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The first part of the paper introduces the reader to the physical and mathematical aspects of
the problem of sideband formation associated with very-low-frequency whistler-mode waves
propagating in ducts in the magnetosphere. Tt starts with an introduction to the general
problem of charge distribution in the duct and looks at the effect of monechromatic

_ electromagnetic waves acting on such distributions. It describes sidebands as due to wave-wave
interactions occurring in the magnetosphere through electron cyclotron resonances, and
concentrates on sideband radiation coming from resonances located outside the wave potential
wells {external resonances). It also presents a general solution to the electron equation of
motion, based on the Kolmogorov—Arnold—Moser theorem, that lists the possible sideband
radiation frequencies. Both an analytical treatment, based on Lie transform perturbation
theory, and a numerical treatment, based on phase plots, are used in the detailed part of the
analysis. Effects of the inhomogeneity of the magnetic ficld of the Earth are mainly neglected

in'the first part of the paper.

I. INTRODUCTION

The purpose of this three-part paper is to provide a com-
prehensive description of the processes leading to the forma-
tion of sideband waves associated with discrete frequency
transmissions originated.in the very-low-frequency (VLF)
transmitter located at Siple Station, Antarctica and received
at Lake Mistissini, Canada after ducted wave propagation.
Those sidebands are found both in ‘single- and double-
frequency transmissions. In a recent paper,’ we have shown
that *“‘single-frequency” sidebands are due to the combined
effect of a transmitted wave from Siple and radiation present
in the duct at multiples of 60 Hz probably, but not certainly,
coming from the Canadian power distribution system. This
allowed us to understand the VLF sideband process as being
always caused by the effect on the magnetospheric electrons
of several discrete frequency carriers that, disturbing the
electron motion, change the electron distribution in such a
way that radiation always occurs at certain well-defined fre-
quencies, given by a simple formula [see Eq. (34)].

This paper relies on nonlinear mechanics formalism and
methods that may be unfamiliar to the reader. They are,
however, essential to the problem we will treat, as can be
shown by some simple considerations: The sideband process
in the magnetospheric plasma is a combined effect of acceler-
ated charge radiation, regulated by Maxwell’s equations,
and charge acceleration, described by the Lorentz force
equation. Maxwell’s equations are linear and predict radi-
ation only at the frequencies at which charges oscillate. Side-
bands clearly contain radiation at frequencies different from

the incoming wave frequencies. Nonlinear forces, therefore,:

must be at play, producing accelerations at frequencies dif-
ferent from those present in the incoming wave field. The
solution of the Lorentz force equation that describes such an
effect is an exercise in mechanics, and is part of the effort of
this paper. An understanding of the radiation coming from
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the accelerated charge distributions complements it. The re-
sults are fruitful: the main aspects of the radiation described
by 84 and Helliwell' are easily obtained. The reader that
wants an overview of nonlinear oscillator systems together
with references to recent research on the subject should con-
sult Lichtenberg and Lieberman.?

In Sec. I1 of this paper we will show how some simple
symmetry properties of the duct in the absence of an external
wave field imply the existence of a nonradiating electron
distribution. In Sec. I1I we show how an injected electro-
magnetic field, breaking the symmetry, creates radiation. In
Sec. IV, the equations governing the electron motion under
the influence of one or more right-hand circularly polarized
(RHCP) whistler-mode waves are introduced and an inter-
pretation of their solutions is made. In Sec. V, the equations
of motion are solved numerically and the solutions are dis-
played with the help of phase plots. Emphasis is put on ef-
fects occurring outside the potential well of each incoming
wave and, more specifically, on the occurrence of resonances
of the electron motion at the frequencies where radiation is
observed (external resonances). An example of “bunching”
produced by those resonances is presented. Section VI be-
gins the analytical treatment of the wave interaction process,
with the application of the Kolmogorov—Arnold—-Moser
(KAM) theorem for nonlinear systems to the interaction we
are describing. As a result we obtain an extremely general
and simple expression for the possible frequencies of the
sideband waves. Section VII describes a perturbative meth-
od based on Lie transforms which is used for a detailed study
of the electron motion. Section VIII applies the Lie perturba- -
tion method to nonresonant electrons. Section IX describes
the lowest-order resonance, the half harmonic, a second-or-
der effect produced by the interaction of any wave pair in the
incoming wave system. Section X describes third-order ef-
fects associated with two or three interacting waves. Section
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XI contains a description of higher-order elfects and Sec.
XII the conclusions. -

“Il. DUCT SYMMETRIES AND NONRADIATING
ELECTRON CONFIGURATIONS

We will assume that in the absence of outside incoming
radiation the electron distribution is so stirred up that all

points in a perpendicular cross section of the duct will have
the same electron density. Moreover, we will assume that
this local electron distribution is isotropic, that is, the num-
ber of electrons observed moving in any direction is the
same, independently of the direction chosen. At each point,
the observed electrons will also have different velocities of
motion in the direction parallel to the axis of the duct, vy . We
will have to assume that the distribution is homogeneous and
isotropic for each vy, otherwise by selecting a specific u we
would be able to define a specific direction in the duct, con-
trary to the assumption that all directions are equally impor-
tant. This assumption of homogeneity and isotropy will pro-
vide us with the means to build the electron distribution in
the duct..

Figure 1 shows a perpendicular cross section of the duct
with some electrons singled out. Those electrons will be
moving in a helical orbit due to the presence of the magnetic
field of the Earth. Let the projected motion of all electrons be
counterclockwise. We will show that every electron in the
distribution belongs to a direct current (de) loop. Suppose

that at point P, we consider a volume element d4 d/ of elec- -

trons moving in the direction and sense defined by the arrow

in the picture. Let the circle in the picture be the projection of .

their helical orbit on the plane of the cross section. At an-
other point P,, arbitrarily located on that circumference, we
draw a volume element identical to d4 dl. Due to the homo-
geneity of the duct the number of electrons in this volume,
dN,, will be equal to dN|. If we now draw a third volume
element d4 dl with dI tangential to the circumference, the
number of electrons, V,, moving in it and having the cir-
cumference as their projected frajectory will be equal to &N,
due to the isotropy of the duct. Therefore, dN, = dN;. Since
P, is arbitrary, we conclude that the circumference we have
drawn is uniformly populated by electrons, and moves as a
rigid body in the direction of the Earth’s magnetic field with
velocity v .

If we assume that the duct is in stationary equilibrium
(the distribution is translationally invariant in time), the
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FIG. 1. Duct isotropy and homogeneity. Due to syxﬁmetries in the duct

geometry, the electron distribution in a perpendicular cross section of the
duct can be broken down into a set of de current loops.

