physical reasoning outlined by Lehtinen
et al. [1997]. The crudeness of this approximation can
be justified by the fact that in the middle atmosphere
the regions where the avalanche is quenched do not have
many energetic electrons and therefore do not play any
role in the development of the avalanche.

The optical emissions are produced as a result of ex-
citation of neutral species through impacts by thermal
electrons, driven by the electric field [Pasko et al.,
1997], and suprathermal electrons (2 10 V), created in
the runaway avalanche [Bell et al., 1995]. The optical
emission intensities are calculated in the same manner
as described by Lehtinen et al. [1997].

Gamma ray production is also calculated as by Lehti-
nen et al. [1997], except that we use the new electron
distribution in momentum space, obtained by Monte
Carlo simulation for parameters dg, 79, and ug corre-
sponding to the point at which the volume emission rate
proportional to N,, N, has a maximum, which occurs at
~ 65 km altitude. The emission diagrams of each parti-
cle in the set are then summed. We use the Heitler to-
tal bremsstrahlung cross section [Heitler, 1954, p. 245].
For Ny and O and for electron initial and final kinetic
energies ~1 MeV we can use the Born approximation
[Heitler, 1954]. The angular dependence is taken from
[Jackson, 1975, p. 705]. Because the atmosphere is
optically thin (r < 0.01) at the altitude of maximum
volume emission rate, we do not take Compton scatter-
ing or the photoelectric attenuation effect into account
in our calculations of the gamma ray flux at the satellite
altitudes.

4.2. Results

Results for a model middle atmosphere are presented
in Figures 8 and 9 for a discharge which removes a linear
charge density A = 12 C/km. For calculations of values
integrated over the total volume including the axis of
symmetry we assume the size of the region over which
charge is removed to be L = 100 km, so that the total
charge removed in the discharge is Q = AL = 1200 C.
The cloud length of 100 km is the minimum possible
length for which the assumption of approximate trans-
lational symmetry is still valid, because it is of the or-
der of nonsymmetric dimensions of the system. The
discharge can have a significant effect on the electric
field at altitudes where the typical time of field relax-
ation €p/o is greater than the time of discharge. To get
the maximum observed currents of ~200 kA, the charge
1200 C has to be removed in time in ~6 ms, which in our
model would have the same effect as instantaneous re-
moval at altitudes below 80 km. The geomagnetic field
dip angle for these results is 60°, which corresponds to
midlatitudes, where sprites are usually observed. We
can use the fluid model of the runaway avalanche when



LEHTINEN ET AL.: MONTE CARLO MODEL OF MEV RUNAWAY

E>E_ (conventional)

log10,.,) for 1P N, line, R
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Figure 8. The runaway electron avalanche in the atmosphere for a charge moment of A\ =

12 C/km at t = 3 ms after the start of the discharge. B lies in the plane of the picture.
(a) Velocity field lines, (b) electric field lines, (c) electric field thresholds, (d) runaway electron
density, (e) optical emissions in N first positive band system (total), maximum is ~6.4 MR.
(f) Runaway electron contribution to it, maximum is ~8.8 kR.

the spatial diffusion of runaway electrons due to differ-
ent effect of magnetic field on electrons with different
energy is not too large. Such is the case for a 60° dip an-
gle, when the geomagnetic field B is sufficiently close to
the vertical. The spatial diffusion of electrons becomes
important when B is close to a horizontal, i.e., at the ge-
omagnetic equator. The orbit of the CGRO satellite on
which the gamma ray flashes were measured is confined
to +20° geographic latitudes, so that some terrestrial
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gamma ray flashes may have originated at the geomag-
netic equator, where the fluid model is insufficient for
their accurate description.

Figure 8a shows the trajectories of runaway electrons
calculated on the basis of our Monte Carlo model and
the fluid model. We see that electrons move along
E at lower altitudes and along B at higher altitudes.
The altitude at which the regime of motion changes
is around 35 km, which is the argument that elas-

E

y-rays

|
|
I
i

Runaway
electrons

(c)

Lightning discharge

Terrestrial gamma ray flashes. (a) Sample of BATSE observation, (b) simulated
terrestrial gamma ray flashes as seen by BATSE,

at ~45° northern latitude in the photon energy

interval 100-300 keV, and (c) schematics of gamma, ray emission.
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tic collisions play a more important role than inelas-
tic ones [Roussel-Dupré and Gurevich, 1996; Taranenko
and Roussel-Dupré, 1997]. There is also a drift velocity
component perpendicular to the plane of the picture at
higher altitudes, where the influence of magnetic field
on electron motion is important.

The regions of runaway and conventional air break-
down, which occurs at §y 2 10 are shown in Figure 8c.
Figure 8d shows the two dimensional structure of the
runaway beam. The basic difference with our previous
work [Lehtinen et al., 1997] is that the runaway density
grows slower, since the avalanche rates are smaller by a
factor of ~10 than those used in [Lehtinen et al., 1997].

