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Electrostatic Lower Hybrid Waves Excited by Electromagnetic
Whistler Mode Waves Scattering From Planar
Magnetic-Field-Aligned Plasma Density Irregularities

T. F. BELL aAND H. D. NGo

STAR Laboratory, Stanford University, Stanford, California

Recent satellite observations demonstrate that high amplitude, short wavelength (5 m
< X €100 m) electrostatic waves are commonly excited by electromagnetic whistler mode waves
propagating in regions of the magnetosphere and topside ionosphere where small-scale magnetic-
field-aligned plasma density irregularities are thought to exist. A new theoretical model of this
phenomenon is presented, based upon passive linear scattering in a cold magnetoplasma. In this
model the electrostatic waves are excited by linear mode coupling as the incident electromagnetic
whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. The
excited short wavelength waves are quasi-electrostatic whistler mode waves, a type of lower hybrid
wave, whose wave normal lies near the whistler mode resonance cone where the wave refractive
index becomes very large. For simplicity the case of planar irregularities is considered in which
the electron density varies in only a single direction, roughly perpendicular to Bp, the Earth’s
magnetic field. The amplitude of the excited electrostatic lower hybrid waves is calculated for
a wide range of values of input eleciromagnetic wave frequency, wave normal direction, electron
plasma frequency, gyrofrequency, ion composition, and irregularity scale and density enhancement.
Results indicate that high amplitude lower hybrid waves can be excited over a wide range of pa-
rameters for irregularity density enhancements as low as 5% whenever the scale of the irregularity
is of the same order as the lower hybrid wavelength. It is shown that lower hybrid waves can be
excited only when the planar irregularities are aligned with Bo within a small angle 2x., where
Xc is equal to the complement of the resonance cone half-angle. For the frequencies and L shells
considered, xc < 8°. Predictions of the theory are shown to be consistent with satellite data. A
VLF “radar” method is demonstrated whereby the lower hybrid wave excitation phenomenon can
be used as a diagnostic tool to determine the small scale irregularity structure of the medium.
The effective damping of the input eleciromagnetic wave due to the excitation of the lower hybrid
waves is also considered. It is found that this form of damping may be a dominant factor for

whistler mode waves throughout large regions of the magnetosphere.

1. INTRODUCTION

Recent data from the ISEE 1, DE 1, ISIS 1, ISIS 2, and
Aureol 3 satellites [Bell et al., 1983; Titova et al., 1984;
Tanaka et al., 1984; Inan and Bell, 1985; Bell and Ngo,
1988] suggest that high amplitude electrostatic waves are
commonly excited by electromagnetic VLF whistler mode
waves propagating through regions of the ionosphere and
magnetosphere where magnetic-field-aligned plasma density
irregularities exist. These waves cut off at the lower hybrid
resonance frequency and are a type of lower hybrid wave.

Since the excited lower hybrid waves can interact with
energetic particles, the phenomenon may be an important
factor in wave-particle interactions in the ionosphere and
magnetosphere and also may be involved in the creation and
maintenance of systems of small scale magnetic-field-aligned
plasma density irregularities [Bell and Ngo, 1988].

A number of possible mechanisms for producing the lower
hybrid waves have been discussed in the literature [Bell et
al., 1983; Titova et al., 1984; Ngo and Bell, 1985; Bell and
Ngo, 1988; Groves et al., 1988]. It is the purpose of the
present paper to focus upon one of the simplest generation
mechanisms proposed to date, namely, that the lower hy-
brid waves are excited as the electromagnetic whistler mode
waves scatter from magnetic-field-aligned plasma density ir-
regularities in the ionosphere and magnetosphere [Bell et
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al., 1983; Ngo and Bell, 1985; Bell and Ngo, 1988]. As we
show below, the lower hybrid wave excitation occurs at the
boundaries of the irregularity as a natural consequence of the
application of Maxwell’s equations in a cold passive magne-
toplasma. It is therefore not necessary to invoke plasma in-
stabilities or parametric interactions to explain the observed
features of the phenomenon.

It is well known that a cold uniform magnetoplasma is
doubly refractive, i.e., there are four normal modes of wave
propagation for any given direction of propagation. The re-
fractive indices and polarization of the four normal modes
are given, for example, in Stiz [1962] and in Budden [1985].
As a result of this situation, a single propagating normal
mode can excite as many as four normal modes when it scat-
ters from a discontinuity in the plasma. In particular, for
the case of a whistler mode wave scattering from a magnetic-
field-aligned plasma density irregularity, two of the four ex-
cited normal modes can be quasi-electrostatic lower hybrid
waves of short wavelength.

Figure 1 illustrates how this situation can come about. It
is assumed that the magnetoplasma consists of two semi-
infinite uniform media, region I and region II. The cold
plasma density, N, is assumed to differ slightly in the two
regions, so that N; # Na. In each region we plot (not to
scale) the whistler mode refractive index surface n(8) as a
function of the angle 8 between the vector n and the z axis,
which lies parallel to the ambient magnetic field direction.
It is assumed that the wave frequency is less than roughly
one-half the electron gyrofrequency fme, but higher than
the local lower hybrid resonance frequency frza so that
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Fig. 1. Schematic representation illustrating how quasi-electrostatic, lower hybrid waves are stimulated by elec-
tromagnetic whistler mode waves as a natural byproduct of reflection and transmission at a magnetic-field-aligned

plasma density discontinuity.

the refractive index surface approaches infinity along the
resonance cone direction. It is also assumed that a whistler
mode wave of wave normal angle 8; propagates toward the
boundary from region I, and, for simplicity, that the wave
normal lies in the z-z plane.

For the incident wave, the component of the refractive in-
dex parallel to the boundary has the value n;; = n(f;)cost;,
and by Snell’s law all transmitted and reflected waves must
have this same value for n;. In each region the line n; = n;
cuts the whistler mode refractive index surface at four
points. The wave normal angles associated with these points
define the four normal modes which are the solutions to
Maxwell’s equations in each region. Thus all four possi-
ble solutions in each region are propagating whistler mode
waves. However in each region two of the possible solutions
for n(8) liec near the resonance cone where n — co. These
solutions on the resonance cone represent quasi-electrostatic
whistler mode waves of relatively short wavelength. The
quasi-electrostatic waves are a type of lower hybrid wave
and possess the property that their electric vector E is nearly
parallel to their wave vector k, whereas for the electromag-
netic whistler mode waves k is roughly perpendicular to E.

As shown in section 2, the four possible values of the
transverse component of the refractive index, n , are given
for each region by the relation

ni -2 + 82 =0 (1)

where

B1 =[P+ RL/S — n2i(1 + P/S)]/2

B2 = (n3; — 25n2; + RL)P/S

nzl = n?, + n;‘;
and where the plasma coefficients R, L, S, and P are defined
in Stiz [1962, chapter I], and are assumed to be evaluated
separately in each region. Quasi-electrostatic lower hybrid
solutions for (1) occur when frar < f < fHe, in which
case S is small.

For the present case in which the wave normal lies in the

z-z plane, we have ny = 0 and the four solutions to (1) can
be expressed in the form

ne=2(prx /B 51) . @

where each of the four possible combinations of signs defines
a separate value of n;. The two possible quasi-electrostatic

waves in a given region are defined by the choice of the plus
sign within the bracket in (2).

For input wave frequencies in the range fiagr < f <€ fre,
where fre is the electron gyrofrequency, the values of ny for
the two possible quasi-electrostatic lower hybrid waves are
given by the approximate relation

nES = tfuenyi(f2 - fEur) "2
& dfoefite 212 - fimr) "M (cos8i) 2 (3)

where fo. is the electron plasma frequency. Under the con-
ditions shown in the figure, not all possible solutions are
allowed in each region since we assume a single input wave
from region I and only outgoing waves in region II. Conse-
quently, the initial electromagnetic input wave will excite a
reflected electromagnetic wave and a “reflected” lower hy-
brid wave in region I and a transmitted electromagnetic wave
and a “transmitted” lower hybrid wave in region II.

It is clear that if the input wave encounters multiple sur-
faces of discontinuity as it propagates across By the space
between these surfaces will contain stimulated lower hybrid
waves with wave normals both in the positive and negative
z direction. In this case the lower hybrid waves would be
observed on a moving spacecraft with both positive and neg-
ative Doppler shifts.

Figures 2 and 3 show the main details of our model of
the stimulation process. Figure 2 shows the case of a sin-
gle scattering event. The incident electromagnetic whistler
mode wave encounters a single planar magnetic-field-aligned
plasma density irregularity whose width transverse to Bg
is much smaller than the wavelength of the incident wave.
Although most of the incident whistler mode wave energy
is transmitted through the irregularity, during the scatter-
ing process two quasi-electrostatic lower hybrid waves are
excited which propagate on opposite sides of the irregular-
ity at a small angle § with respect to the direction of the
Earth’s magnetic field Bg. Lower hybrid waves are also ex-
cited within the irregularity. The wave vector kgs of each
lower hybrid wave is nearly perpendicular to the group ve-
locity vector Vggs of the wave and the propagation angle
§ is approximately equal to the complement of the whistler
mode resonance cone half angle ¢, defined by the relation
Yr = tan_l(—P/S)llz. In general, § is quite small (< 8°)
for the cases we will consider. It is shown much larger in
the figure merely for illustrative purposes.

Figure 3 shows the general case where a number of pla-
nar magnetic-field-aligned plasma density irregularities are
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Fig. 2. Schematic representation showing the case of an inci-
dent electromagnetic whistler mode wave scattering from a single
planar magnetic-field-aligned plasma density irregularity. Quasi-
electrostatic, lower hybrid waves are excited at both boundaries
of the irregularity and propagate at an angle § with respect to
Bg.

involved in the scattering process. Once again we have ex-
aggerated the scale of § for illustrative purposes. It is as-
sumed that the irregularities occupy a length A¢ along Bp
and are located roughly at a distance R from the observing
spacecraft. Although the incident electromagnetic whistler
mode waves will excite lower hybrid waves each time they en-
counter an irregularity, only those lower hybrid waves whose
ray path intersects the spacecraft will be observed. If neither
the ambient magnetic field nor the ambient plasma density
varies significantly over the distances R and A, the sitn-
ation is simplified and the necessary condition for observ-
ability is just that the group velocity vector Vggs of an ex-
cited lower hybrid wave must lie on the surface of the cone
of half angle § which is centered on the magnetic field line
through the spacecraft position and whose vertex is centered
on the spacecraft. The figure shows three lower hybrid waves
whose Vggs lies on this cone and which will propagate to
the spacecraft. These three waves are excited at different
distances from the spacecraft and illustrate the fact that
at any one time the waves received may have originated at
distances over the entire range Af. Since the plasma param-
eters fge and fo. generally vary over Af, the lower hybrid
waves received at the spacecraft will possess a range of val-
ues of wave number Ak®S, where using (3) we can write

ARES %kEs(NoBo)‘ld(—A?zB—o) At (4)

where Ny is the local background plasma density and By is

the local magnitude of the Earth’s magnetic field. In the
topside ionosphere (300-600 km) where Ng changes rapidly
with altitude, the spread of k5 values can be as large as
50% for A€ ~ 100 km. For higher altitudes where Ny varies
more slowly, Ak®° will depend primarily upon the variation
of the Earth’s magnetic field over the distance AZ.

As we will demonstrate in section 4, the group velocity
of the excited lower hybrid waves is much less than that of
the incident electromagnetic waves. Thus the lower hybrid
waves will arrive at the spacecraft with a significant time
delay with respect to the input electromagnetic waves. Fur-
thermore, they will be observed with a significant Doppler
shift because of their short wavelength. The time delay and
Doppler shift information can be used together to determine
the range R from the spacecraft to the excitation point of
the lower hybrid waves [Bell et al., 1983]. Experimental ob-
servations at high altitudes [Bell and Ngo, 1988] indicate
that the range R can vary from zero to thousands of kilome-
ters, and that the irregularities at times may extend between
hemispheres.

Although the foregoing model suggests how lower hybrid
waves can be stimulated and observed on spacecraft, it does
not determine the amplitudes of the stimulated waves. For
these answers we need to solve the wave equation.