3483 J. Appl. Phys., Yol. 66, No. 8, 15 October 1989

- plane of the cross section will be continuaily crossed by those -

dc loops, identical to each other, indicating that the distribu-
tion is in reality made up of cyhnders with constant charge

- density on their surfaces and moving with velocity v as in

Fig. 2. Such a charge configuration will not radiate due to its
rotational symmetry. Symmetry considerations, however,
cannot constrain the value of the surface charge density to be -
the same for cylinders with different vy, or different radii. In
reality, in a real electron distribution, the cylinders will have
surface charge varying as a function of their radii and vy
This is a very important fact since we will see that a gradient
in the surface charge density as a function of vy is necessary
for the radiation due to the sum of all cylinders to be different
from zero when an electromagnetic wave interacts with the
electron distribution. As eleciromagnetic radiation reaches
each cylinder, the isotropy of the forces will be broken by the
vector fields of the wave, and the electron distribution will
lose its isotropy and radiate. - '

Itl. EFFECT OF RADIATION ON THE ELECTRON.
DISTRIBUTION

To simplify our analysis of the radiation generation pro-
cess, we assume that the interaction between the electron
distribution and the incoming waves occur in a region with
sharply defined boundaries, and that the incoming electro-
magnetic radiation is a superposition of monochromatic
whistler-mode waves. The region of interaction, located
around the equator, will have dimensions such that inside it, -
the inhomogeneity of the magnetic field of the Earth can be
neglected. Tt will be extremely convenient to observe the in-
teraction from a reference system with ne translational mo-
tion, rotating around the axes of the charge cylinders with an
angular velocity @), equal to the frequency of one of the
waves, and having its z axis pointing in the direction opposite
to vy, the velocity of the electrons resonating with the elec-
tromagnetic field.

Figure 3 shows the described situation, and our ap-
proach to the analysis of the problem: We imagine each cyl--
inder to be composed, outside the interaction region, of a
sequence of dc loops. As each of those current loops enters
and propagates through the interaction region, it will be de-
formed by the forces of the incoming electromagnetic waves
acting on it. Since vector fields define preferred directions in
space, the distortions will be such that the isotropy of the
cylindrical charge distribution will be lost. As a conse-
quence, each cylinder will now be made up of a sequence of
alternating current (ac) loops, and radiation will start to be
emitted. (An accurate analysis shows that, due to the way
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FIG. 2. Undisturbed ¢lectron distribution. Because the duct is in stationary
equilibrium, each loop belongs to a cylinder with constant surface charge
density, o, which propagates along — z with velocity vy
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FIG. 3. Effect of electromagnetic field on electron distribution. As each
cylinder penetrates the interaction region, forces due to the electromagnetic
field change its charge distribution, breaking its rotational symmetry and
creating radiation. A ring obtained by sticing the cylindrical charge at z = 0
will have constant charge density, another one at 2540 will not. The wavy
horizontal lines represent schematically the electron streams into which the
cylindrical charge distribution can also be decomposed. With the conven-
tions used in this paper, z is negative in the picture.

the electrons and the electromagnetic field interact, each
loop is distorted in the z direction as it propagates along the
interaction region. The ac loops that make up the distorted
cylinder are not simply individually distorted dc loops, buta
combination of parts of several of them, each one having
entered the interaction region at a slightly different time. )

If the incoming radiation is monochromatic, with fre-
guency ., and if the reference system rotates with the same
frequency &, the whistler-mode wave will have a static con-
figuration. All current loops will see the same forces and will
have the same distortions as they reach the same pointsin the
interaction region. The distorted charge configuration will
be independent of time, will behave as a rigid body with an
asymmetrical charge distribution rotating with angular vel-
ocity @, and will radiate at the same frequency as the incom-
ing monochromatic radiation. The emitted radiation will in
general have variable phase and variable amplitude {espe-
cially in the initial transient stage when the wave first meets
the electron distribution}. This might give rise to some spec-
tral broadening, but no well-defined sidebands. .

For two or more waves, even after we adjust our refer-
ence system to rotate with one of them, the resultant electro-
magnetic field will be explicitly time dependent. Each loop
as it penetrates the interaction region will see a different elec-
tromagnetic ficld configuration. At each point the charge
densities on the surface of the cylindrical electron distribu-
tion will be time dependent, and as the cylinder rotates, fre-
quencies different from e, will be generated. The problem of

-sideband formation will be reduced to the study of radiation

created by the rotation of this time-dependent cylindrical
charge distribution. For that purpose a cylinder is divided
into loops fixed in space (at a constant z), and the radiation
that comes from each of them is studied. The total radiation
is obtained by integrating all loops over different values of
v, , for the same z, then integrating over different z values,
over cylinders with different radii, and over different loca-
tions of the symmetry axis. The charge configuration in each
loop is obtained from the electron’s equation of motion un-
der the influence of the incoming eleciromagnetic field. The
solution of this equation, a function of (z,%,), can be ob-
tained cither numerically through the use of phase plots or
analytically with the help of perturbation theory.
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IV.EQUATIONS FOR ELLECTRON MOTION UNDER THE
INFLUENCE OF SEVERAL MONOCHHOMATIC WAVES

Figure 4 shows an electron at a point P, moving with
velocity v =y, u“ + v, w,. w is a unit vector pointing in the
direction opposite to B, the Earth’s magnetic field, and u, is
a unit vector pointing along the projection of the electron
velocity on the plane (x,y) perpendicular to B, (E,,B,) rep-
resents the electric and magnetic fields of one of the N waves
in the incoming radiation singled out as a reference for the
electron motion. If we define

E, = i E, : (1)

i=1

N
Br=Bo+Bw:Bo+EB;- (2)

i=1
The equation of motion can be written as

v=fu +ba +uw = — (e/m)(vAB, + E,).(3)

It is possible to show that

= (8 + o +klvi|)u,n (4)
where w, and &, are the angular frequency and wave number
of the reference whistler-mode wave, and & is the angular
velocity of the electron referred to the same wave field. It
should be noted that £ is a convective derivative. Its value
takes into account the change in relative wave-electron posi-
tion due not only to the electron rotation as it moves along its
path, but also to the different orientations of the wave field at
different points in space and different instants of time. From
the last two equations we get, neglecting terms important
only for very small pitch angles,

Vll

= — oy —kwy +

l
= —kIU” ‘”a)l_‘_%: —k,(v" —Ures).. (5)

Ifv, = v, we say that the electron is in resonance with the
wave. This implies #=0. -
From (3), the Lorentz force equation, we get

b =vu =(ev,/m)(u,"B,), . (6)
which can be simplified to

. ev, X . . .
om o i=1 ,, .
AX “
Un L v,ou
1oL
)
k, B,z
B® |y
[C]
Vit

F1G: 4. Diagram of relevant field and electron variables used in this paper.
Notice that the waves propagate in the + z and the electrons in the —z
dlrectlon
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with _

AG, = Akz— At + A, - (8)
where the A operation means taking the difference between a
parameter of wave / and the same parameter of reference
wave 1. Puttinginz= — ) (r— to), where 7, is the time the
electron enters the interaction region, we get after some ma-
nipulation,

Aesz '—Qst +¢i: i {9

with

), = [(y /1) + 1] Aw, (10}
and

¢ = (Q; — Aw; ), 4 A, (11)

where v, is the wave group velocity at the average radiation
tfrequency, and ); is the Doppler-shifted frequency differ-
ence between waves [ and 1.

