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Nonlinear Pitch Angle Scattering and Trapping of Energetic
Particles During Landau Resonance Interactions
With Whistler Mode Waves
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Space, Telecommuracations, and Radioscience Laboratory, Stanford Unwersity, California

The time averaged equations of motion derived by Inan and Tkalcevic (1982) are used in a test
particle study of Landau resonant interactions of whistler mode waves and energetic particles in
the magnetopshere. By computing individual particle trajectories it is shown that the pitch angle
scattering and energy exchange is significantly different for the two classes of particles, trapped
and untrapped. The trapped particles are characterized by a bounded phase variation, whereas
the nontrapped particles exhibit unbounded phase variation. The threshold wave electric field
intensities necessary for trapping are determined. Full distribution test particle simulation is
carried out to determine the precipitated electron flux that would be induced as a result of these
interactions. It is shown that for typical parameters the resulting precipitation fluxes for Landau
resonance interactions are much smaller than those induced in gyroresonance interactions, even
for wave field intensities that are much higher than the trapping threshold.

1. INTRODUCTION

It is known that very low frequency waves can propagate
in the magnetosphere in the whistler mode with phase veloc-
ities much smaller than the velocity of light. Such waves can
undergo interactions with energetic particles both through
longitudinal (Landau) resonance and cyclotron (gyro) res-
onance. In longitudinal resonance the particle parallel ve-
locity is matched to the wave phase velocity, whereas in
the cyclotron resonance the doppler-shifted frequency of the
wave (shifted due to the particle parallel velocity) matches
the gyrofrequency of the energetic particle. Both types of
interactions may induce perturbations of the energetic parti-
cle distribution through pitch angle scattering and may also
result in different types of radio wave emissions, wave am-
plification (growth), and wave attenuation. The purpose of
this paper is to investigate the nonlinear longitudinal reso-
nance interactions of energetic particles with whistler mode
signals propagating at an oblique angle to the static mag-
netic field.

Longitudinal (or Landau) resonance interactions between
waves and energetic particles have been invoked to explain
auroral VLF hiss [Jorgensen, 1968; Swift and Kan, 1975;
Maggs, 1976]. Landau resonance with energetic electrons
may also play an indirect role in the generation of other
waves. For example, Thorne et al. [1973] have attributed the
observed sharp lower-frequency cutoff of plasmaspheric hiss
to Landau damping of oblique whistler waves by electrons.

Landau resonance interaction was invoked in the context
of a proposed mechanism for whistler precursors [Park and
Helliwell, 1977); it was suggested that the triggering of the
precursor via gyroresonance was facilitated by a temporary
enhancement of equatorial density of energetic partirles re-
sulting from their having been previously trapped by the
whistler through Landau resonance. More recently, bursts
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of electrostatic noise that occur in association with whistler
mode chorus emissions have also been attributed to gener-
ation by beams of electrons trapped in Landau resonance
with the chorus [Rewmnlestner et al., 1982, 1983]. Observa-
tions of similar types of chorus-related electrostatic bursts
in the Jovian and Saturnian magnetospheres have demon-
strated that coupling between longitudinal and cyclotron
resonance interactions may be of importance in planetary
magnetospheres [Reinleitner et al., 1984].

While some generalized computer simulation studies of
the longitudinal resonance interaction have been made [Cu-
perman and Sternlieb, 1974], the detailed nonlinear motion
of Landau resonant particles has been reported only for elec-
trostatic waves [Nunn, 1971 1973]. For interactions involv-
ing obliquely propagating whistler mode waves a new set of
nonlinear equations of motion was recently derived by time
averaging the wave forces over one cyclotron period and were
shown to describe accurately the particle motion for most
magnetospheric parameters of interest [Inan and Tkalcevic,
1982]. These equations are particularly suited for test parti-
cle simulation and are utilized in the analysis reported here.

The approach we adopt is to use the computed nonlinear
trajectories of distributions of test particles for studying the
dependence of the resonance process on various parameters
and phenomena such as wave growth and damping, particle
trapping and wave-induced pitch angle scattering. In the
following, we first briefly describe the nonlinear equations
of motion used in coniputing particle trajéctories. We then
describe the model used and investigate the scattering and
trapping of selected test particles. This is followed by a full
distribution analysis presented in section 5.