2. WAVE EQUATION IN A CoLD MAGNETOPLASMA
Geometrical Features

Figure 4 shows the geometry of our study. It is assumed
that the cold magnetoplasma is homogeneous everywhere
except for the limited region of space, 1 < £ < s, within
which the density of the cold plasma N(z) is assumed to
vary as a function of £ alone. Although it can be expected
that N(z) is generally a continuous function of z for real
plasmas, we can approximated the function N(z) by a series
of slabs of constant density Ny, whose thickness A,y is small
compared to the width of the region |zar — 1| in which
N(z) varies. The approximation scheme is shown in Figure
5a. If the number of slabs is sufficiently large, N(z) can
be approximated to as high a degree as desired by the step
function.

It is assumed that, in general, the ambient magnetic field
By is not directed parallel to the planar faces of the constant
density slabs but instead is tilted at an angle x with respect
to the planar faces. Without loss of generality the Cartesian
coordinate system can be rotated about the z axis so that Bg
lies in the z—z plane, as shown in Figure 4. The wave normal
vector k of the wave incident on the planar irregularity has
a direction described by a polar angle § with respect to the
z axis and an azimuthal angle ¢, measured in the z—y plane
in a clockwise direction from the £ axis. Although shown
with finite cross section in Figure 4, each of the planar slabs
is assumed to extend toward infinity parallel to the z and y
axes.

Although the theory we use below is valid for all values of
tilt angle x, we are concerned mainly with cases in which the
irregularities are aligned within a few degrees of By. As we
show below, important changes in our model can occur at
small values of x; however most major features are evident
in the simpler case x = 0, for which the irregularities are
exactly aligned with Bg. Consequently it is instructive to
first consider solutions to the wave equation for the case
x =0.
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Fig. 4. General geometry of study where the z axis is normal to
the irregularity surface, By lies in the z-z plane, and the inci-
dent whistler mode wave normal vector k can have an arbitrary

direction.
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Fig. 3. Schematic representation showing the general case of an incident electromagnetic whistler mode wave
scattering from a number of magnetic-field-aligned plasma density irregularities. Lower hybrid waves are excited
along the length of each irregularity but only waves propagating toward the spacecraft position are shown.
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Irregularities Ezactly Aligned With By

From Maxwell’s equations for time harmonic fields el

we have

JB .
VXE——W——MUB (5)

VxB=poco(K B)= 5K E ®)

where the dielectric tensor K appears under our convention
of time dependence in the form

S iD 0\ [Es
—iD S o||B Q)
0o o P} \E

K E=

Note that K is invariant with respect to rotation about the
z axis and is the complex conjugate to that defined by Stiz
[1962]. The various parameters in K are defined exactly
as in Stiz [1962] and are repeated here in MKS units for
convenient reference:

S=(R+L)/2 .
D=(R-L)/2

2
W w
W’ (“"l'fkak)

(8a)
(8b)

(8¢)

2
(D] w
L=1~-% 20k (—) 8d
zk: w? \w—erwpg (8d)
wZ
p=1-> =% (8e)
k w
NpZ3Ze?
ZyeB
Wik = %k" (89)

Here, Ny is the number density of particles of species k with
charge magnitude Zpe. The sign of charge, 1, is given by
€k .

It is instructive to first consider the simple case, shown in
Figure 1, in which the plasma consists of only two distinct
regions, both of which are homogeneous. In region I (—o0 <
z < 0), N(z) = Ny, and in region II (0 < 2 < o0), N(z) =
N3. At the boundary between the two regions, £ = 0, the
density changes abruptly from N; to Na.

Since both regions I and II are homogeneous, general so-
lutions to the wave equation in each region for components
of E or B will consist of plane waves of the form e*(W*=%T),
where k = wn/c, and where the magnitude of the refrac-
tive index, n, is one of the four solutions to the well known
dispersion relation [Stiz, 1962]

ain? —ayn? $az =0 9)
where
e = Ssin20+ Pcos?d
as = RL sin2 @ +PS(1+ cos? 8)
a3 = PRL
By Snell’s law the values of ny and n, must be conserved
across the boundary between regions I and II, i.e., ny =
ny; and n; = n,;. Thus only the value of ny remains to
be determined for each plane wave solution. One simple

method is to replace in (9) each occurence of n cos@ by n,
and nsinf by n; where n, is defined in (1). When this is

done, we obtain an equation as given in (1) and a set of four
solutions exactly the same as (2) with n, replaced by n .
Thus we can write the general solution for each cartesian
component of the wave electric and magnetic fields in the
form

1/}(I’yy z) = [Ae_ik"ﬂx + Beikzlz + Ce—ikzz.’b‘

(10)

+ Deikzgz] e—ikz2+kyy)

w
kxu = —,/nﬁ_,” —n§

c
nyy= (ﬂl - \/ﬂf - ﬂz)llz

1/2
nez= (ﬂ1 + \/ﬁf - ﬁz)

and where 81 and B3 are defined in (1) and where all the
constant coefficients (A4, B,C, and D) associated with each
Cartesian component of the field can be expressed in terms
of the four similar coefficients associated with the other com-
ponents through relations (5) and (6)

In order to relate the solutions on either side of the pla-
nar boundary we can make use of the boundary conditions
which require that the tangential components of E and H
be continuous at £ =0, i.e.,

total
Ej

total
Hj

where
v=12

_ ptotal
= EJ

_ grtotal
)

=0~ z=0+

(11)

J=y9,z

z=0" =0t

A second boundary condition concerns the form of the
solutions in the two regions at distances far from the pla-
nar boundary at z = 0. If we assume that the incident
electromagnetic whistler mode wave propagates toward this
boundary from the region z < 0, then the general solution in
this region must consist of the incident wave, propagating in
the positive z direction, plus two waves propagating in the
negative z direction. One of these backward propagating
waves is an electromagnetic whistler mode wave, and one
is a quasi-electrostatic whistler mode wave of lower hybrid
type. The general solution in the second region, z > 0, must
consist only of waves propagating away from the boundary
toward the positive z direction. Thus for our problem the
general solutions in the two regions have the form

Y(z <0,y,2) = [Ale—ik“x + Byeta1”
+ Cre™hm o B thud) (124

") )
¥(z > 0,y,2)= [Aze_'k“z + Dge'kﬂx]

x ¢ (k2 thyiy) (12b)
where the prime indicates that the concerned quantity is
evaluated in the second medium. The boundary conditions
of (11) insure that the Poynting flux across the boundary
z = 0 is continuous. The direction of propagation of each
plane wave component can be determined by evaluating the
real part of the complex Poynting flux, P = 1E x H*, for
each component. This evaluation shows that for the elec-
tromagnetic whistler mode waves with k; = k;; the phase
velocity and the group velocity in the z direction have the
same sign, while for the lower hybrid waves with ky = kz3,
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the phase velocity and group velocity along z have opposite
signs. This feature can be seen in Figure 1. Since the group
velocity vector is normal to the refractive index surface and
since this surface is asymptotic to the resonance cone for
large values of ng, it is clear that sgn(ng) = —sgn(Vez).
Thus the spatial phase factors of the stimulated electromag-
netic and electrostatic components have opposite signs in
(12).

Using the general solution of (12), we apply (11) to arrive
at the following relations for the E; and Ey components:

(13a)
(13b)

E;WM_l_ERWM 4 ERES _ pTwM _I_Eg'Es
where EJI WM is the amplitude of the incident electromag-
netic (EM) whistler mode wave in region I, EfWM is the
amplitude of the reflected EM whistler mode wave in region
I, ERE 5 is the amplitude of the lower hybrid wave excited
in reglon I, ETWM is the amplitude of the transmitted EM
whistler mode wave in region II, EJT ES is the amplitude of
the lower hybrid wave excited in region II. Relations similar
to (13a) and (13b) apply to the magnetic field amplitudes
By ; of the individual waves. Using (5) these may be written
in terms of the electric field amplitudes:

ko1 By M — ko1 B M - oy By PO
—ky [E£WM+E$RWM+ E:L]:IES]

= ko1 By M — Koo EJ RS — ky [ETM + BT (13¢)

ks [E’I:WM + EéiWM +EfES]

— ko1 B3 M + ko1 7
= ks [ETYM + ET55] - kzlEZWM + k. ET®S (13d)

ERES

Equations (13) represent a set of four simultaneous equation
in 12 unknowns. However the number of unknowns may be
reduced to 4 by making use of the polarization relation-
ships between the electric field components of each individ-
ual plane wave that must apply if that wave is to represent
a characteristic solution of (5) and (6). The polarization
ratios have the values

iD(n? — P) + ngny(n® — P)
(n? = 5)(nz — P) +nj(P - S)
ngny(n? — §) +iDnyn,
(n? = S)(nZ — P)+nZ(P-S)

where py is the polarization ratio for the mth plane wave
component (e.g., pg"' ™ = EMIEFYM) where D, S,
and P have values appropriate to the region in which the
plane wave component is located, and where ng; is given
implicitly by (10) and has the value appropriate to the plane
wave component considered. With the use of (14) we can
expless the system (13) in the form

where A is a 4x4 matrix, E; is a column vector consisting of
the four unknown wave amplitudes, EFWM ERES pITWM

and EIZ°) and Cis a column vector consisting of the four
known quantities concerning the incident electromagnetic
whistler mode wave. Since in general, the matrix A is non-
singular, the solution to (15) is straightforward. Once the
E* have been found in terms of the incident wave ampli-
tude, the quantities Ey'; can be found through the polar-
ization relations (14).

Py = Ey /Ex
(14)

pm =Em/Em =

H
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If the density irregularity is distributed over a width W,
we can approximate the actual distribution by a series of
constant density slabs as shown in Figure 5a. If the number
of slabs is sufficiently large, the approximation approaches
the exact solution. The problem becomes complicated due
to multiple reflection and transmission in the presence of
multiple boundaries. However, it can be attacked efficiently
since there exist only four normal modes in every slab which
correspond to four waves with different transverse wave
numbers, kz. As indicated schematically in Figure 5b, these
four waves must be retained for each slab in the full solu-
tion, except for the two backward traveling waves in the last
medium (z > W) and the second forward traveling wave in
the first medium (z < 0). Imposing the boundary condi-
tions at each boundary between slabs gives rise to a system
of 4 M algebraic equations in 4} unknowns where M is the
number of planar boundaries. This problem can be cast into
a matrix equation of the form AE_ = C, where A is a 4M
by 4M matrix. Fortunately, the matrix A has only 32/ —12
nonzero entries for M > 2. This is a considerable reduction
in complexity as opposed to 16 M 2 nonzero entries of a full
nonzero matrix. Efficient algorithms have been developed to
handle successfully this particular matrix equation for up to
thousands of slabs. In principle, this large matrix equation
can be solved numerically to obtain Ey in every slab. The
other components of E and B can then be dctermined as
in the single boundary case by using the polarization condi-
tions.

Irregularities Tilted With Respect to By

Thus far we have considered the case in which the bound-
ary of the planar irregularities was parallel to the ambient
magnetic field Bg. To treat the more general situation we
assume that the planar boundary is tilted at an angle x with
respect to the ambient magnetic field as shown in Figure 4.
Physically, we expect that the lower hybrid waves excited
by the incident electromagnetic whistler mode wave will dif-
fer in character when |x| exceeds the critical value x. where
Xe = ©/2 — ¢r, and where 9, is the resonance cone half
angle. To illustrate this situation we sketch (not to scale) in
Figure 6 the real part of the whistler mode refractive index
surface for the entire range of wave normal angles 0 < ¢ < 7
where 9 is the angle between the wave normal and the am-
bient magnetic field, assuming that the wave normal lies in
the meridional plane defined by the direction of Bg and the
z axis, where the z axis is assumed to be normal to the
planar surface of the irregularity.