Finally, from (5), (7), and (9),

=—EQ sin(@— Q,t + ¢, (12)

i=1

where )2 = ev, k,B,/m is the square of the trapping fre-
quency associated with wave /. Reminding ourselves that

dz , d’
dt? Ul g dz*

we can also write

N /() \2 0.
0"=—-3 (—“) sin[e + (—‘)z — Aw;t + Aqﬁs] .
f=1\ Y oy

(14)

The last equation emphasizes that the variation in angular
position of the electron depends on how far it has traveled
inside the interaction region, that the electron oscillations to
be discussed in the following sections do not occur at a fixed
point in space as function of time but are spread in space as
the electron travels along the z axis, and that their periods do
not modulate the electromagnetic waves in any direct way.
The solution to the equation will be

8= 6(0,05.2.1,). (15)

The trajectory described by the electron will depend on B,
its initial orientation, 8 ;, which is related to the initial value
of v, and on Z,, the time the electron arrives at the interac-
tion region. If only one wave is present, all Aw; will be equal
to zero, there will be no dependence on #,, and the trajector-
ies will be the same for all electrons starting with the same
initial angular positions and same v. As stated in Sec. II1,
the charge distribution will behave as a rotating rigid body
radiating at the single wave frequency. If more than one
wave is present, the equation predicts the existence of a set of
trajectories, with initial point and derivative given by 0, and
8, which are slowly (compared with e, the frequency of
the reference wave) being distorted in time. The electron
distribution can be decomposed into a sum of loops rotating
with velocity @, and having time-dependent charge distribu-
tions. This charge distribution can be obtained by studying
the solution & at a fixed point in space, z,, as a function of the

(13)
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initial angular position, initial vy and moment of entrance in
the interaction region.

For actual calenlations, it will be more convenient to use
the time-dependent form of the equation of motion, keeping
in mind that observation of the motion at a fixed position in
space is equivalent to an observation at a time
L, = |20|/vy + t,, a function of the electron travel time and -
instant of arrival at the interaction region. We assumein that
expression that v is approximately constant over the elec—

tron trajectory.

V. PHASE PLOTS

To study the evolution of the electron distribution, we
assume initially that all electrons arrive at time #, at the inter-
action region, having arandom distribution in 6, and &, with
constant probability density in each variable. This distribu-
tion will not give rise to radiation because its gradient as a
function of 9 (initial v ) is zero. However, if we follow the
evolution of each electron trajectory in space and plot its
projection in the (8,0) plane, we will arrive at a clear qualita-
tive understanding of the radiation process.

- Figure 5 shows the resulting phase plots for the case of
two equal amplitude waves separated by a frequency (2. Dif-
ferent values for £, were chosen in each plot so that the waves
in the beginning of the interaction region are rotated rela-
tively to each other by an additional 60° from one plot to
another. They are in phase in the first plot.

To create the plots, for a given initial time £, several
trajectories are started at random values of (& ,90) . The time
evolution of each trajectory is calculated and the electron
position (8,8) is plotted as a point in the plane at times

t=ty+ Qua/Q), n=12, . c. e

This must be done because, as seen by looking at the different
plots, all trajectories possess a continuous upwards motion
which would blur the pictures if all moments in time were
plotted. The choices of ¢ given by the above equation are such
that the waves’ relative angular position is always the same -
and the trajectories are always at the same position. A com-
plete description of the motion would consist of the set of all
phase plots for all values of z,.

The plots show various resonances. Those are sets of
electron trajectories which have been strongly affected by
the presence of the two waves. The trajectories have been
changed from vertical straight lines to sets of concentric dis-
torted ovals, defining regions from which we should expect
most of the radiation to come. There is one resonance ateach
incoming wave frequency, one halfway between them (half
harmonic), two at one third of the distance from one wave to
another, and many more that would be seen if the plots were
more accurate.

Figure 6 shows a phase plot of the same two waves after
their amplitudes are increased by a factor of 12.5 (22-dB
growth). Due to the greater amplitude values, the previously
seen resonances have been destroyed, chaotic electron mo-
tion being present, instead. However, outside the chaotic re-
gion, two resonances are present. They are separated from
the main waves by a frequency () and will radiate at their

first harmonic frequencies.
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FIG. 5. Resonances created by two equal
intensity carriers. The presence of each
carrier resonanceat 8 = 0, {1 is readily ap-
parent, together with additional reson-
ances at & = (1/3, 1/2, and 22/3. As the

carriers rotate relatively to each other, the
additional resonances are seen to rotate
and radiate at frequencies ©/3, @/2, and
2w/3. The distortions they underge dur-
ing rotation, will frequency modulate
their radiations, adding weaker lines to the
spectrum: (a) Relative carrier phase
= 0" (b) Relative carrier phase = 60°.
(c) Relative carrier phase = 120°. (d)
Relative carrier phase = 180°.

Figure 7 shows plots for a more realistic situation. The
region of phase space chosen for observation is located, as
shown in Fig. 7(a), around the half harmonic resonance.
The chosen electron distribution is constani in @ at z = 0 but
has a constant gradient in @ (that s, in vy, ), as shown in Fig.
7(b). Figure 7(c) shows the effect of the waves on the elec-
tron distribution at a point z, well into the interaction region.
The gradient in 90 has been partially transformed into a gra-
dient in 8. The gradient in @ is equivalent to an inhomogen-
eous charge loop at z,,, rotating with the average frequency of
the two waves, and giving rise to radiation at the same fre-
quency. We see that not all bunching comes from inside the
resonance. Figure 7(d) shows the wave effect on a distribu-
tion with zero gradient. In this case there is no bunching,
indicating that an initial density gradient is necessary for
radiation to be generated.