2. EQUATIONS OF MOTION

The equations of motion are derived by considering the
general Lorentz force equation governing the interaction of
an electron with an elliptically polarized wave propagating
in the magnetosphere,

mdv/dt = q[Ey 4+ v X (Byw + Bo)] (1)
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Fig. 1. Dipole geometry and symbols used for particle identifica-
tion. Note that the z-axis is aligned with the magnetic field line
and that both the wave and the particles travel in the +z direc-
tion. Particle orbits are described in terms of equatorial values
of Y| and a.

which when averaged over one gyroperiod gives the nonlin-
ear set of equations first derived by Inan and Tkalcevic [1982]
as
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where Jg and J; are the Bessel functions of the first kind and
zero and first order respectively, wy is the electron gyrofre-
quency, k is the wave number, w is the wave frequency, q and
m are the electronic charge and mass, respectively, 6 is the
wave normal angle, Ez(E) ) is the wave electric field compo-
nent parallel to Bo, p; is the wave longitudinal polarization
(p2 = 1iEy/E;), and other quantities and the coordinate
system are as shown in Figure 1.
The quantity 7 is defined [Inan and Tkalcevic, 1982] as

nzitanﬁtana (4)
WH

where a = tan™! vy /v” is the particle pitch angle.

In (2) and (3) the Ji1(n) terms represent the effects of the
wave magnetic field components (gv x By,) and the Jo(n)
term represents the fact that the E. field seen by the par-
ticle in the course of a gyroperiod is not uniform since E,
has transverse phase variation in addition to phase variation
along z. The averaging of (1) over one gyroperiod is only
valid if

w—-—k-v<uwy (5)
which is clearly the case for particles near Landau resonance
with the wave, where the left-hand side of (5) is approxi-
mately zero.

The magnitude of the various terms in (2) and (3) were
examined as a function of wave normal angle, particle pitch
angle, and wave frequency, and it was concluded that the
J1(n) terms can be neglected under conditions of low pitch
angles, high wave normal angles, and/or high normalized
wave frequencies (w/wg). In such cases the wave-particle
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interaction is similar to that involving an electrostatic wave
having only a E, component [Inan and Tkalcevie, 1982].

In the following analysis we use the complete equations
(2) and (3) for computing trajectories of test particles near
Landau resonance with obliquely propagating whistler mode
waves. It should be noted that these equations are non-
linear, i.e., they account for wave-induced changes of the
particle velocity components Y| and v, . Thus nonlinear
phenomena such as trapping of particles in the wave’s po-
tential well, can be conveniently described by these equa-
tions. Even though the equations are obtained by averaging
over one gyroperiod, they are indeed quite accurate for the
description of particle motion since (5) is satisfied at all
times for near-Landau resonant particles. Because of the
averaging, the resultant equations are particularly suitable
for computer simulation, since they allow the use of integra-
tion time steps much coarser than a gyroperiod, a significant
saving in computation time. In this respect the test parti-
cle study presented here is different from that carried out
by Reinlestner et al. [1983]. These authors studied particle
trapping in a homogeneous medium using periodic boundary
conditions and selected test particles. Also since they did
not employ the time averaged equations (2) and (3), they
had to use time steps that are as small as one twentieth of
the electron cyclotron period. Our formulation, because of
the large saving in computer time with little loss in accu-
racy [Inan and Tkalcevic, 1982], lends itself to the treatment
of the full interaction in an inhomogeneous medium using a
full distribution of particles.

3. DESCRIPTION OF MODEL

In using (2) and (3) for the determination of the test par-
ticle trajectories we consider the case of an elliptically po-
larized whistler mode signal of constant amplitude E|(Ez)
propagating at a constant angle § with respect to the static
magnetic field (i.e., k | Bo). In other words, both the wave
intensity E’” and wave normal angle 6 seen by the particles
as they move along the field line are assumed constant. It
should be noted here that this is a simplifying assumption
since for typical non-field-aligned whistler mode propagation
in the magnetosphere, both of these quantities, as seen by
a particle confined to a given field line, would be expected
to vary. To treat the general case, ray-tracing analysis in a
model magnetosphere must be carried out in order to deter-
mine the variation of ¢ as well as signal intensity as would be
obtained from the focusing/defocusing of the rays and the
local refractive index. While such an analysis is straight-
forward in principle, the results (i.e., the ray path distribu-
tion) are dependent on the background magnetospheric cold
plasma density variation, which itself is variable. Thus it is
difficult to select a typical set of conditions. A ray path dis-
tribution with approximately constant nonzero wave normal
angle 6 along the magnetic field may result under some con-
ditions. An example is propagation with 0 = 8, where 8, is
the Gendrin angle [Gendrin, 1961]. In this case, waves can
be guided in field-aligned density depressions [Inan and Bell,
1977]. We submit therefore that our assumption is justified,
especially in view of our purpose in this paper, namely, to
describe quantitatively the physics of the nonlinear resonant
interaction, to determine the conditions for trapping, and to
estimate the precipitated flux.