In analogy with Figure 1, we assume that the refractive
index surface applies to region I with density N; and that
a similar refractive index surface applies in region II where
N = N;. In region I we assume that an electromagnetic
whistler mode wave (IW) is incident on the boundary be-
tween the two media at a small angle with respect to the z
axis. Applying Snell’s law at the boundary, i.e., n, = n,;,
we find the four possible values for n from the intersection
of the n; = n;; line with the refractive index surface. The
sketch shows the case for which x > x.. Comparing Fig-
ures 1 and 6 we see that one of the four possible solutions
lies on the lower half sheet of the refractive index surface at
the point labeled d. This solution represents a wave whose
group velocity along Bg is in the opposite direction from
that of the input wave. This “backward” wave has a group
velocity vector pointing toward negative z, the opposite di-
rection from the group velocity of the input wave. Assuming
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Fig. 6. Schematic representation showing an electromagnetic whistler mode wave scattering from a single sharp
boundary surface which is tilted at an angle x with respect to Bg. Only the case x > xc = 7/2 — 9 is shown.

that the density enhancement in medium II is small, the re-
fractive index surface in this medium will resemble Figure 6
very closely and the four solutions for n will be close to those
shown in Figure 6. We label these four solutions, a’, ¥’, c’,
and d’. In this case we see that the appropriate solution
in medium I consists of a sum of the incident electromag-
netic whistler mode wave (a), the reflected (RW) electro-
magnetic whistler mode wave (b), and the “reflected” lower
hybrid wave (d). Within medium II the appropriate solution
consists of a sum of the transmitted electromagnetic wave
(a') and the “transmitted” lower hybrid wave (c’). Thus
in medium IT all excited waves propagate along Bg in the
same direction as the incident wave, while in medium I the
electromagnetic and lower hybrid waves propagate in the
opposite direction along Bg.

In this more general case, we can rewrite the dispersion
relationship in each medium in terms of the unknown ns in
the following way:

a4n: + a3n2 + agn?, +oyng+ag=0 (16)
where
2 s 2
ag = Scos” x+ Psin®x
ag = (P — S)n;sin2x
2 2 .2 2
ag = (S+ P)nz + [S(l + cos” x) + Psin x]ny
~ RLcos?x — PS(1+ sin? X)
oy = (ma sin 2¢) [(P ~ $)(ng +n3) + RL — Ps|
ag = S(nz + ng)(nz + nZsin? x)+ Pnf(nz + ng) cos? x
_PS [n§ + n2(1 + cos® x)] + PRL
- RL(nZ + n? sin? x)
and where, by Snell’s law n; = n;; and ny = ny; with the
subscript i referring to the incident wave.
Equation (16) is one form of the Booker quartic relation-
ship [Budden, 1985] and each of the four possible solutions

determines a normal mode of the system. The polarization
ratios of each normal mode have the values

popy = —D [(P —n2— ";) cos X + ngn; sin X]
+ ny [nznx — (ng sinx + n; cos x)Ssin x

+ (nz sin x — ng cos x) P cos x] (17a)

popz = n,,,-nz(nz — S) + iDny(nesin x + n; cosx)
+ $(sin 2x)[RL — SP + (P - 5)(n - nj)] (17b)

po = (S —n?)(Pcos® x —n2) + "’3 (Pcos?x — 8)
+ [RL + S(nﬁ - nz)] sin? X (17¢)

where py = Ey/Eg and p; = E; [ Es.

In the present work we are concerned with wave frequen-
cies which are small compared to the electron gyrofrequency
fre, in particular the range fiyr < f < 30 kHz. When
f = frur, the resonance cone half angle has the value
9y = 90°, while for 30-kHz waves with fze = 880 kHz,
pr == 88°. Thus the tilt angle need only be a few degrees in
order to change the character of the stimulated lower hybrid
waves. For small values of x, the four roots of (16) can be
approximated by the relations

- Ja2—
ES agz + /o5 —dagas

Ny

204 (18)
WM —ay %+ \/a% —4ugap
€ 200

One of the characteristics of plane electrostatic waves is
that E is parallel to k. A common definition of a quasi-
electrostatic plane wave is one in which |E) | € |E" |, where
E, is the component of E perpendicular to k and E" is the
component parallel to k. From the polarization relations
(17) it can be shown that for the parameters of the present
study we have | E) | < | E}j| whenever [ng| > |n:|. However,
when |nz| 3> |n:| and |x| & xc, the largest magnitude root
of (16) can be approximated by the first two terms of this
equation and has the value

~ 2 -2 N7l
-nx:nz(S—P)(Scos X + Psin x) sin 2y (19)

Using (19) to find the ratio n /ns to first order in (x — xc)
we obtain

(20)

[nz/na| = |x = xel

where y is measured in radians.

Let us define the quasi-electrostatic waves of interest in
the present work to be those for which |ng| 2 10|n;|. In this
case from (20) we find

Ix — xe| $6°

(21)
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At low altitudes, for frequencies in the range 10 < f < 30
kHz, xc < 2°, and thus the range of tilt angles for which
lower hybrid waves can be stimulated is quite small. This
fact supports the hypothesis that the lower hybrid waves are
stimulated in regions where the plasma density irregularities
are closely aligned with the direction of the Earth’s magnetic
field.

Solutions to the wave equation for the case of tilted ir-
regularities proceed exactly along the lines described above
for the case of irregularities which are aligned with By. In
each slab the solution can be written as in (10), but now
the kg values for the four normal modes are implicitly de-
fined by (16) rather than (10), and the polarization ratios
are defined by (17) rather than (14). The scheme of Figure
5b still applies and the problem can again be cast into the
form AE, = C, where A is a 4M x 4M matrix with only
32M — 12 nonzero entries for M > 2.

3. REsuLts

Below we present the results of the above formulation as
applied to a range of magnetospheric conditions.

Magnetic-Field-Aligned Plasma Density Irregularities

Since we will approximate each electron density irregular-
ity by a large number of constant density planar slabs, as
illustrated in Figure 5a, it is instructive to consider the lower
hybrid wave excitation that can occur at a single boundary
between two slabs of different density. An example of the
results of (13) and (15) for the single boundary case is shown
in Figure 7 for the case in which a whistler mode wave of 15-
kHz frequency with wave normal in the z-z plane is incident
at a polar angle of 10° with respect to the magnetic-field-
aligned planar boundary between the two semi-infinite cold
magnetoplasmas. Since By is along z, the wave normal an-
gle is also 10°. In the first medium the plasma parameters
have the following values:

foe =2 MHz

fue = 880 kHz
a(HY) = 20% (22)
a(01) = 80%

frur~9.8 kHz

where a(H*) is the percentage of hydrogen ions and a(0h)
is the percentage of the oxygen ions. In the second medium
foe = 2.05 MHz, consistent with a 5% plasma density en-
hancement, while all other parameters are the same as given
in (22). These parameters are consistent with conditions
that are common near 1000 km altitude within the plasmas-
phere near L ~ 3.5. The top two panels of the figure show, at
a fixed moment in time, the spatial variation of the real and
imaginary parts of the £ component of the electric field of
the incident electromagnetic whistler mode wave propagat-
ing to the right (dashed curve), the reflected electromagnetic
whistler mode wave propagating toward the left (chain-dash
curve), the stimulated quasi-electrostatic lower hybrid wave
propagating toward the left (dotted curve), and the stimu-
lated quasi-electrostatic lower hybrid wave propagating to-
ward the right (solid curve). The bottom panel shows the
cold plasma density enhancement, AN/Ng, where Ny is the
cold plasma density in the left-hand medium z < 0 and AN
is the enhancement of density in the right-hand medium
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Fig. 7. Simulation result for an incident electromagnetic whistler
mode wave scattering from a single sharp boundary. Plasma pa-
rameters: electron plasma frequency fo. = 2 MHz, electron gy-
rofrequency frye = 880 kHz, density enhancement AN/Np = 5%,
80% O%, 20% Ht, tilt angle x = 0. Wave parameters: f = 15
kHz, 8ivc = 10°, ¢ = 0. Bottom panel shows the density
enhancement profile AN(z)/Ny. Top and middle panels show a
snapshot of the real and imaginary parts of the electric field com-
ponent normal to the boundary surface for each of the four propa-
gating whistler mode waves. Chain-dash (dash) curve: right (left)
propagating electromagnetic whistler mode wave. Solid (dot-
ted) curve: right (left) propagating stimulated quasi-electrostatic
lower hybrid wave.

z > 0. In the top two panels all amplitudes are normalized
to the amplitude of the incident electromagnetic whistler
mode wave at £ = 0. The electromagnetic components do
not vary significantly where £ # 0 since the horizontal scale
is only a fraction of a wavelength for these waves.

It can be seen that the amplitudes of both the right and
left propagating lower hybrid waves exceed that of the inci-
dent wave even though the density enhancement is only 5%.
Furthermore, the wavelength of the stimulated lower hybrid
waves is roughly 17 m, much smaller than the ~ 1-km wave-
length of the electromagnetic whistler mode waves.

The dependence of the stimulated lower hybrid wave am-
plitude EZ¥ upon the frequency of the incident electromag-
netic whistler mode wave is shown in Figures 8a, 8b, 8¢, and
8d for four values of the density enhancement AN/Ny =
5%, 10%, 20%, and 100%, and for the incident wave normal
angle of 10° with respect to the planar boundary. (Note
that evanescent waves were not plotted. For instance, the
chain-dash curve in Figure 8d shows that the excited waves
are evanescent when the incident wave frequency falls below
~ 2.5 kHz or exceeds ~ 16 kHz.) Figure 8a pertains to the
plasma conditions given in (22), Figure 8b pertains to the
topside ionosphere near L ~ 3, Figure 8¢ pertains to 1400
km altitude in the subauroral region, and Figure 8d pertains
to altitudes above 3000 km within the inner radiation belt
near the equator. Figures 85-8d will be discussed in section
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Fig. 8. Normalized amplitude of the lower hybrid wave excited
in the region £ > 0 as a function of input wave frequency un-
der typical plasma conditions (a) at 1400 km altitude within the
plasmasphere near L ~ 3.5, (b) in the topside ionosphere, (c) in
the subauroral region, (d) in the inner radiation belt. Four val-
ues of density enhancement are shown in each panel: AN/Ny =
5% (solid curve), 10% (dash curve), 20% (dotted curve), 100%
(chain-dash curve).

4. From Figure 8a it can be seen that EFS is comparable
to the amplitude of the incident wave for most values shown
for the density ratio and incident wave frequency. For the
cold plasma model we have chosen, EZ° increases without
bound as f — frpr from above, as suggested in the figure.
However the inclusion of thermal effect will modify this re-
sult, as will be shown in a later section. For f < frug, no
lower hybrid waves are stimulated since no resonance cone
exists in this frequency range for whistler mode waves.

The dependence of EES upon the wave normal angle 6;
of the incident electromagnetic whistler mode wave is shown
in Figure 9a for the case f = 15 kHz assuming that (22) ap-
plies. For a given level of density enhancement, EZ® reaches
a maximum value when ; lies in the range 30° < 4; < 40°.

Figure 9b shows the case when the wave normal of the in-
cident wave is oriented at an arbitrary angle with respect to
the z-z plane. It can be seen that there is little dependence
upon ¢; for small values of AN/Ny.

We have used the boundary conditions of (11) in order
to determine EZ5 for given input conditions. Our results
show that EES can exceed the amplitude of the input elec-
tromagnetic whistler mode wave for a wide range of density
enhancement, angle of incidence, and wave frequency. Fur-
thermore, we have assumed a cold magnetoplasma model
which has no free energy to contribute toward wave growth.
How then can EF% exceed the amplitude of the input wave
without violating the law of conservation of energy?

To answer this question, we first note that the use of
(11) ensures conservation of energy for the waves, since
the complex Poynting flux Pr along the z axis is just
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Fig. 9. Normalized amplitude of the lower hybrid wave stimulated
in the region = > 0 as a function of (a) input wave normal polar
angle f;vc with azimuthal angle ¢ v held fixed at 0, and (b) input
wave normal azimuthal angle ¢;vc with ;v held fixed at 10°,
Four values of density enhancement are shown: AN/Ny = 5%
(solid), 10% (dash), 50% (dotted), 200% (chain-dash).

P; = i[EyH; — E.Hy] and each of these field quanti-
ties is continuous across £ = 0 according to (11). Thus
Pg|,_,~ = Pzl o+ and energy is conserved along the =
direction. However, since the stimulated electrostatic lower
hybrid waves have very small values of magnetic field, large
values of electric field are possible for these waves even
though they may carry much less electromagnetic energy
than the incident electromagnetic wave.