-7

« 0 @ 22 b

FIG. 6. Chaotic motion and first harmonics created by two strong waves.
The carriers are at 0 and £}, and their relative phase is 0°. Their common
trapping frequency is £2/2. The first harmonics are at — {2 and 2. Ducto
the high intensity of the carriers, organized electron motion in a large region
containing the carrier potential wells is vompletely destroyed and replaced
by chaotic motion, where wave growth cannot take place. The first harmon-
ic resonances would be destroyed only if they were wide enough to overlap
the chaotic region. Chaotic motion is believed by the author to be one of the
main cuases of triggered emissions observed in-magnetospheric data. .
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VL. GENERAL SOLUTION OF THE EQUATION OF
MOTION—KAM THEOREM

When writing the equation of mation

N
b=73 Qi sin(6—Qi+4), (17)
=1

we have assumed that the reference wave has been wave 1
and that all Aw, are measured relative to it. It will be conven-
ient in our next considerations, to measure frequencies from.
an arbitrary origin. With that in mind, we will shift our ori-
gin to an infinitesimally weak wave having an arbitrary fre-
quency, @,, which will serve only as a frequency reference,
being ignorable for all other purposes. This will imply
Aw,#0 and that all Aw, will be defined up to an overall
additive constant.

The above equation of motion is equivalent to the Ham-
iltonian
2 N .
Higpt) =t~ 3 Qi costg—Qr+4),  (18)

i=1

as can be seen by Hamilton’s equations:

=2 _,, | (19)

dp
N
p= —%—Hz — > Qf sin(g — Ot -+ 4;)- (20)
q i=1
The system we are studying has N - 1 degrees of free-
dom: the phase of the N waves, and the electron angular
position. This is explicitly shown by the fact that it can be

described by the N 4+ 1 dimensional Hamiltonian,

2 N
P
H(g.p;) = % + 3 Qp,

i=1
N .
— 2 0 cos(gy, 1 — ¢+ &) (21)

i=1

which has the following equations of motion:
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FIG. 7. "Bunching” of electron distribu-
- tions created by half harmonic resonance,
The carriers are at frequencies 0 and (.
The dark lines in {b), (¢), and (d) are the
approxiinate two branches of the separa-
trix of resonance (a): (a) Phase plot of
half harmonic resenance which produces
the “bunching” effect in the following pic-
tures. (b} An initial electron distribution

-7 A

with constant gradient in the & direction.
{c) Effect of resonance (a) on electron
distribution (b) after it has propagated for
some distance along the interaction re-
gion. It can be seen that “bunching,” when
it occurs, is as pronounced outside as in-
side a resonance. The charge rarefactions
at =w/2 and = — 7/2 are slightly differ-
ent from each other due to distortions in
the resonance, as mentioned in Sec. IX.
Because of it, a net amount of radiation
will be created. (d). Effect of resonance
(a) on an electron distribution with zero
gradient. It is null, as shown by this pic-

vy =———=Pns1> ) h (22)

aPN-;- 1

. oH i . :
Prp1 = — 4 = — _Zl O sinlgy, — ¢ + &),
N+1 i=
(23)

=a_H:

Q, 24
= | (24)

i

and

. ol . '
P = —g:ﬂi Sln(qN+1 —q,+¢',) (25)
The p; are dummy variables and can be ignored. The equa-
tions for the g, give

g; = L. | (26)
Substituting those values in Eqs. (22) and (23), eliminating

Pny1-andmaking g, ; = 6, we get the original equation of
motion. If we now define :

2 - N
Hy(p) =‘D"’T“ + 3 | @n

i=1

and

N
H{g,p:) = — Z Q cos(guw iy — g +4:),  (28)

i=1

we can write _
H\(g,,p;) = Hy(p,) +H{(gp), i=L.(N+1), (29)

where H,(q,.p,} is periodic in all ¢;, and Hy{p,;) depends
only on the p,. Under those circumstances, the KAM
theorem for nonlinear systems states that the motion de-
scribed by H,, (free-electron motion) will be appreciably af-
fected by H, only if the following relationship holds for the
variables describing the free motion:

N+1

> mg, =0, ' (30)

i=1
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ture made at the same z position as in (c).

n; being arbitrary integers. Making g5, = 8 = Q, we will
have
N .
Q=% nQ. _ 31)
i=1

Now, the interaction between the electron and the system of'
electromagnetic waves should not be dependent on the cho-
sen origin of coordinates. Therefore, if we make a shift 50 in’
the coordinate system, the new equation obtained should
also be a valid description of the interaction:

N
n(Q+80) = 3 n,(Q, +50). (32)

i=1

Since &) is arbitrary, the two equations can be true only if

N
n—= z ";. (33)

i=1 .
Sincew, =w, + Aw; =m, + (vy + v, )/v,, the formula
that gives the frequencies for strong electron-wave interac-
tion, that is, the resonant frequencies, is

N N
o= nwf3n, (34)

i=1 f=1

where o = w, + Q(y +v,)/v, is both the frequency of a
wave resonant with an electron of @ = (), and the frequency
at which such an electron would radiate. The alfowed reso-
nance frequencies are just the weighted averages, with arbi-
trary integer weights, of the incident wave frequencies. This
simple formula, independent of the detailed form of the
Hamiltonian describing the motion, and mentioned in the
Introduction of this paper, was the one successfully used by
S and Helliwell' to describe the Siple sideband spectra.

VIl. ANALYTICAL SOLUTION—LIE TRANSFORM
PERTURBATION METHOD

To study specific resonances, a more sophisticated
mathematical treatment is required. We choose the Lie
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transform perturbation method, applicable to any Hamilto-
nian system, which has the following advantages: It does not
use mixed variables in its formalism, allowing the perturba-
tion expansion to be extended to arbitrarily high orders. It
does not generate secular terms or small denominators if a
judicious choice of the associated generating function is
made. Its formalism, being based on Poisson brackets series,
is canonical and invariant in form under any canonical
change of coordinates.

The method has been described in several places. Here
we follow the notation used by Cary® (Deprit perturbation
series), and summarize it as follows:

We assume that the known Hamiltonian, 4, is express-
ible as a power series for a small quantity e:

Blg,p,t) = Z eh, (g.p.1), (35)
. r=0
and we look for a new and simpler Hamiltonian, K
K@QPH = 3 €K, (QP) | (36)
n=10_
through a change in coordinates
g=Tigp.t)g, (37)
P=T(gp)P, (38)

where T is an unknown operator expressible in powers of €:

Tlqpn) = 3 €T, (gpb). @9
n==0

_The solution is found with the help of a Iger'lerati_ng function

Wig.pt) = Z e'w,

n=0

and a sequence of operators L, defined by

where the curly brackets represent the Porsson bracket oper-
ation.