Figure 8e shows total optical emissions in the 1st pos-
itive band system of N3. The intensity in Rayleighs is
obtained by integrating the emission rate along the line
of sight, which is taken parallel to the linearly extended
charge distribution and is thus L = 100 km long. Fig-
ure 8f shows the relatively weak optical emissions pro-
duced by the electrons in the runaway beam, indicating
that the emission rate is dominated by the conventional
breakdown. Note that Figure 8e shows emissions before
conventional breakdown, because our model does not
take into account the change of conductivity associated
with heating. Therefore, averaged over the frame rate
(~17 ms) the total emission intensities will be smaller.
Nevertheless, comparison of Figures 8e and 8f illustrates
that the contribution to the optical intensities of the
runaway process is negligible, unlike our previous result
reported by Lehtinen et al. [1997].

Figure 9 demonstrates bremsstrahlung gamma ray
emissions. A sample of observational data is in Fig-
ure 9a. Figure 9b shows the calculated emissions at
500 km altitude of the observing satellite. The angu-
lar distribution of the emission is forward directed for
relativistic electrons, which produces the “spot.” As
seen from Figure 9b, the angular distribution of emit-
ted gamma rays has a width of ~15°. Figure 9c¢ is a
cartoon demonstrating the production of this spot. The
prediction is that for midlatitudes the gamma ray emis-
sions are aligned with the geomagnetic field. Unfortu-
nately, the direction of origin of the terrestrial gamma
ray flash requires a special analysis of BATSE data and
is not in the public domain, so we cannot draw a conclu-
sion about a correlation between it and the geomagnetic
field. The calculated gamma ray flux is of the same or-
der of magnitude as the CGRO observation [Fishman
et al., 1994].

The experimental spectra of terrestrial gamma rays
[Nemiroff et al., 1997] have been shown to be close to
that expected from the bremsstrahlung process. The
model described in this work predicts analogous spectra
since they are not modified by Compton scattering in
the atmosphere.

5. Summary and Conclusions

A Monte Carlo model is used to accurately calculate
uniform runaway electron avalanche rates in constant
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electric and magnetic fields and to determine conditions
for an electron to start an avalanche. Our results in-
dicate that several previous calculations of avalanche
rates have overestimated them due to numerical prob-
lems or simplifying assumptions. The new method is
applied to a model of runaway breakdown due to a
positive return stroke from a laterally extensive thun-
dercloud using a Cartesian (translationally symmetric)
model and a lookup table of calculated avalanche veloc-
ities and rates. We conclude that the geomagnetic field
must be accounted for in describing the motion of run-
away electrons at midlatitudes, where most sprites have
been observed. The magnetic field significantly deflects
the runaway beam from the vertical, so that the fre-
quently observed vertical columnar structure of sprite
is an indication that the observed luminosity is not
produced by the runaway electrons as has been previ-
ously suggested [Taranenko and Roussel-Dupré, 1996).
At latitudes close to the geomagnetic equatorial region,
where terrestrial gamma ray flashes have been detected,
the gamma ray beam, which is parallel to the electron
beam, is deflected from the vertical due to the geomag-
netic field. At the geomagnetic equator, the horizontal
geomagnetic field is perpendicular to the vertical thun-
derstorm electric field and can prevent the development
of relativistic electron avalanche at altitudes 2 40 km.

The optical emissions associated with relativistic elec-
trons are found to be not of significant intensity com-
pared to emissions caused by conventional type of ion-
ization breakdown. For sufficiently large discharge val-
ues, the gamma ray fluxes, which are produced by
bremsstrahlung from the runaway electron beam, are
found to be consistent with experimental data [Fish-
man et al., 1994; Nemiroff et al., 1997]. The gamma
ray spectrum is consistent with a bremsstrahlung spec-
trum.

In general, the effect of runaway electrons in the up-
per atmosphere is smaller than in [Lehtinen et al., 1997],
due to lower calculated avalanche rates than in [Roussel-
Dupré et al., 1994], although the electric field config-
uration is determined by the same conductivity pro-
file. Other works [e.g., Yukhimuk et al., 1999] use new
avalanche rates calculated by Symbalisty et al. [1998],
which are still larger than those obtained in our Monte
Carlo model, as discussed in section 3.3. Also, many
works use an electric field model which assumes no con-
ductivity below 20 km [e.g., Roussel-Dupré et al., 1998;
Yukhimuk et al., 1999]. The electric field in these mod-
els has higher values at altitudes at which the runaway
electron avalanche occurs. All these factors lead to
lower runaway electron effects in our model than those
obtained e.g., by Yukhimuk et al. [1999].
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