An equivalent way to view the situation is to note that
the energy stored in the E and H fields of the incident wave
is convecting toward the planar boundary at the group ve-
locity VGI:.V On the other hand, energy in the E field of the
quasi-electrostatic waves is convected away from the planar
boundary with the group velocity VES. In general, when
fierR S f < fHe, it is found that |VE;| < |VEY|. Be-
cause V&Y is so small, the electric field energy density of the
quasi-electrostatic waves must be large in order to transport
measurable energy from the boundary. A further discussion
of the Poynting flux of the lower hybrid waves can be found
in section 5. Numerical values are given in Figure 22.

Figure 10 shows a plot of the group velocity of the stim-
ulated waves along both the z and z (Bo) directions as a
function of frequency, normalized to the value of the group
velocity of the incident wave in the same direction. The
plasma parameters are as given in (22). Two values of wave
normal angle @; are considered. The relative group velocity
of the quasi-lower hybrid waves in the £ direction is always
less than 5 x 1072 for f < 15 kHz. The relative group
velocity in the direction of Bg is always less than 0.2 for
firr S F < 12 kHz. However for higher frequencies, the
relative group velocity in the direction of Bg approaches 0.5.
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Fig. 10. Normalized group velocity of the lower hybrid wave ex-
cited in region the z > 0 as a function of input wave frequency.
Components parallel and normal to the field-aligned irregularity
boundary are shown separately.

The foregoing results apply to the case of a single pla-
nar boundary. In the more general case where the density
irregularity is distributed over a length W, we can approxi-
mate the actual distribution by a series of constant density
slabs as shown in Figure 5. If the number of slabs is suffi-
ciently large, the approximate solution approaches the exact
solution.

Distributed Irregularity

As the simplest example of a planar irregularity with den-
sity distributed over a length W, we consider the case in
which the planar irregularity consists of a slab of constant
plasma density No which occupies the region 0 < z < W,
In the remaining space (z < 0 and = > W) the plasma den-
sity has the constant background value of Ny. It is assumed
that the ambient magnetic field and ionic composition are
constant for all «.

With this configuration of just two planar surfaces of dis-
continuity, application of the boundary conditions (11) at
each boundary leads to a system of 8 equations in 8 un-
knowns. Figure 11 shows the results of the solution of the
8 x 8 matrix equation for the case of a 5% density enhance-
ment density within the slab and with the other plasma
parameters identical to those listed in (22).

The two upper panels of Figure 11 show the real and imag-
inary parts of the z-directed electric fields of the incident
electromagnetic whistler mode wave (chain-dash curve in the
region z < 0), the reflected electromagnetic whistler mode
wave (dashed curve), the “reflected” lower hybrid wave (dot-
ted curve), the transmitted electromagnetic whistler mode
wave (chain-dash curve in the region & > 0), and the “trans-
mitted” lower hybrid wave (solid curve). The bottom panel
shows a plot of the density enhancement of the slab along
the = axis.

There are some features of Figure 11 which arise because
of the presence of the second boundary at z = 100 m. First
of all, the amplitudes of the “reflected” and “transmitted”
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Fig. 11. Simulation result showing a snapshot of the normalized
electric field for the case of a 15-kHz electromagnetic whistler
mode wave scattering from a constant density enhancement slab
of 100 m thickness. Curve format and other plasma and wave
parameters are the same as in Figure 7.

lower hybrid waves are not roughly equal as they are in Fig-
ure 7. Second, the amplitude of the lower hybrid waves is
significantly larger within the planar irregularity than with-
out. These differences arise because of multiple reflections
of waves within the irregularity which lead to constructive
and destructive interference effects at the boundaries.

Comparing Figures 11 and 7 it is found that the ampli-
tude of the reflected electromagnetic whistler mode wave is
much smaller for the two-boundary finite-width irregularity
than for the single boundary case. This difference arises
because of destructive interference between the electromag-
netic waves reflected from the two boundaries in Figure
11. Since the spacing between the two boundaries is much
smaller than the wavelength of the electromagnetic whistler
mode wave, the electromagnetic wave experiences a scat-
tering that is analogous to that of an electromagnetic wave
in an isotropic dielectric medium which encounters an opti-
cally thin dielectric slab [Born and Wolf, 1970]. In essence
a reflected electromagnetic wave is excited at each of the
two boundaries of the slab. These two waves are of sim-
ilar magnitude but are 180° out of phase. As a result of
this difference the sum of the two reflected waves at £ = 0
is greatly reduced. Thus it can be seen that irregularities
whose scale is much less than that of the wavelength of the
electromagnetic whistler mode wave will reflect very little
electromagnetic whistler mode wave energy even though sig-
nificant excitation of lower hybrid waves takes place.

Thus far we have considered the stimulation of lower hy-
brid waves by irregularities whose boundaries are assumed
to be very sharp. This assumption is questionable when con-
sidering scales of the order of meters since the thermal HY
and O gyroradii are generally of this same order. Thus we
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need to consider the lower hybrid wave stimulation mecha-
nism when the boundary of the irregularity is smoothly vary-
ing. In order to address this question in as simple a manner
as possible, we reconsider the case in which we have only a
single boundary between two regions of cold plasma density
N1 = Np and N3z, and we join the two levels smoothly in
a boundary layer of width ! which begins at £ = 0. The
varying density N(z) in the boundary layer is assumed to
have one of the following forms:

Linear model:

Na(z) = No+ (z/)AN (23a)
Sinusoidal model:
Ny(z) = § [No + Nz = AN cos(az /1)] (23b)
Quartic model:
Ne(z) = No + [4@-/1)3 - 3(z/l)4]]AN (23¢)
Gaussian model:
e—o(@/1=1? _ —a
N4(z) = No + AN[ e ] (23d)

where AN = Nz - No.

All the above models are continuous in N{(z) over the
entire z axis, however they differ in smoothness at the two
edges of the boundary layer, £ = 0 and £ = I. Model a
has a discontinuous first derivative (dN(z)/dz) at the edge
points. Model b has continuous first derivative at the edge
points but discontinuous second derivative there. Model ¢
has continuous first and second derivatives at £ = 0 and
continuous first derivative at £ = I. Model d, in principle,
has discontinuous first and higher order derivatives at £ =0,
but these discontinuities can be made arbitrarily small by
increasing the parameter . The values of N(z) associated
with each model are plotted in Figure 12. It can be seen that
the smoothness of increase of N(z) at £ = 0 corresponds to
the ranking of (23).

DENSITY MODEL PROFILE

a - Linear
b - Sinusoidal
¢ - Quartic

d - Gaussian

DENSITY N(x)

DISTANCE X

Fig. 12. Refinement of the single sharp boundary model. The
density varies continuously from the background value Ny at z =
0 to N2 = Ny + AN over a distance l, the boundary layer width.
Four density profiles are shown.

In performing calculations using the above models, the
region 0 < z < [ was divided into 1000 slabs of constant
density as indicated in figure 5. For model d it was assumed
that the density enhancement AN(z) = N(z)— Ny reaches
one half its maximum value at z = 31/4. Thus for this case
a = 11.1. In all cases it was assumed that (22) holds.

Figures 13a and 13b show the results of calculations in-
volving the above four models for the boundary layer where
the total density change across the layer is 5%. The am-
plitude of the electric field of the lower hybrid waves “re-
flected” from the boundary layer is shown as a function of
the normalized width !/Aes of the boundary layer. The
field amplitude is shown for two frequencies, f = 10, and
15 kHz, for which the wavelengths of the lower hybrid waves
are roughly 6 m and 17 m, respectively. In each figure it can
be seen that each boundary layer model yields the same val-
ues for EFS when I — 0, i.e., as the width of the boundary
layer approaches zero. Furthermore, these values for EZS
are identical to those calculated for the case of a single sharp
boundary, as shown in figure 7. It can be seen that the am-
plitude of the stimulated lower hybrid wave for each model
is approximately equal to its value for the sharp boundary
case (I — 0) as long as ! is less than one half wavelength of
the lower hybrid wave. This condition was found to be true
for all frequencies in the range frur S f < 30 kHz.

It is interesting to note that models @, b, and ¢ show am-
plitude variations that have a scale in ! of one lower hybrid
wavelength. Presumably, this is due to constructive and de-
structive interference of stimulated lower hybrid modes at
the edges of the boundary layer. The amplitude variations
are smaller for the models which have a smoother increase
in N(z) at £ = 0. Model d, the Gaussiar model, produces
no discernable amplitude variation with a wavelength scale.
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Fig. 13. Normalized amplitude of the lower hybrid wave excited
in the region < 0 as a function of the normalized boundary layer
width {/Ags for the four density models depicted in Figure 12.
The input wave frequency f =(a)10 kHz and (b) 15 kHz. Solid
curve: linear model. Dash curve: sinusoidal model. Dotted curve:
quartic model. Chain-dash curve: Gaussian model. Plasma and
other wave parameters are the same as in Figure 7.
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Fig. 14. Simulation result for a snapshot of the normalized electric
field for the case of an incident electromagnetic whistler mode
wave scattering from an irregularity slab with two sinusoidally
varying boundary layers of 10 m width. Curve format and plasma
and wave parameters are identical to those in Figure 7.

Figure 14 shows an example of a case of an irregular-
ity with two smoothly varying boundaries. The irregular-
ity is comprised of a constant density core of 100 m width
joined to the ambient plasma density with sinusoidally vary-
ing boundary layers of 10 m width identical in form to that
plotted in curve b of Figure 12 and (23). The plasma param-
eters and angle of incidence are identical to those of Figure
11. Comparing the two figures it can be seen that the stim-
ulated wave amplitude outside the irregularity is larger for
the irregularity with smoothly varying boundaries. This fea-
ture results from constructive interference of the stimulated
waves.

In order to stimulate lower hybrid waves of significant
amplitude, the irregularity must have a minimum width W
which is comparable to the wavelength, Ags, of the stimu-
lated waves. If W <« Ags, the irregularity will be optically
thin to the lower hybrid waves and their amplitude will be
proportional to the ratio W/Ags, as discussed in connection
with the electromagnetic case above. This feature is illus-
trated in Figures 15 and 16. Figure 15 shows the amplitude
of the lower hybrid waves stimulated as the incident elec-
tromagnetic whistler mode wave encounters an irregularity
with a Gaussian shape whose full width at half maximum,
d, has the value Ags/4, where in this instance Ags = 17 m.

Figure 16 shows the amplitude of the lower hybrid waves
stimulated as the incident electromagnetic whistler mode
wave encounters a Gaussian shaped density irregularity of
arbitrary d, for the range 0 < d < 16 m. The plasma pa-
rameters are the same as given in (22). The amplitude of
the stimulated waves reaches a maximum at d = 6 m. The
amplitude of the stimulated waves is decreased significantly
when d < Ags/8, where in this case Ags = 17 m. Results
at other frequencies are similar, leading to the conclusion
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Fig. 15. A snapshot of the normalized electric field for the case of
an incident electromagnetic whistler mode wave scattering from a
single Gaussian density enhancement of FWHM = Ags/4 ~ 4.25
m and peaking at £ & 8.5 m. Curve format and other plasma
and wave parameters are identical to those in Figure 7.
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Fig. 16. Normalized amplitude of the lower hybrid wave stimu-
lated in the region z < 0 as a function of the full width at half
maximum of the Gaussian density enhancement. Other wave and
plasma parameters are identical to those in Figure 15.

that a necessary condition for the excitation of lower hybrid
waves is that the full width of the irregularity be no smaller
than roughly one eighth wavelength. It can be seen that
the stimulated wave amplitude is a linear function of d for
d < dgs/4.
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Multiple Irregularities With Periodic Spacing

The results of Figures 15 and 16 demonstrate that lower
hybrid waves of significant amplitude can be produced in the
presence of irregularities with small density enhancement
and width. It is of interest to determine whether these same
amplitude levels can be achieved by a spatially distributed
airay of irregularities of much smaller enhancement but sim-
ilar width. Figure 17 shows such a case in which irregulari-
ties with Gaussian density distribution are distributed along
the ¢ axis with a spacing equal to the lower hybrid wave-
length of ~ 17 m. Each Gaussian density enhancement is
identical to that shown in Figure 15, except that the peak
density of each Gaussian in Figure 17 is one tenth the peak
density of the Gaussian shown in Figure 15. As a result of
the smaller enhancement value, the amplitude of the lower
hybrid waves excited at each density perturbation is roughly
one-tenth of the value shown in Figure 15. However, since
the spacing between the Gaussians is equal to one lower
hybrid wavelength, the stimulated waves from each pertur-
bation add in phase and the final stimulated wave amplitude
is the sum of the individual amplitudes. Thus the final stim-
ulated wave amplitude in Figure 17 is the same as that in
Figure 15.