The new Hamilton‘ian, expressed in the new variables
(Q,P), can be obtained up to third order from the following

w41 (GPs1) {40)

set of equations:

Ky=hy A ¢:7))
aw,
ot
W,
ot

LA
At

+ {Wphod = 2(K, — hy) — (K, 4 k), (44)
e | {Wg,ho} = 3(K3 — Ry — L (K, + 2h2)

— Ly(Ky+hy/2) — L _%h!/z, (45)

and the inverse transformatlon to return to the ongmal
(g,p) pair is :

_1Q;- . . . , (46)
p=T'P, (47)
Tﬁl(Q,_P,Z) - i E"Tn;l(Qi'P’t)! o o .. (48)

. =0 . .

where
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Ty'=1, ) (49)

T '=L, ' (50)
Ty'=L/2+4 L3172, ' (51}
Ty '=Ly/3+4 L Ly/6+ LyL../3+ L3 /6. (52)

We sce that the set of functions W, defines the change of
coordinates completely. Since the set of equations defining
the new Hamiltonian has 2n unknowns, up toorder r, we are
free to choose the W, as we please, defining the change of
coordinates arbitrarily. After a choice is made, the K, can be
calculated together with the 7', ! that define the inverse
transformation. The choice of the W, should be made jud-
iciously, however, since they have to be bounded for the per-
turbation expansion to be valid. The equatlon for the W, can
be written in the form

aw,

Jr +{W ,h0}=ﬂK"(Q,P,t) _f;;(Q;Pst)

o =g, (Qh1). (53)
Assuming we are solving the equations recursively, £, is
known because it depends on 4, .../, which are given, and on
_1--Wiand K, _ | ..K|, which are found at a lower or-

der. The solution to such an equation is given by Cary®:

Wn =J- dTg,,[Q—'—Q(T-—f),P,T], (54)

with

=% (55)
apP

It seems clear thatif g, has terms which are slowly varying in
time as, for example, a constant or a resonance for a certain
value of P, W, will vary approximately linearly in time, will
be unbounded, and the perturbation expansion will fail. This
gives us the guidelines for choosing K, and implicitly, the
desired change of coordinates: X, must absorb all constant
terms present in f, together with any term representing a
resonance in the neighborhood of the P we are interested in.
This will make W, a bounded function and, at the same time,

will transfer to X, the resonances we intend to study.
" The process of solution of our equations is therefore de-
fined: Starting with K, and proceeding to successively high-

.er orders, we put in the K, all constants present in the func-

tions f, of our equations. At the same time, we inspect each
[, foraresonance of interest. If we do not find it, we calculate
W, and proceed to a higher order. If we do find it, we add it
to K and stop the search. The new Hamiltonian, K, will be
composed of constant terms plus a single, higher-order term
describing a resonant process, and will be valid for all values
of P away from resonances skipped and incorporated in the
lower-order W,’s. Expressions for the (g,2) can be obtained
by calculating the operator T~ ' and applying it to (Q,P).

VIIl. ELECTRON MOTION FOR NONRESONANT
VALUES OF V,

If we use the explicitly time-dependent form of the
Hamiltonian, and put 0, = e4;, we have

h(q,P,t) — ho(q,P,t)‘i‘ E_hl(q;p,t), . (56)
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with

=2, h=— ZA cos(q Q.14 9.). (57)

2 =1
To study nonresonant terms, we ignore all resonances, and
put in the K, only constant terms. To get the simplest non-
trivial transformation of coordinates we have to go up to
second order in the perturbation expansion. Doing this, we
get K, = Ay and K, = 0 (because /4, has no constant terms).
" This implies

Wl = _JdThI[Q+ Q(T_ t)aP!T]

. 4,
—sm( — Q.14 4, (58)
since £} = P for our ho.
We then choose
2K, ={Lh)} = {WLh ), (59)

where the angle bracket operation means that the constant
part of the function enclosed in brackets should be taken. A
straightforward calculation shows that

(Woh}= — % %
X A4
W= 2(P— QE)Z
X{cos[20 — (Q; + )t 4 ¢, + 4]
—cos[(Q; — Q)i — (4, — 4,) ] L. (60)
_Therefore, '
2
Ko = (W) =%; T AQ 2 (61)
and o
P & r 4]
K=5+72 (P—Q,)° (62)
The transformation back to (g,p) is given by
g=Q+e{W, 0+ (&/2){W, (W, 0} + ..., (63)
p=P+e(W,Pt+ (€/2){W,{W,P} +... (64)

Keeplng only ﬁrst-order terms and’ constant second order
“terms,

o aw, & AW o
().
9=Q-e—p 2([ "ap | (©%)
aw, & W
e sm]
R +e—L 30 + W, 30 (66)
and
N
_Q—l-ei;]msm(Q Q.44 (6T)
62 N AZ N A
=pP_ P —_—t
p 220y A Boay
Xcos(@— Q.1+ ¢,). O (68)

Hamilton’s equations of motion for X can be solved:”
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14 )

= —=—=9, 6
30 (69}
IK e Y 47
JP 2 ,Z’l (P—1, )3 (70) :
The solution is
P=P,=1, {(71)
=0t + @, (72)

The meaning of  (and ¢J;) can be obtained by noting that
Q- q and € 0. For a free electron, g represents the angular
position of the electron measured from the reference wave as
the electron propagates along the — z direction. We will
consider electrons with a vy such that its motion is in reso-
nance with an infinitesimally weak wave of frequency Aw
above the reference wave frequency (this imposes no con-
straint on the motion). If the electron is in resonance with
such a wave, their relative angular position will be constant,
and the electron’s angular position with respect to the refer-
ence wave will be the difference in phase between the two
waves, AA. This expression is known from Egs. (9) and
(11), allowing us to write '

Q=g=A0=0(t—1t,) + Awt,— Ap = Awty, + ¢, .
(73)
We see that () is the Doppler-shifted frequency difference of

the two waves seen by the electron as it moves along. ( — ,)
is the constant time it takes each electron to go from the

_beginning of the interaction region to the point of observa-

tion, z,. Substituting those values in the expressions for g and -
b,

A4,
q Awt0+q4)+6!2] (Q Q )2
xsin[ (A — Aw,) o+ 4,1, as
N
=ﬂ et A A f, Z
P=0te X Tas ﬂ)c-os[( @ = Awlot 4, ]

(75)

where ¢, = (Q — Q,)(t — ) — (Ad — Ag, ) and g, are
arbitrary but constant phases at the point of observation Zg-
The equations state that a stream of electrons starting with a
constant phase relative to the infinitesimally weak wave of
frequency Aw will in the limit €0, have an intersection
with the plane z, = — vy (£ — £,) which turns, as {, varies,
with angular velocity @ = @, + Ae. If those streams are ini-
tially equally distributed in phase, the resulting intersection
will form a dc current loop and will not radiate as expected.
If € > 0, the equations predict conditionally periodic changes
away from constant frequency rotation. Those distortions
are the first-order approximation to the bunching created by
the incoming waves outside their potential wells, Each term
in the summation represents the effect on the electron of one
wave, and will produce radiation at the perturbing wave fre-
quency. Because we have kept only the first-order terms, the
effects add up linearly, and the bunching from one wave does
not affect the bunching created by the others.