This behavior suggests that the stimulated lower hybrid
waves can be used as a diagnostic tool to determine the
properties of the irregularities within which they are excited.
This idea is discussed further in section 4.

Effects of Tilt Angle

In order to show the effects of the tilt angle x upon the
excitation coefficient of the lower hybrid waves we consider
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Fig. 17. A snapshot of the normalized electric field for the case of
an incident electromagnetic whistler mode wave scattering from
10 Gaussian density enhancements, each identical in width to
that shown in Figure 15 but with only 1/10 of the amplitude.
The enhancements are equally spaced at a distance Ags & 17 m.
Curve format and other plasma and wave parameters are identical
to those in Figure 15.

the single boundary case in which the density enhancement
in medium II is 5% and all other parameters are as given in
(22). The normalized amplitude of the lower hybrid wave
excited in medium I is shown in Figure 18 for three frequen-
cies, 10, 15, and 30 kHz. Figure 18(a) shows the normalized
amplitude of the excited lower hybrid wave, while Figure
18(b) shows the group velocity of the excited lower hybrid
wave along Bg. In medium I, EE® — oo as x — xc and
nZ% - (Similarly in medium II, EES o 00 as x = —Xe
and nZ% — 00.). As discussed in connection with Figure 6,
the group velocity of the lower hybrid and input electromag-
netic wave in medium [ along By have the same direction
for x < xc¢ but the opposite direction for x > xe.

The figure demonstrates that, at all frequencies shown,
the existence of a small tilt angle can dramatically increase
the amplitude of one branch of the stimulated lower hybrid
waves. Although the figure shows essentially unbounded
values of |EZ®| near the critical tilt angle, this result applies
only to the case of a cold plasma. In section 5 we discuss how
thermal effects will modify this behavior. Although Figure
18 is plotted for the case ky = 0, the results are insensitive
to finite values of ky; as long as k;,- < kZ,. This behavior is
similar to that shown in Figure 9.

The group velocity of the stimulated lower hybrid waves
along By is also a rapidly varying function of the tilt angle
for 10 < f < 30 kHz. This behavior is illustrated in Figure
18b for the lower hybrid wave in medium I for the single
boundary case. Similar behavior is found for medium II.

The lower hybrid waves excited when |x| = xc propagate
much more slowly along Bg than those excited when x = 0.
Thus the excited waves of highest amplitude will exhibit the
largest relative time delay at the observation point.

(b} GROUP VELOCITY
ALONG B,

0.01 - L -
-6 -3 0 3 6
TILT ANGLE x (DEG)

Fig. 18. Effect of boundary tilt upon stimulated lower hybrid
waves as a function of tilt angle x. (¢) Normalized amplitude of
lower hybrid wave stimulated in region z < 0. (b) Normalized
group velocity component along By of lower hybrid wave stimu-
lated in region z < 0.
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4. APPLICATIONS
4.1. Satellite Data

In a recent paper [Bell and Ngo, 1988] it was shown how
the Doppler shift of stimulated lower hybrid waves observed
on the ISEE 1 satellite in the inner radiation belt could be
explained using the proposed stimulation mechanism out-
lined above. Furthermore, both the Doppler shift and time
delay of stimulated lower hybrid waves observed on the ISIS
spacecraft at mid-latitude were also shown to be consistent
with the proposed stimulation mechanism [Bell et al., 1983;
James and Bell, 1987].

If the physical characteristics of existing plasma density
irregularities had been measured during these satellite obser-
vations, one could use the results of section 3 to calculate the
predicted amplitude of the stimulated lower hybrid waves
and a direct comparison could be made between theory and
observation. Unfortunately, the irregularity structure was
not measured on either the ISEE 1 or ISIS satellites during
the times that stimulated lower hybrid waves were observed.
Thus no definitive test of our theory can be made here. How-
ever, it is possible to show at least that the predictions of
our theory are consistent with the data.

Strictly speaking, our one-dimensional theory applies only
to cases in which lower hybrid waves are excited at planar
irregularities. A distinguishing feature of this type of excita-
tion is the fact that the electric vectors of the lower hybrid
waves will be oriented roughly perpendicular to the plane
of the irregularities. Data suggesting a preferred azimuthal
orientation of the lower hybrid wave electric vector about
By has been reported by Bell et al. [1983)] and James and
Bell [1987]. Plasma parameters during these observations
ranged between those shown in Figure 8b and 8c, and the
measured ratio of power in the electric field of the lower
hybrid waves to the power in the electric field of the input
whistler mode wave generally ranged between 0 and 20 dB.

In theory the total lower hybrid field at a point T pro-
duced by weak scattering at M separate planar irregularities
(boundaries) can be approximated by the expression

t 7 M )
E:cE’.Ts - Z Efr.rs‘le—f,k (z—xm)_l_ Z Efr.rs“ezk (z—zm) (24)

m=1 m={+1

where EZS is the field excited at the planar boundary lo-
cated at T, along the z axis, k' = k25, where zm > z for
1<m < { and zm <z for £+1 < m < M, and where it is
assumed that y = 0.

In (24) it is assumed that the density change at each irreg-
ularity is small and that multiple reflections of lower hybrid
waves are not important. Because the wave normals of the
two sets of waves in (24) have opposite directions, a satellite
wave receiver will observe the sets at the apparent frequency,
w' = w* kv, where vy is the satellite velocity normal to the
irregularities. If the values of zs; are randomly distributed
along the z axis, if M is large, if k'|zm — z| > 1, and if
the ensemble average < AN >~ 0, the time average of the
peak electric field intensity observed on a satellite has the
approximate value

2
2 2
Ef:z'?| ~ Z |Ef,f,| §(w' — w4 Kog)

m=1

M
2
+ 3 |Ef,,s,| §(w —w—Kvz) (25)
m={+1
where 8(-) is the Kronecker delta function.
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In order to apply (25) to specific examples, we consider
ISIS 2 data from August 14, 1979, as discussed in Bell et
al. [1983]. On this particular day the maximum values of
EFSJE™C in the frequency range 10 to 14 kHz were of the
order of 20 dB, and the values of the plasma. parameters near
the scattering region were close to those shown in Figure
8b. According to Figure 85, in the 10-14 kHz frequency
range, average values of |EFS/ENC| are roughly 7 dB at
AN/Ng ~ 10%. Thus roughly 40 independent irregularities
with AN/Ny ~ 10% would be required to reproduce the
observations. In this same data set the observed Doppler
shifts of the major portion of the lower hybrid waves lay
in the range 50 < fp < 300 Hgz, implying wavelengths of
roughly 20 < Ags < 140 m.

At the points of observation, the propagation cone half
angle had the value § ~ 102 (see Figure 3). If we assume
that scattering takes place over a range A£ ~ 100 km, then
only irregularities located within the region Az ~ 1 km can
contribute to the observed lower hybrid field at the space-
craft. In this case the average spacing between irregularities
would be 50 m if AN/Ng ~ 10%. The reasonableness of
these numbers is difficult to establish since very little data
presently exists concerning the properties of magnetic-field-
aligned irregularities of scale less than 100 m at altitudes
above the topside ionosphere. However, at lower altitudes,
irregularities with scales < 100 m are commonly detected at
almost all latitudes [Fejer and Kelley, 1980].

If a number of the irregularities in (24) were not spaced
randomly along the z axis, but instead were spaced at some
integer multiple of the local lower hybrid wavelength, a par-
tially coherent output could be obtained and the number of
irregularities necessary to reproduce the observations would
be greatly reduced. This question is explored further in sec-
tion 4.2 below.

As discussed in section 3 above, if an irregularity on which
the lower hybrid waves are excited is tilted slightly with re-
spect to Bg, then the lower hybrid waves propagating to-
ward £ > zm will possess a different wavelength and am-
plitude from that of the lower hybrid waves propagating
toward £ < zm, where z, is the location of the irregular-
ity. In general, the stimulated lower hybrid wave of largest
amplitude will possess the shortest wavelength, and, hence,
the largest Doppler shift. Thus if a set of irregularities all
possess the same small tilt, lower hybrid waves excited on
these irregularities will display a characteristic signature in
which components shifted in frequency in the same direction
will possess larger amplitudes and larger Doppler shifts than
the components shifted in the opposite direction, resulting
in an asymmetric distribution of lower hybrid waves about
the input wave frequency. Examples of this type of signa-
ture can be found in the August 14 data, e.g., Figure 11c of
Bell et al. [1983], suggesting that tilts may sometimes be an
important factor in the stimulation of lower hybrid waves.

To continue our comparison with data, we plot in Figure
19 the total amplitude of stimulated lower hybrid waves to
the amplitude of the input electromagnetic wave as a func-
tion of time and position along a trajectory of the ISEE 1
satellite through the inner radiation belt (see Figure 10 of
Bell and Ngo [1988]). During this period the time delay be-
tween the arrival of the electromagnetic input wave and the
stimulated lower hybrid waves ranged predominantly from
50 to 100 ms, suggesting that the region of stimulation was
within a few hundred kilometers of the satellite location.
Since the scale for significant change of the plasma frequency
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Fig. 19. Comparison of theoretical prediction and experimental
measurement of lower hybrid wave amplitude.
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and electron gyrofrequency is roughly 1000 km along most
of the satellite path,  we can expect that the values of these
parameters in the stimulation region would be close to those
obtaining at the satellite location at any given time. For ex-
ample, Figure 8d gives the calculated excitation coefficient
of lower hybrid waves at a particular point along the ISEE
1 satellite path on July 31, 1983 (L = 2.0, Am = 10° N),
and we can expect that the excitation coefficient would be
close to the values shown for all points within a few hundred
kilometers of the spacecraft.

Although we do not know the density enhancements or
spatial distribution of the irregularities which produce the
observed lower hybrid waves of Figure 19, there is some rea-
son to believe that the observed field will be roughly a con-
stant multiple of the single boundary surface scattering re-
sults such as that of Figure 8d.

Consider the following argument. If AN/Ng < 1, then
to first order we can write EZS x~ EZS AN/ N, where EES
is independent of AN. At any pomt along the spacecraft
trajectory the observed lower hybrid wave field given in (24)
can then be written

£
ANm ikEs(z —z)
:vT —E { (—)e z m
mEl No
£y

(ANm ) —ikfs(xm—z)} (26)
m=£+1

where ANp, is the maximum density change associated with
the mth irregularity, and z., is the position of the mth irreg-
ularity along the z axis. If we now assume that the irregular-
ities extend significant distances along Bg, some interesting
properties of (26) emerge. First of all, we note that the ra-
tios ANy /Np remain constant along By. Second, since the
area of a unit flux tube varies inversely as the magnitude of
By, the £ coordinate of the one dlmenswna.l planar irregu-
larities (zm) will vary roughly as By /2 In this case, from
(3) it can be shown that

k2% \om — 1| = AN/

(27)

where Am is a constant along By.

In general, at high altitude the background electron den-
sity Np is a slowly varying function of position along Byg,
and the right hand side of (26) will also vary slowly along
By. Since the same arguments can be applied to the second
summation in (24), this result suggests that over a signifi-
cant distance the observed electrostatic wave field may be a
constant multiple of the individual wave field produced at a
single irregularity.

In order to tesi this idea, values of EF® were calculated
at a number of points along the spacecraft orbit for wave
frequency f = 13 kHz, assuming x = 0. Figure 8d shows an
example of these calculations at the orbital point L = 2.0
and A, = 10° N. At each point the value of the param-
eter EZJ was also calculated. The absolute value of each
summation in (26) was then chosen to be such that the elec-
tric field power given by (26) was equal to the experimental
value at this orbital point. The actual value chosen for each
summation was |)_ | = 0.8, but this is not critical since we
are interested mainly in how (26) varies along the orbit. A
plot of observed values of |Ex°/EXNC| is shown in Figure
19, along with the theoretical values based on (26) .