An important effect, here due to the adiabatic invar-
iance of P, must also be noted: If we average away the oscilla-
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i
H
H
i

clectron density

tory terms, and assume that a certain particle has

- p= P =8, for e =0, and that the wave fields are adiabati-

cally turned on, then P will remain constant, and p will vary
as

e N 4

7 2, (Qo—Q,)°
The particle will be shifted due to the presence of the waves,
the forces being such that each wave tends to pull the particle
towards it. The combination of such an effect with the natur-
al fall-off of the electron distribution density with increasing
v, (thatis, increasing @) can explain why sideband growth is
more pronounced on the upper frequency side of a carrier.
Figure 8 shows the effect of a single wave on the electron
distribution. The electron shift flattens it on the low-frequen-
cy side, and steepens it on the high-frequency side. Since
wave growth increases with the electron density gradient,
growth will be expected to be more noticeable on the high-
frequency side of the carrier as is seen in most Siple data.

p=1{y (76)

[X. HALF HARMONIC RESONANCE

If we look for resonances using the perturbation expan-
sion up to second order, first we will get

K,=h, )
We will have then to put ' _
. K, =0 (78)

because #1, has resonances only for Q= 0,. Those are reson-
ances at the incoming waves’ frequencies which we do not
intend to study now. They will be focused in the second part
of this paper with the help of different canonical variables.

With those choices, ¥, will be the same as for the nonre-
sonant case. The possible second-order resonances will come
from the term L &,. This term was already calculated [Eq.
(60) ] and is made up of two sums. The second sum contains,
among other things, a constant term which we must inciude
in K. The first has several resonances all of the same form.
We will study one such resonance for a pair of waves
(i,f),i#]. (For { = j the resonance again falls on one of the
incoming carriers.) By choosing '

carrier

frequency

FIG. 8. Distortion of electron distribution by electromagnetic wave. The
dotted line shows the effect of the carrier on an otherwise constant electron
distribution. The dashed line represents a typical unperturbed distribution.
The continuous kne shows the resulting flattening at lower frequencies and
steepening at the higher frequencies present on the final electron distribu-
tion as a consequence of the wave forces.
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NooAZ- A.A; 4.4,
=ty A (A
24 (P—Q,)" \2(P—Q)" 2(P-Q;)?

=1

Xeos[20 — (O, + Q)+, + ¢; 1, R
and defining Q,,, = (£, + Q;)/2, we get

2 N A? A A, -
K=_€_+§ z ! — L

2 4 & (P0,)? 4

1 1
XCP—&V+XP—mF)

Xeos(2Q —2Q pt + ¢ + ;). ‘ . (80)
Hamilton’s equations applied to K will give
. 9K € & 4]
=—=P—-= ———+ F(P— ), (81
o 9P 3 2 (P—Q,-)3+ ( 2),  (81)
__OK_ 44 1 1 )
aQ 2 \(P—Q)* (P—Q)
Xsin(ZQ—201f2t+¢, +¢J)- (82)
Since we are considering only points close to the resonance,
P=Q=0,p, (83
and the equation of motion will be
i 8e°4. 4, '
AQ= — ———L_—sin(AQ), C(84
Q T, -9 { Q) (84)
with
AQ=2Q_291;'2t+¢:' +¢j' _ (85)

This is the familiar pendulum equation, describing a reso-
nance region of width (in the variable Q) ‘

r,,=2edid, . (86)
1"2 —-— - .
12, — Q]

The equilibrium points are given by AQ = 2aw, or

Q=Q, 5t — (¢, + ¢)/2 +nm, n=0,1 (87)
Substituting ¢; and &, for their values, and defining

Aw,pn = (Aw, + Aw;) /2, - (88)

¢y =Qup(t —5)(Ag, + Ad;)/2, - : (89)
we have .

Q=Awply+ ¢y +nm, n=01 - - (90)

¢ is a constant phase, dependent, however, on the point of
observation z,. The equation describes two resonances oppo-
sitely located in phase, which rotate in the @ direction with
velocity A@,,,. Because the two branches are oppositely
phased in the (Q,P) plane, we see that to obtain net radiation
we will have to depend on the existence of different electron
populations in each resonance branch. Expressed in terms of
the original variables, -

N A,

AQ
=A@ty t+—=+¢;+ € _—
q 11280 2 ¢y kgl (01,'2'—‘9%)2
: A¢
XS!I'I((A_@”z __Aa)k)to+‘7Q+¢rjk)’ (91)
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' ' AQ =4 Ay
=Qp+—+€ > ——
P 1/2 2 k;} (@0 — 0,

. . AQ

Xcos((AwUz—Awk)t0+ +¢5,,k) (92)
where ¢, does not depend on time. The AQ /2 term in ¢
shows that the relative position of any two electrons can be
changed by as much as 7, making bunching effects apprecia-
ble.

The radiation from each charge can be obtained if we go
to configuration space. Each charge is obtained by the inter-
section of the electron stream with the plane z = z,. In that
plane, each charge will be rotating with an angular velocity,
@, given by

dg
-9 93
o T (93)

(Note that p is irrelevant for this caleulation, since it de-
scribes each individual electron motion as it moves in the
— z direction, and we are interested in the stream at a fixed
point.) The radiation will be circularly polarized. To obtain
the frequency spectrum, we will project the motion in the
(x,z) plane. If we define '

@12 =@, + Aw = (@, + @; )/2 (94)
Aoy = Aw,;; — Aay, ' - (95)
4 .
by =—"—, (96)
(91/2 — 0,
and
N
6= 3 bysin(Awyly+ 7, (97)
=1
we can write
8=w 0+ (AQ/2) -I— ¢,J, + 691 (98)

To first order the electron’s acceleratlon along x w111 be

X = —rcal,z cos 8.

- — ra)vz Cos[a)uzt{) + (AQ/Z) +¢y]

 + e0ra?,, sin(wj aty) (9%
or -
i= —rwl, theos[w,ptg+ (AQ/2) + ;]
. "y
Nikd 7 z bk{sm[(m +Aa) —Acok)to—i-‘qk] :
+sm[a)kt0 'qk]} (100)

The equation shows that radiation will be mainly produced
at the frequency o, as should be expected by the location
of the resonance in frequency space, but that there are
smaller contributions at the frequencies @, and o;
+ Aw; — Aw,, k= 1..N. Those are radiation on top of
wave k and at the mirror image position of & in the interval
defined by i and j. We will see that radiation at those frequen-
cies is generated by other resonances in a more efficient way,
and will therefore neglect those small corrections. With this
approximation, we can consider all radiation coming from
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the half harmonic resonance as bemg located at the frequen-
CY &1 p2- ‘

- iboth resonance branches are equally populated in the
(Q,P) plane, for each particle with position AQ it is always
possible to find an equivalent particle with position AQ - 7.
Those particles have opposite accelerations and cancel each
other’s radiation in the z direction. However, at the begin-
ning of the interaction region the two branches will be locat-
ed at slightly different positions in the (g,p) plane due to the
distortion effects created by the incoming waves. If the elec-
tron distribution has a gradient in p different from zero, the
population of the two branches will not be the same and a net
amount of radiation will be produced [see Fig. 7(c)]. We
note also that all points in the resonance radiate at the same
frequency @, ;,, despite the resonance finite width, and that
the two-branch rescnance structure is inconsistent with the
presence of radiation. As soon as radiation starts, it will form
an additional resonance, rotated by — /2 from the radiat-
ing resonance, changing the initial electron motion and reso-
nance configuration.