It can be seen that there is a reasonable agreement be-
tween theory and observation until roughly 1455 UT, when

the observed values drop significantly below the predicted
values. This decrease is believed to be due to the decreased

response of the 215-m tip-to-tip electric dipole antenna to
the shorter wavelength lower hybrid waves which were ex-
cited at the lower altitudes at the end of the satellite pass.
On the basis of the Doppler shift of the lower hybrid waves,
it can be shown that their wavelength dropped below 100 m
after 1455 UT. According to one recent model of the ISEE 1
long electric antenna [Gallagher, 1985), the antenna response
would be reduced at least 10 dB to waves with A < 100 m.

Other differences between the theory and data could re-
sult from the fact that the spacecraft trajectory had a sig-
nificant component across By after 1455 UT. Thus if the
irregularity characteristics varied significantly perpendicu-
lar to Bg, we would not expect the summation on the right
hand side of (24) to remain roughly constant.

In using the results of Figure 8d to apply to the ISEE
1 data we have tacitly assumed that the density change at
the planar boundary of each irregularity occurs over a dis-
tance which is small compared to the lower hybrid wave-
length Agps. This assumption may be reasonable, since in
the ISEE 1 data Ags is relatively large (Azs > 50 m). How-
ever, if this is not the case and the density change occurs
over a distance comparable to, or larger than, Ags, the ex-
citation coefficient will be smaller, as indicated in Figure 13.
In this case the absolute magnitude of the summation in (26)
would need to be larger in order to match the observations
of Figure 19.

4.2. VLF “Radar” and Plasma Diagnostics

In the event that the distribution of the planar irregu-
larities is not entirely random, but instead contains some
periodic structures whose spatial wavelength is comparable
to the lower hybrid wavelength, we can expect a partially
coherent output from the irregularities. This fact is demon-
strated in Figure 17. Because of this response, it appears
possible to use the lower hybrid wave stimulation effect as
a type of “VLF radar” to probe the structure of the irregu-
larities which cause their stimulation.

It is well known from HF incoherent scatter radar studies
that HF waves with wavelength in the range 5 to 100 m can
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be used to determine the characteristics of plasma density
irregularities with roughly the same scale (see, for example,
Brekke [1977]). For any given component of the irregularity
density distribution Nye *%'T, the scattered signal intensity
will maximize when the matching condition holds

K +k =k, (28)

where k; and ks are the wave vectors of the input and scat-
tered waves, respectively.

The matching condition given in (28) is common to a
large class of linear scattering problems including HF inco-
herent scatter in the ionosphere [Brekke, 1977], HF scatter
from ocean waves, Bragg scatter of X rays [Semat, 1946],
and light scattering from atmospheric density variations.
It is also applicable to a large class of nonlinear scatter-
ing problems, such as parametric three wave interactions, in
which the density perturbation is produced by the propagat-
ing waves and the frequencies of the three waves are linked
by an additional matching condition w; + w = w; (see, for
example, Berger and Perkins [1976]).

In the case of HF incoherent scatter radar studies in which
the backscattered signal is observed at the radar site, ks =
—k; and

k= 2k; (29)

Thus the maximum backscattered signal will be obtained
when the wavelength of the input radar signal is twice the
wavelength of the density fluctuation.

Equation (28) can also be applied to the case in which the
input signal is an electromagnetic whistler mode wave and
the scattered wave is a short wavelength quasi-electrostatic
lower hybrid wave excited through mode coupling. If we
assume that the Earth’s magnetic field B is aligned with
the z axis and that the plasma density of the irregularities
varies only in the = direction, then (28) becomes

ki; = ksz (30a)
k,’y = ksy (30b)
kig; + ka; = k;x (300)

where k;, is the component of k; along the z axis, etc. Equa-
tions (30a) and (305) are just Snell’s law applied along the y
and z axes. Equation (30c¢) is the matching condition which
produces the maximum amplitude for the scattered lower
hybrid wave. Since the wavelength of the input electromag-
netic whistler mode wave is much larger than that of the
excited lower hybrid wave, kiz < ksz, and equation (30c)
can be expressed to a good approximation:

kr = ksg (31)
Thus in the case of the excited lower hybrid waves, the maxi-
mum amplitude will be achieved when the wavelength of the
lower hybrid wave is closely equal to the wavelength of the
sinusoidal density fluctuation.

The general relationship between the amplitude of the ex-
cited lower hybrid waves and the plasma density profile has
been explored in section 3. In general, for large plasma den-
sity gradients this relationship is complicated due to strong
mode coupling between the two possible electromagnetic
modes and the two possible lower hybrid modes and few
simplifications seem possible. However, as the input wave
frequency approaches the lower hybrid resonance frequency
from above, the refractive index of the lower hybrid waves

becomes arbitrarily large (in the cold plasma approxima-
tion) and the electromagnetic and electrostatic modes par-
tially decouple. In this case as shown in the appendix, in
the limit of weak scattering the value of EZY is related to
the irregularity spectrum AN(kz) through the relation

EES(z)/ER® = pyDSTING!

(=]
X Y. ANmkmG(kz® km,z) (32)

m=—00

where kn, = 2xm /W, the function G is defined in the ap-
pendix, and where we have assumed that the electron den-
sity N(z) can be expressed as a Fourier series

(o 0]
N(z)=No+ Y  ANpe ™ m®
m=—0Q
over the irregularity region of width W.
In principle, if EES can be measured sufficiently accu-
rately, (32) can be solved to find AN(z) by making use of
the Fourier inversion relation

W
mpm =W™! / eie(bm=kn) gy — (33)
0

However, in practice the finite S/N ratio of the lower hy-
brid waves limits the usefulness of this technique. An al-
ternate method to determine AN(z) involves the measure-
ment of EZS over a significant range of values of kgs. This
method is based on the fact that, as shown in the appendix,
the electric field of the lower hybrid waves will peak when
the wave number of the lower hybrid wave is equal to the
wave number of one of the spatial Fourier components of the
irregularity density distribution AN{z).

Up to the present time, the only controlled experiments
involving the excitation of lower hybrid waves with a rel-
atively large range of kgs have been performed using the
Siple Station VLF transmitter in Antartica. Figure 20a
shows typical data from these experiments in the form of a
spectrogram of a 5.5-s, sweep-frequency pulse from the Siple
Station VLT transmitter as received on the ISIS 2 spacecraft
at 1400 km altitude above the station. The plasma parame-
ters at the satellite at this time were roughly those indicated
in Figure 8¢c. Lower hybrid waves were stimulated at each
frequency of the pulse as the frequency swept from 6 to 4
kHz. According to our theory, this range of input wave fre-
quency would produce lower hybrid wavelengths in the range
14 to 30 m. Figure 20b shows the amplitude of the pulse as
a function of the calculated lower hybrid wavelength.

We propose to use the data of Figure 205 to demonstrate
our method of determining N(z) when EZ° is known over
a significant range of kZ°. However, a few caveats are in
order here. First of all, the data of Figure 205, as well as all
similar data, did not exhibit the typical fading characteris-
tics associated with lower hybrid waves whose wave normals
are limited to a narrow range of azimuths about Bg [James
and Bell, 1987]. Instead, the distribution of wave normals
about By appeared to be roughly isotropic, indicative of a
two-dimensional scattering regime. Furthermore, since Ags
is much smaller than the 75 m length of the ISIS 2 dipole
antenna, the amplitudes shown in Figure 20b do not rep-
resent the true amplitudes of these waves. For instance,
Gallagher’s model [Gallagher, 1985] suggests a decrease in
antenna sensitivity of roughly 20 dB for Ags ~ 30 m. De-
spite these deficiencies, it is instructive to use the data as it

0 m#mn
1 m=n
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Fig. 20. (a) Spectrogram showing stimulated lower hybrid waves observed on the ISIS 2 satellite with total
apparent bandwidth of approximately 300 Hz. (b) Measured amplitude of stimulated lower hybrid waves as a

function of stimulated lower hybrid wavelength Ags.

stands to demonstrate how such data can be used to deter-
mine an apparent structure for the irregularities.

The calculation is as follows. According to (A8) , each
major peak in the amplitude plot of Figure 20b indicates the
presence of a Fourier component of N(z) with approximately
the same wavelength. The amplitude of each component
ANj can be estimated using (A8) and a trial value of W.
This calculation provides a set of values of AN; through
which a trial density function, AN¢(z), can be constructed

ANy(z) = No+ Y ANje~*5® (34)
J
where the sum is over the finite trial set.

Using (34) the following iterative process can be followed
to determine N(z):

1. The distribution of (34) is used in the simulation
program described in section 2. The interval 0 < z < W is
divided into 2000 planar slabs and the density in each slab
is assumed to follow (34). The value of W is assumed to be
no larger than 2 km, giving a slab width of no more than 1
m. The values of EZ% near £ ~ W/2 are then plotted as a
function of the wavelength of the lower hybrid waves.

2. The calculated values of EFS are compared with
the experimental values and the values of AN; are adjusted
accordingly, making use of the linear relationship between
the excited lower hybrid field and AN;.

3.  The widths of the calculated peaks in EZ° are ad-
justed by varying W (see A9) so the bandwidth, Ak, of the
calculated and observed peaks are similar.

4. Steps 1, 2, and 3 are repeated until good agreement
is obtained between theory and observation.

The above procedure was used to determine a density dis-
tribution which could give rise to the observed lower hybrid
wave spectrum. The magnitude of the coefficients AN; for
this distribution are plotted in Figure 21b and the predicted
values of EZS/EINC are plotted in the dashed curve of Fig-
ure 21a. Also plotted are the observed values of the lower
hybrid field increased by 18 dB to account for the decrease
in antenna response at short wavelengths. It can be seen
that reasonable agreement exists between theory and obser-
vation.

The above calculational procedure was used to derive a
spatial structure for the irregularities which produced the
data shown in Figure 20a. The total width W of the irreg-
ularity density distribution was determined to be approxi-
mately 1000 m. It can be seen that the dominant Fourier
components in the irregularity density enhancement spec-
trum lie at AZ% =~ AF% ~ 30 m.

5. DiscussioN

The foregoing development has demonstrated that quasi-
electrostatic lower hybrid waves of significant amplitude can
be stimulated by electromagnetic whistler mode waves which
scatter from planar magnetic-field-aligned plasma density
irregularities in the top side ionosphere and magnetosphere.
Below we discuss additional features of our model.
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Fig. 21. (a) Theoretical prediction and measurement of stimulated lower hybrid wave amplitude. Experimental
curve was raised by 18 dB to compensate for antenna response at short wavelengths. (b) Theoretical prediction

of density fluctuation spectrum.

Coulomb Collisions

In the top side ionosphere Coulomb collisions between
electrons and ions can play an important part in determin-
ing the propagation characteristics of the stimulated lower
hybrid waves. To estimate the effects of these collisions we
use the lower hybrid approximation for the dispersion rela-
tion of (9), i.e.,

kZS = £k, tan ¢ = +ki(~P/S)/? (35)
where 9 is the resonance cone half-angle. In the case of
collisional energy losses, the parameters P and S will be
complex numbers and the lower hybrid wave amplitude will
decay along the z axis according to the relationship

|EES| ~ o~ kzile]

(36)

where o = Im (—P/S)l/z.

Although o may be a large number in some cases, this
does not necessarily mean that the lower hybrid waves will
experience heavy damping, because the group velocity of the
lower hybrid waves in the z direction is generally very small.
In fact, if the effective Coulomb collision frequency v is small
compared to the wave frequency, the group velocity of the
lower hybrid waves is perpendicular to the resonance cone

half angle and we can write for the wave packet position,

dz 5 142

- o - 37

i; " Re [—P] (37)
With the aid of (37) we can rewrite (36) as

|EE5| ~ e-ﬁkzi|z| (38)

where § = Re (—S/P)l/2 xIm (—P/S)*?. Considering only
electron collisions we have
2

&~ —Woe
w(w — ) (39)
2 2.
S§1+%<1+—."—> s
w¥, 1w w

Assuming w > v, we can write

ﬁg_u_.(2+e)(1+e)_1w2—w%HR
2w (w? - wigp)

(40)

where € = w¥, [w3,.
The electron-ion collision frequency is described by the
relation [Rishbeth and Garriott, 1969]
v=N [34 + 4.2log10(T3/N)]T—3/2

where N is the cold plasma density in c.g.s. units and T is
the electron temperature.
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At 300 km altitude we have N ~ 10%° cm™3, and T ~
1500° K, for which v ~ 91, fo ~ 3 MHz, and fge ~ 1 MHz.
In this case for an input wave frequency of 10 kHz we find
from (40)

B217x1073 (41)

Although the stimulated lower hybrid wave amplitude can
initially exceed that of the input wave, the waves will be dif-
ficult to detect experimentally if collisional damping causes
their amplitude to decrease by more than 20 dB while propa-
gating along Bg. This limit implies a maximum propagation
distance of Az 22 2.3(A;/2xB), where ), is the wavelength
along Bg. Using (41) we find

Az ~ 220}, (42)

Since A; ~ 1 km, Az ~ 370 km. However, the scale height
for the cold plasma density at 300 km altitude is generally
only 200 km. Thus the total attenuation for lower hybrid
waves propagating toward higher altitudes from 300-km will
be only ~ 10 dB. During daytime conditions, however, N ~
5 x 10° and if the electron temperature is the same, we find
v =431 and f 7.9 x 1073 and

Az ~ 47X, ~47 km (43)

Consequently, lower hybrid waves stimulated near 300 km
altitude during the daytime would probably not be observ-
able at altitudes above 400 km.

We conclude that Coulomb collisions are not generally
an important factor in the propagation of stimulated lower
hybrid waves in the night time top side ionosphere. However,
in the daytime, it appears that the stimulated lower hybrid
waves will be significantly damped by Coulomb collisions in
the altitude range 300-500 km.

Finite Temperature Effects

The properties of the stimulated lawer hybrid waves will
be modified by the eflects produced by a finite temperature
in the magnetoplasma. First of all, the maximum value of
kg for the stimulated waves will be limited by finite ion
Larmor radius effects. Second, the waves may be damped
through Landau and cyclotron resonance interactions with
the thermal plasma components. The effects of finite ion
Larmor radius can be neglected as long as kZ° obeys the
following relation [Stiz, 1962):

(kfs)zr% <1

where rp = (sTy /m,)l/z/wH,- is the ion Larmor radius and
where T is the ion temperature in the plane perpendicular
to By, and k is Boltzmann’s constant. At 1400 km altitude
at mid-latitude with T ~ 1500° K, (44) yields for HY ions

(A;?S)2 > (8 m)?

(44)

(45)

A similar calculation for altitudes near the magnetic equa-
torial plane at L ~ 2.0 yields the restriction
2
(22°)" > (64 m)? (46)
Given that (44) is satisfied, the dispersion relation for quasi-
electrostatic waves can be written (Stiz, [1962] Chapter 9)

2
2e=" = (47)

k28 + k2P + int 2 awd,vr

where vr is the rms thermal velocity of the electrons, o =
|w/k;|(me/2nT”)1/2, and where we have assumed that the
electrons and ions have maxwellian thermal velocity distri-
butions of equal temperatures and that o 3> 1. In (47) we
include only Landau damping, since cyclotron damping is
negligible when w € we.

In the case of planar irregularities which are strictly par-
allel to Bg, by Snell’s law, k¥ = ki, and w/kE° > vr, and
a3 > 1. Thus Landau damping is negligible in (47) .

When the planar irregularity is not strictly parallel to Bg,
Landau damping may be significant. To see this we note that
(47) applies to a system in which By is parallel to the z axis.
Any solution of (47) for a given value of n,; can be expressed
in the first system by the coordinate transformation

n'f =ngcosx + nz s%n X (48)

N, = N, COSX — g SiD X
where the primed variables apply to the system in which
By is parallel to the z axis, and ny is a solution of (47) .
Now if |x| — xe¢, then for one of the lower hybrid waves,
ngy — oo. In this case (48) shows that n; — oo, also. Thus
the phase velocity of the wave along By will decrease and
Landau damping will increase accordingly, as indicated in
(47) .

Making use of (37) and (47) , the amplitude change due
to Landau damping can be written in the form shown in
(38) where now

2
B rale™®

Experimental results [Bell et al., 1983] suggest that the lower
hybrid waves can propagate over distances at least of the or-
der of 103 km, or roughly 103 wavelengths along Bg. Lower
hybrid waves which are damped more than 20 dB over this
distance would be difficult to observe. A 20-dB maximum
damping loss over 10® wavelengths implies 8 ~ 4 x 107%, a
value for which (49) yields o ~ 3.5.

Making use of the definition of & and assuming an electron
temperature of 1500° K, we then obtain

(49)

nyi < 4 x 102 (50)

Combining (35), (39), and (50), we obtain

-1/2
k2] <4 % 10722 [(1 4 1 - wdnf®)] (1)

where ¢ is defined in (40).
At 1400 km altitude at mid-latitude we have fmy. ~ 880
kHz and € ~ 0.2, and finding Ags from (51), we have

Ags > (1— w%HR/w2)1/2 m. (52)

Similarly, at L ~ 2 near the magnetic equatorial plane
where fye ~ 110 kHz, we obtain

Aes > 8(1 —w%HR/w2)1/2 m

(53)

Since (52) and (53) are much weaker constraints than (45)
and (46), we conclude that Landau damping by the main
thermal plasma component will not be significant for the
lower hybrid waves considered in the present study. How-
ever, if the electron velocity distribution contains a signifi-
cant high energy tail in addition to the Maxwellian compo-
nent, this conclusion would need to be reexamined.

Experimental data indicate that the maximum Doppler
shift in 10- to 14-kHz signals observable at 1400 km at
mid-latitudes is approximately |Afp| ~ 500 Hz. Using the



168 BELL AND NGO: EXCITATION OF LOWER HYBRID WAVES

Doppler shift relation Afp = k- v; /27 and a typical satel-
lite velocity vs of ~ 7 km/s we can find the wavelength of
the observed lower hybrid wave

AES ~ 7 km/s/500 Hz ~ 14 m (54)
where we have assumed that the angle between v and k is
small. Experimental data [Bell and Ngo, 1988] also indicate
that the maximum Doppler shift in 10 to 14 kHz signals
observable at L ~ 2 near the magnetic equatorial plane is
|Afp| ~ 50 Hz. With a satellite velocity of 5 km/s this
implies a wavelength of

AES ~ 5 km/s/50 Hz ~ 100 m (55)
where again we have assumed that v, and k are roughly
parallel.

Note that the wavelength values given in (54) and (55)
satisfy the restriction stated in (45) and (46). Thus we con-
clude that the zero temperature approximation used in the
present work should apply to the major portion of the ob-
servational data.

Comparison With Past Work

In a general sense our work can be viewed as a contri-
bution to the study of electromagnetic wave propagation in
an inhomogeneous magnetoplasma. This topic has received
much study over the past few decades, and a thorough re-
view of early work on this subject can be found in Budden
[1985]. In particular, the early work of Clemmow and Head-
ing [1954] and Forsterling [1942] are relevant to our work in
that their coupled wave equations indicate in general, the
conditions under which strong mode coupling effects can be
expected between the four possible normal modes. However,
neither work explicitly considers the question of irregular-
ities or the excitation of guasi-electrostatic waves. Appar-
enily, the first work concerning the propagation of electro-
magnetic waves in a magnetoplasma in the presence of irreg-
ularities was carried out by Budden [1961] and Simonich and
Yeh [1972], but this work did not deal with the excitation
of quasi-electrostatic waves. Somewhat later a number of
papers concerning the propagation of whistler mode waves
within magnetic-field-aligned plasma density irregularities
known as whistler mode ducts, discussed the mode coupling
that occurs because of the plasma density variation across
the duct [Northover, 1959a, b; Adachi, 1965; Scarabucci and
Smith, 1971]. However, these papers did not explicitly con-
sider the excitation of quasi-electrostatic wavcs. More re-
cently, Antani and Kaup [1984] using a perturbation theory
have dealt with the problem of whistler mode waves scat-
tering from random fluctuations in a magnetoplasma and
have derived an expression for the dispersion relationship
for the electromagnetic whistler mode waves. This disper-
sion relationship contains an effective damping coeflicient
which accounts for the wave energy scattered into the quasi-
electrostatic modes. The authors assume the fluctuations in
the plasma are caused by drift-wave type turbulence with
a scale of the ion gyroradius. No direct comparison of this
work with our own can be made since the authors did not
calculate the amplitude of the excited lower hybrid waves.

Other aspects of the transformation of electromagnetic
to electrostatic wave energy through linear mode coupling
have been considered recently in other fields. For example,
Wong et al. [1981] have discussed the direct conversion of

electromagnetic HF waves into electrostatic Langmuir waves
in the ionosphere during heating experiments, and Morales
et al. [1985] have discussed the direct conversion of fast
Alfven waves into ion Bernstein modes in Tokamak devices.
Thus there is evidence that linear mode conversion can be
an important process over a wide range of plasma and wave
parameters.

Alternative theories to explain the excitation of lower hy-
brid waves by electromagnetic whistler mode waves have
been advanced by Titova et al. [1984] and Groves et al.
[1988]. The mechanism of Titova et al. involves nonlinear
resonance scattering and assumes that the input electromag-
netic waves are scattered by plasma density irregularities
associated with ion acoustic turbulence. The ion acoustic
waves are hypothesized to be produced through the action
of magnetic-field-aligned electric currents. While ion acous-
tic turbulence and field-aligned electric currents are com-
mon at high latitude, there is little evidence to suggest that
they also occur at mid-latitudes, a region where lower hybrid
wave stimulation is often observed. Furthermore, there is no
evidence that ion acoustic turbulence is commonly present
within the inner radiation belt, another region where lower
hybrid waye stimulation is commonly observed. This dis-
crepancy raises serious question concerning the applicability
of the Titova et al. mechanism.

Groves et al. [1988] have proposed two different mecha-
nisms which they think may be involved in the lower hybrid
wave stimulation. The first mechanism involves nonlinear
wave scattering by preexisting one-dimensional magnetic-
field-aligned plasma density irregularities with sinuscidal
variation perpendicular to By. It is assumed that the input
electromagnetic wave is propagating strictly parallel to By.
In this case the normalized amplitude of the excited lower
hybrid wave has the value EZS/EXNC = AN/Ny. Thus for
small AN the predicted amplitude of the nonlinearly gen-
erated lower hybrid wave is generally orders of magnitude
smaller than the values our passive linear scattering model
predicts. Consequently, we conclude that the nonlinear wave
scattering mechanism of Groves et al. is too weak to explain
the observed data.

The second mechanism advanced by Groves et al. in-
volves a parametric excitation of short wavelength lower hy-
brid waves by electromagnetic whistler mode waves. This
four wave interaction mechanism takes place only if the in-
put wave amplitude exceeds a threshold level Ey, which the
authors calculate to be Ey ~ 18 mV/m at low altitudes.
There are at least two difficulties with this mechanism. First
of all the parametrically excited lower hybrid waves take a
relatively long time to develop, as much as a few seconds af-
ter the VLF input wave arrives in the generation region [Lee
and Kuo, 1984]. On the other hand observations indicate
that the lower hybrid waves are commonly excited within
50 ms of the arrival of the input wave [Bell et al., 1983; Bell
and Ngo, 1988]. Another difficulty lies in the prediction of
the wavelength of the excited lower hybrid waves. Groves et
al. state that the parametric instability will preferentially
excite lower hybrid waves with a wavelength A ~ 90 m at the
satellite location. For a satellite velocity of 7 km/s this gives
a Doppler shift of roughly 80 Hz for the lower hybrid waves.
On the other hand, commonly observed Doppler shifts of
excited lower hybrid waves are as large as 500 Hz at low
altitude (~ 1000) km [Bell et al., 1983]. Thus there appears
to be a significant discrepancy between the prediction of the
Groves et al. model and the observations.
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Effective Wave Damping Through Mode Coupling

At each irregularity, some of the energy of the incident
electromagnetic whistler mode wave will be transformed into
lower hybrid wave energy. This situation results in an ef-
fective damping of the electromagnetic whistler mode wave
[Antani and Kaup, 1984]. To see this, consider the case in
which the irregularities are substantially identical. Since the
Poynting flux is conserved along the £ axis, we can write

APIM = P75 Az (56)

where APY'M is the change in the total electromagnetic
energy flux in the z direction, PE® is the total elecirostatic
energy flux excited at each irregularity, 5 is the number of
irregularities per unit length along the z axis, and where it
is assumed that the irregularities are randomly spaced along
the z axis with an average spacing larger than Ags. Since at
any given irregularity we can use the boundary conditions
on E and B to find the ratio « = PE° /P}"™ | we can write
(56) in the form

APYM — _onPlM Ay (57)
In the limit of small Az, (57) can be integrated to yield
PYM o plgMemon® (58)

where PYYM is the energy flux originally incident on the
irregularity region. From (58) it can be seen that the elec-
tromagnetic whistler mode wave would suffer a 4.5 dB loss
over the distance

4~ (an)™! (59)

Since the group velocity of the electromagnetic whistler
mode wave is principally along By, it is useful to express
(59) in terms of the total propagation distance along this
direction

zq ~ (an)"Wo: /Ves

where zg is the distance the electromagnetic wave propa-
gates along By while traversing the distance z4 through the
irregularity region, and where Vi and Vi, are the compo-
nents of the group velocity vector along the £ and z axes,
respectively. For small values of wave normal angle 8 it can
be shown that

(60)

zq ~ 2(anf)”? (61)

For f = 15 kHz numerical values for z4 can be obtained
with the use of Figure 22. Figure 22a shows the Poynting
flux (Pg) distribution among the four characteristic modes
when the input electromagnetic whistler mode wave encoun-
ters an irregularity of Gaussian cross section identical to that
shown in Figure 15, but with arbitrary density enhancement
AN/Ng. It can be seen that for AN/Ny < 20% the energy
of the reflected electromagnetic whistler mode wave is negli-
gible compared to that of the two lower hybrid modes, which
carry equal energy in opposite directions.