X. THIRD-ORDER RESONANCES
A. General expressions

To look for third-order resonances, we choose Ky, K,
W,. and K, the same as in the nonresonant case. This implies

N AA;

W,= Z 2

S 2(P—0)) [2P— (; + Q)]

><sm[2Q- (&, +Q, )t+¢ +¢ ]

44 A4, o

'1212(1’ 0%, - ﬂ)
; i#i . S
! - Xsin[ (€, ﬁﬂ-)t—(-¢'—¢1)]= ,(101)
Among the third-order terms, L. K5 can be ignored for it
contams resonances on]y at the mcommg carriers’ frequen—
mes Thlrd-order resonances must cone, then, from " the
terts L,h, and LIk, After a stralghtforward but rather
lengthy calculation they afe foundtobe -

N by
bh= 2%
Lpk=1
XCOS[3Q—(Q;+Qj+ﬂk)f+¢f+¢j+¢k]
L % %~ be
k=1 2
Xeos[Q@— (Q; + Q; — Q) + ¢ + ¢ — di ],
(102}
L= % 2%
ijk =1 2
Xeos[3Q — (0, + @, + Q)1+ & + ¢ + ¢ ]
n Ciite — Cup _Cikj_l_dijk
TN : 2
Xoos[Q — (2, + @ — Q)+ ¢ + 4 — b ],
L (103)
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with
A4 A,
) (104
S0, 0 | (1o
by — _ _AA[3P— (20, + 0] 0%
__’ (P=Q)’[2P— (0, 4+ 0] :
o 4,4,
= : 106
T TP o P— 0 (109
' AA A,
d, 107
TP P— 07 ()

K w111 have to be chosen from the terms in,

Lh +~L*h ¥ - :
LhtEih S cos[30— (9, + 8+ 0,

6 k=1
+ 6+ + ]
+ Z ngcos[Q—'(ﬂ,.#-ﬂjmﬂk)t
k=1 . " . ..
+o e =g (108)

Fori= =j= k all terms in the above expressmn are ‘resonant
at the incoming carriers’ positions and are not of interest. We
must pick terms with at least one index different from the
other remaining two. They will provide the th1rd—order re-
sonances we are looking for.

B. Two-wave resonances
1. One-third subharmonic

For i = j#k, the term symmetrical under permutation
of the three indices gives

Ky = (o + e + )
Xcos[3Q — (2Q, + Q)1 424, + ¢, ] (109)
Defining Q,,; = (20; -+ £, )/3, and calculating the e’s:

243424, .
——— % cos(3Q — 30, .t + 28, .
2T T Teg@, — gy tPe Tt M0
(110
The Hamiltonian will be
K— 52 fJ A2 24342%4,
2 = (P— .0,) 16(Q), — Q,)*
Xcos(3Q—3ﬂ2,3r—;—2¢,.-f-¢k_), (111)
which will give the equation of motion:
" 243424
AQ= —9—— "% in(AQ), 112
o 1606, — 0.)° (AQ) (112)
with
AQ=3Q — 30,5t + 24, + ¢, (113)

The motion will have three poinis of equilibrium for
AQ =2nmw, indicating a three-lobed resonance in Q:

20, + ¢y 2nm
: + —
3 3.

Q = ﬂz/st “‘

In terms of 7,

» =012 - (114)
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' ) 280, + A 2
Q= Avysty + Qapa(t — fg) — = ¢ . il + ’;7"

n=012, ’ g (115)

with Aw, ;3 = (2Aw; + Aw, )/3. Observed at a fixed pomt in
space, the resonance will rotate and radlate at

@y =@, + Awyy; = 20, + @, )/3, (116)

and will create a line in the frequency axis 2 of the way from’
wave [ towards j. Since the labeling of the waves is arbitrary,
there will be another resonance, identical to this one but with
wave indices permutated. It will be a resonance creating a
sideband wave at a frequence | of the way from 7 to /. The full
width of the first resonance in the (Q,P) plane will be

6—3."2A_ A - L
Ty =9V3— IV (117)
(Q, —Q
and of the second one
e_sz \/—
=9y VT : 118
l,’3 (Q ﬂ ) ( )

The d1ﬁ'erent dependence of each Tesonance on the variables
A, and 4, is clearly very important when one of the carriers
in the interacting pair is much weaker than the other.

2. First harmonic resonance

Again assuming { = js£ k in Eq. (108), we find from the
term asymmetrical in i,k the following resonance:

K, =B cos[Q — (20, — Q. )t + 24, —¢;]. (119)
If we define 2,, = (2Q, — 2,), and calculate 3,

414, (Q— Qunt + 24— $)
_——cos(Q — - .
3 16(02, — 0, )° 1A i &
(1200
The full Hamiltonian will be:
K% P? i N A7 - A?Ak
2 4~ (P_Q,)? 16(Q; — 0, )°
Xcos(@— Q¢4+ 24, — &,.). (121)

In a way similar to the one-third subharmonic, we get the
equation of motion:

. A2, . '
AQ=-—— "% , 1
Q To@ — ) sin{AQ) (122)
with
AQ=Q— Q1+ 24, — ,. (123)

There is only one equilibrium point, AQ = 0, and only one
lobe in this resonance (making it a more efficient radiation
source). For the equilibrium point, as a function of 7, we
have

Q= Aw 00+ 0y, (1 — 1) — (2A4, —Adr),  (124)

where Aw,;, = (2A@, — Aw, ). The resonance has width

P,
T 5
= E o (125)

and rotates with frequency -
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(126)

The radiation will be a first harmonic of the two-wave fre-
quency separation, located next to wave £. Again, because
the labeling is arbitrary, there will be another first harmonic
resonance next to wave k, rotating with frequency e,

+ (@, — @;) and having width €24/, /(Q, — Q)™

Wy, =0, + Awy, =0; + (@, — @y ).