As an example consider the case where AN/Ny ~ 2% and
7~ 2km™ L. According to Figure 22, a ~ 10_3, and thus
zq ~ 3000 km for this case. Stronger damping of the electro-
magnetic whistler mode wave will occur if the irregularity
density perturbation is larger than 2%. For instance, when
AN/Ny ~ 5% and all other parameters are the same, it is
found that z4 ~ 1000 km.

These two cases illustrate the fact that the presence
of small scale magnetic-field-aligned density irregularities
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Fig. 22. (a) Normalized Poynting flux Pr/PIZ™ of the four

characteristic waves excited as an input electromagnetic whistler
mode wave encounters a magnetic-field-aligned Gaussian density
enhancement. (b) Normalized Poynting flux Pr/PIZ5 of the
four characteristic waves excited as an input quasi-electrostatic
whistler mode wave (lower hybrid wave) encounters a magnetic-
field-aligned Gaussian density enhancement.

can lead to significant damping of electromagnetic whistler
mode waves which propagate through the irregularity re-
gion. This type of damping may be the most impor-
tant damping mechanism for electromagnetic whistler mode
waves throughout large regions of the magnetosphere where
small scale magnetic-field-aligned plasma density irregulari-
ties are known to exist [Bell and Ngo, 1988; Fejer and Kelley,
1980].

Once they are excited, lower hybrid waves will also lose
energy to the other characteristic modes through mode cou-
pling. TFigure 22b shows the Poynting flux distribution
among the four characteristic modes when an input lower
hybrid wave encounters a Gaussian irregularity identical to
that shown in Figure 15, but with arbitrary density enhance-
ment. It can be seen that the input wave loses energy mainly
to the two excited electromagnetic whistler mode waves,
which carry equal energy in opposite directions. Values of
zg4 for the lower hybrid waves are also given by (60), but the
ratio of group velocity components is much larger for these
waves because their group velocity vector is perpendicular
to the whistler mode resonance cone. Thus for the lower
hybrid waves we have

2q ~ (amxe)~? (62)

For f = 15 kHz, x¢ ~ 1° and thus it is found that the
lower hybrid waves can propagate roughly 5 times as far as
the electromagnetic waves before losing significant energy
through mode coupling.

In the above arguments it is important to remember that
in general, the amplitude of the excited lower hybrid waves
depends upon the width of the irregularity as well as the
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peak density enhancement. For instance, it can be deduced
from Figure 16 that a Gaussian irregularity of 5% enhance-
ment and 14 m half-width produces 10 dB less lower hybrid
wave energy than a similar Gaussian enhancement of 4 m
half-width. Thus the effective propagation distance of an
electromagnetic whistler mode wave in a region of irregular-
ities will show a first-order dependence upon the width of
the irregularities.

Suggestions for Future Work

A definitive test of the theory of lower hybrid wave stim-
ulation proposed in the present paper requires high reso-
lution comprehensive satellite measurements of the E and
B fields of the stimulated waves, as well as the density of
the local plasma. Three orthogonal axes measurements of
the E field of the stimulated waves need to be made to es-
tablish the direction of E and its orientation with respect
to the static magnetic field Bg and the whistler mode reso-
nance cone. Three-axis high sensitivity measurements of the
small B field of the quasi-electrostatic lower hybrid waves
are needed to establish the magnitude and direction of B,
the direction of the Poynting flux E x H*, and the values
of various characteristic polarization ratios (e.g., Ez/Hy)
which can be used to identify plasma waves.

Simultaneous high resolution measurements of the local
plasma density are needed to determine the irregularity
structure within which the lower hybrid waves are stimu-
lated. Since the velocity of low altitude satellites ranges
from 5 to 7 km/s, plasma density measurements would need
to be repeated at a rate of 1 kHz to achieve a resolution
of roughly 5 m. This rate is well within the capabilities of
present day Langmuir probes. The three-axis, orthogonal
dipole antennas used to detect the E field of the lower hy-
brid waves should be as short as possible so that the effective
length of the antennas will be the same for all wavelengths
detected. A tip-to-tip length of 5 to 10 m would satisfy this
requirement in general and would still provide a reasonable
S/N ratio in most cases.

The possible association of the stimulated lower hybrid
waves with energetic electron precipitation [Bell et al., 1983]
could be determined using energetic particle detectors cov-
ering the range 100 eV to 100 keV.

Although the measurements suggested above can be made
using input signals from existing VLF transmitters, their
formats are not generally ideal. As a better input signal
we suggest a set of 50-ms pulses separated by 1 kHz and
transmitted simultaneously in a “comb” format, as shown
in Figure 23a. The frequency range of these pulses would
extend from a few kHz below fruyr up to roughly 10fLx k.
Eacl¥input pulse would excite lower hybrid waves whose
wavelength was a function of the input pulse frequency, as
indicated schematically in Figure 23b. With 1-kHz separa-
tion between pulses, Doppler shifts of up to 3500 Hz in the
stimulated waves could be accommodated without overlap
of lower hybrid waves stimulated by adjacent pulses. The
comb pulse format could be repeated every 100 ms to yield a
spatial resolution of roughly 500 m along the satellite path.
A series of short input pulses is superior to a CW signal
since a measure of the time delay between each pulse and
its associated lower hybrid waves is necessary to determine
the range to the scattering region. The frequency resolution
of the comb format could be improved at the expense of the
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Fig. 23. (a) Praposed format of transmission of VLF signals used
to detect small scale magnetic-field-aligned plasma density irreg-
ularities in the ionosphere and magnetosphere. (b) Wavelengths
of lower hybrid waves excited by input signals.

temporal (spatial) resolution. For instance, each pulse in
the comb format could be shifted in frequency by an amount
Af = s~ kHz, where s is a positive integer, each time a
comb group was transmitted. Each sth comb group would
then be the same. To avoid overlap between lower hybrid
waves stimulated by one pulse group and the input pulse
from the next comb group, the time A7 between successive
comb groups would have to be increased to as much as 250
ms. If Af =250 Hz and At ~ 250 ms, a spatial resolution
of roughly 1 km could be achieved. A 1-km resolution along
the satellite path may be adequate since the cross-L scale of
the irregularity region which contributes to the lower hybrid
wave field at the satellite appears to be roughly of the same
magnitude.

The wave measurements described above would allow the
complete characterization of the E and B fields of the lower
hybrid waves and their variation as a function of input wave
frequency. On the other hand, the local plasma density mea-
surements will not determine whether the measured irregu-
larities are magnetic-field-aligned or planar in nature. How-
ever, this determination could in principal be made by a
multisatellite group, such as that planned for the Cluster
Mission.

6. SUMMARY

We have demonstrated that high amplitude, short wave-
length (5 m < A < 100 m) quasi-electrostatic whistler mode
waves can be excited when electromagnetic whistler mode
waves scatter from small-scale planar magnetic-field-aligned
plasma density irregularities in the topside ionosphere and
magnetopshere. These waves cut off at the lower hybrid
resonance frequency and are a type of lower hybrid wave.
The mechanism of excitation involves linear mode coupling
between the four characteristic modes of the cold magne-
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tosplasma in regions of changing plasma density. Qur model
predicts the following behavior:

1. Lower hybrid waves are strongly excited only when
the scale of the electron density irregularity is of the order
of the wavelength of the lower hybrid wave (5-100 m).

2. Lower hybrid waves are strongly excited only when
the planar electron density irregularities are aligned within
a few degrees of Byg.

3. Electromagnetic whistler mode waves can experience
significant effective damping as the lower hybrid waves are
excited. This form of damping may be the most important
damping mechanism for whistler mode waves throughout
large regions of the magnetosphere.

4. Through a VLF “radar” technique the electrostatic
wave spectrum can be used as a diagnostic tool to deter-
mine the structure of small scale irregularities in the mag-
netosphere.

APPENDIX

From (6) and (12) we can express the divergence of D in
the form

. . 0

where we have assumed ky 20

In the limit as k25 — oo, the components of the electro-
static field can be derived from a scalar potential function
®(z), where

EEs — _3@(1‘)
e oz (A2)
EF® = ik, ®(z)

In the limit of weak scattering where (AN/N)? <« 1, the
electromagnetic components of (Al) can be approximated
by the input wave fields. In these two limits (Al) can be
rewritten

99(x)
Ex [S oz

iEyC 9D exp(—ikg Cz) (A3)

Sk

] + (2)= dz
where now k = kZ5 = k,|P/S|/2. In (A3) the parameters
S and D are defined as in (8), and it is assumed that nei-
ther of them vary significantly over a distance comparable
to AES,

We now express the electron density as a Fourier series
over the interval 0 < z < W, the region of space assumed
to contain the irregularities

N(z) =

oo
No+ > ANpe Hm® (A4)

m=—0o0
where km = 2xm/W, and Nj is the background density.
Substituting (A4) into (A3), making use of the definition of
D and neglecting terms of order (AN (z)/Ng)?, we can find
the following expression for Fj

B (z) Z ey~ AN”‘ G(k, ¥, 1)

g = (As5)

where Dg and Sy are evaluated for N(z) = No, k' = km +
kS| where py is defined in (14), and where

)
G(k, k',:c) — Z(k2 _ kl?)—-l [kle——lk E4

’ o .
_ —%—(k + kl)ez(k—k )We—zka. + %(k _ kl)e:kx] (A6)

The term G(k, k', £) in (A6) has a maximum value when k =
kES = +(km + k,’;NC). Since k5 > k¢, this corresponds
to the condition in which the lower hybrid waves excited in
the irregularity structure possess a wavelength closely equal
to the wavelength of one of the spatial Fourier components of
the irregularity density distribution. In this case the waves
add coherently along the z direction. This type of behavior
is illustrated in Figure 17.

When k — £k', the leading term of (A5) can be written

. !
G(E, k,') & _Li(W — g)ef (W —2)k (ATa)
k—Fk
N oAy ik'e
G(k,kl) = Lize (ATD)
k—-—k

Thus if the observation point is near the midpoint of the
irregularity system and k — k; where k; is one of the km,
the leading term of the expression for EL° has the value

EES ~ lk WEINCD S—].N
k—fk
(A8)

< [ANjeh7 - ANgeh W =]

is the complex conjugate of AN;, =z ~ W/2,

where AN;
E;NC o~ 'l-EéNC.

and where we have made use of the fact that
Thus EZS is linearly proportional to the product k;W,
which represents the number of electrostatic wavelengths
contained in the irregularity region.

Assuming that k;W > 1, the value represented by (A8)
can be attained only over a narrow range of wave numbers,
Ak, centered on kj, where

Ak ~WE (A9)
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