C. Three-wave effects
1. Arithmetic mean

 Assuming (54, j# kK #£i we get from the symmetncal
term a single type of interaction:

K;= (aijk +
Xcos[3Q —

Qe + Ay + gy + a;;j,- + )
(Q + 0+ Q)+ ¢+ 4 + i)
(127)
which can be calculated to give:
=2 A, (A2 + A A, + A%)
2 (2A,.j+A,.,c)2(2A. + 4,028, — Ay)?
Xcos[3Q — (£, + €, +Q -+ + gy +¢k](128)

where A; =0, —Q; and Ay = Q; — Q. This resonance
has a three—lobe structure similar to the one-third subhar-
monic, and radiates at the frequency

c e = (w; + o, +0,)/3 (129)

that is, at the average frequency of the three waves. The
resonance width will be

» = 2v2e'?

( 34, 4,4, (AL + A A, + AL) )1/2
(28, + Ay)? (2Ak+Aq) (A; —Au)? '

al’lt

(130)

The denominator is divergent, effectively increasing the res-
onance width up to second order when one of the two waves
is approximately halfway between the other two. The pertur-
bation expansion will break down (due to the formation of
chaotic motion) when the resonances associated with any
two waves begin to overlap. This imposes a minimum dis-
placement of the sideband location away from wave j:
P=Q; +2/ed;. This implies A; — A, 26\/%7}-,

|A;| = |Aj|/2. The resonance width will be under those con-
ditions approximately equal to

Farith :::26\}214,-14,( /\Aiklx (131)
which is of the order of the half harmonic resonance width.

2. Intermodulation effecits

For i£]j# kk #£i, we get from the asymmetrical term
in Eg. (108):

K, = (ng +ﬁgk)COS[Q~
+ ¢+ — e

(@ +Q — Q)
(132)

which gives, when the coefficients are calculated, -
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1 AAA
2 288 (A + Ay
Xeos[ @ — (Q; + Q; — Q)¢
+ b+ 8 — ] (133)

The above term creates three different resonances, depend-
ing on the wave that is singled out as wave k. All resonances
have a single lobe, and therefore, are efficient radiators. Fig-
ure 9 shows the three possible radiation frequencies. The
effect is equivalent to the intermodulation of one wave by the
frequency difference of the other two, either sign being possi-
ble. The frequencies of radiation will be

3

o=w, + (Aw;, — Ao, ) = o; + (0; — @), (134)
and the resonance widths will be
ZE’Z\IZAjAjAk (135)

Fini =

VI [ B | 1A + Ay
When wave k is approximately halfway between the other
two interacting waves, the resonance width increases with-
out bounds. If wave k is specially weak, the observed phe-
nomenon will be similar to an amplification of the said wave
with a slight shift in its frequency. The limiting position of
the resonance is given by P=Q, — 2,/e4,. This implies
Ay + A= —2Jed,, and Ay = Ay =A, /2.

The resonance width will be approximately

D =26y 24,4, /|8y,

(136)

3
> int,
2
g f
z 1 ()
- inty

f

f

mty

frequency
5
w
g

inty
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FIG. 9. Frequency distribution of sidebands created by third-order inter-
modulation process: (a) £, /5, and f; are incoming carriers and int,, int,,
and int, are the three different sideband waves produced by the intermodu-
lation process. For the spacings shown in the picture, int, is always greater
in amplitude then int, and int;. {b) Intermodulation is a nonlocal effect. If
£, has variable frequency, the sideband waves created by the interaction are
able to follow its shift in frequency, despite the fact that £, and f; remain
fixed. int, is represented by a dotted ling because it weakens as f; moves up.
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which is of the order of the half harmonic resonance width.
Under those conditions, and due partly to its single-lobe
structure, this resonance will be the most efficient radiator
among all we have seen in this paper.

XI. HIGHER-ORDER EFFECTS

It can be seen from the lower-order terms and from the
way they are generated that the general expression for the
resonance frequencies of order » will be given by Eq. (34)
with =, |»;| = n as a constraining condition. This shows
that an nth-order effect can involve at most »r different
waves.

The expression for the frequency of the second harmon-

ic resonance of a pair of waves (i) is O

=0, +2(Q; —Q;). The order of this term will be
#n=3| 4+ | — 2| = 5. The second harmonic is, therefore a
fifth-order effect, and very likely will not produce directly
observable radiation. Its creation through the present mech-
anism can be possible only through a two-step process in
which the first harmonic is created, grows, and then. inter-
acts with one of the carriers to produce another first har-
monic which is the second harmonic we are looking for.

XIl. CONCLUSION

As main features of the sidebands just studied, we can

quote the following:

(1) Sidebands are created by a line-line interaction pro-
cess. No single-line sidebands appear in the formalism.

(2) Sidebands can be created only at certain specific
frequencies given by

N N
o=y nof >y n. {34)
i=1 =1

(3) Sidebands can be created only if the electron distri-
bution has a nonzero gradient in .

(4) Each sideband wave is associated with a resonance
of the electron motion which, in an adequate system of co-
ordinates, is always described by the pendulum equation.

(5) Radiated sideband frequencies do not depend on v,
only the amplitudes do. Integration over different pitch an-
gles will not smear out the resonances increasing the radi-
ation linewidth.

{6) The frequency of individual electron oscillations
{“trapping” oscillations) does not directly affect the ob-
served sideband frequencies in any way. Those oscillations
are convective, occurring as the electrons, as part of a

3494 J. Appl. Phys., Vol. 66, No. 8, 15 October 1989

stream, move along the interaction region. Although each
electron oscillates, the stream as a whole constitutes a dc
current line and will not radiate unless distorted or acceler-
ated by some additional cause. The overall emitted radiation
will be a combined result from the acceleration of all such
current lines, and its spectrum will reflect the frequency
structure of the externally accelerating forces. '

(7) Growth will affect line amplitudes appreciably. The
resonance widths calculated in this paper will give only an
order of magnitude estimate of the observed relative radi-
ation intensities.

(8) Due to its recurrent law of formation, the sideband
system has a fractal structure, exhibiting many properties
associated with randomness. Only for cases where the recur-
rence process of new wave formation stops due to limited
wave growth do we obtain spectra with a clearly recogniz-
able order in the frequency distributions.

(9) Chaos, present when the potential wells of different
waves start to overlap, as seen in Fig. 6, is an important
factor in the formation of the final radiation spectra. This
author believes that, combined with inhomogeneity effects,
chaos is the cause for the triggered emissions frequently as-
sociated with Siple and other narrow bandwidth signals as
they propagate through the magnetosphere.

In this first part of the paper we have focused on reson-
ances created outside the potential wells of a set of single-
frequency carriers interacting with the magnetospheric plas-
ma. Those resonances are narrower than the ones directly
associated with each carrier, and are therefore more suscept-
ible to disruption by forces coming from the inhomogeneity
of the Earth’s magnetic field. In the second part of this paper,
we will see that radiation, at the same frequencies as the ones
we have studied in this first part, can also be created by
resonances inside each carrier potential well. Those reson-
ances are more protected from inhomogeneity effects and
should produce radiation over a longer interaction length
than the ones considered here.
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