Note that except for the assumptions cited above, our
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Fig. 2. Mean scattering as a function of parallel velocity. Electrons interacting with a CW signal exhibit a small
final scattering (solid curve), whereas the cumulative scattering evaluated at the equator is significantly larger

(dashed curve).

treatment accounts for the inhomogeneity of the medium
in that the quantities p;, wy, and & in (2) and (3) are
treated as functions of z. The cold plasma density along
the magnetic field lines is assumed to be governed by dif-
fusive equilibrium [Angerami and Thomas, 1964], while for
the variation of the earth’s magnetic field we use a centered
dipole model.

The particle populations are represented by “sheets” of
particles initially uniformly distributed in phase (relative
with respect to the wave) but all having the same equato-
rial parallel velocity (v ) and pitch angle (ceq). In the
following we study the pitch angle scattering and nonlinear
trapping of such individual sheets of particles in sections 3
and 4. We then consider many such sheets, distributed ap-
propriately in v, and aegq, to represent a full distribution
of particles in section 5.

4. SCATTERING OF A SINGLE SHEET OF PARTICLES

For any given initial v oo and ceq, we consider in our
simulation 12 test particles initially distributed uniformly
in phase with respect to the wave. For each of these par-
ticles the equations of motion (equations (2) and (3)) are
integrated over the portion of the field line where the local
particle parallel velocity v)) is within 5% of the field-aligned
component of the local wave phase velocity vp||. In other
words, the particles are initially introduced into the wave
at a point in the southern hemisphere (see Figure 1) where
Y| 2> 1.05vp, and the integration is carried out until a point
isreached in the northern hemisphere where v)| 2 vp£0.05vp
or where the wave pulse terminates, whichever comes first.
At the termination of the integration (i.c., interaction) each
particle has local v and «a that correspond to an equa-
torial pitch angle of aeq + Aweq and parallel velocity of
ClP Av”e . The quantities Aaeq and Av”e then repre-
sent the pitc% angle and parallel velocity “scattering” suf-
fered by that particle as a result of its interaction with the
wave.

The mean scattering, (Acaeq) ({) denote averaging over
the initial phases), of a single sheet of electrons as a function

of sheet equatorial parallel velocity is illustrated in Figure
2. The wave intensity B, = 10 pT corresponds to E” =
15 pV/m. The solid curve shows the mean final scattering
of sheets at the end point of the integration of equations of
motion, while the dashed curve represents the mean scatter-
ing of sheets at the time they cross the equator. The result
shows that the final scattering is, on average, one order of
magnitude smaller than the equatorial scattering. The equa-
torial scattering is negative, i.e., the mean equatorial pitch
angle of the 12 test electrons forming a sheet is lowered. To
explain the results shown in Figure 2, it is useful to study
trajectories of individual electrons.

An expanded view of the electron’s parallel velocity and
phase behavior during a 400-ms window centered around the
first resonance point at ¢ = 0 is shown in Figure 3. It can be
seen that the phase increases rapidly before the first reso-
nance and the increase slows down as electrons approach the
first resonance point, at which the first derivative of phase is
zero. After the first resonance, untrapped and trapped elec-
trons execute different phase behavior. Untrapped electrons
(Figures 3a-3c¢) are associated with a constantly decreasing
phase as a result of v| > vp,,, while trapped electrons (Fig-
ure 3d) exhibit an osciilatory phase behavior as they oscillate
in the wave potential well. Here we consider an electron to
be trapped if its phase executes at least one complete oscil-
lation. Figure 3 also illustrates the role of the initial phase
angle between an electron and the wave. By comparing the
phase behavior of the electrons shown in Figures 3¢ and 3d,
we see that the difference in their phases at the resonance
point (¢ = 0) is less than 5°, but the electron in Figure 3¢
is not trapped, whereas that in Figure 3d is trapped.

These four sample trajectories are representative of typ-
ical perturbations of electron motion induced by the wave
forces. When the energies of all 12 test electrons are added
together, the results show that there is an energy increase
(average about 2% of the initial total energy) between —4°
and 4° latitude, consistent with the result shown in Figure
2. The increase in energy is caused by the acceleration of
untrapped electrons such as those shown in Figures 3a, 3b,
and 3¢, while the energy envelope oscillations are caused by
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Fig. 3. Single electron trajectories for B| = 10 pT. The electron parallel velocity Y| and phase ¢ as a function
of time. Time ¢ = 0 indicates occurrence of the first resonance.

trapped electrons such as that of Figure 3d. In the partic-
ular example there were seven untrapped electrons and five
trapped electrons. Beyond A = 4° the total energy of the
sheet returns almost to the initial level. Here we recall that
an increase of the electron energy yields a decrease in pitch
angle.

The above results suggest that the longitudinal resonance
interaction with a monochromatic continuous wave (CW)
signal is confined to a relatively small region around the
equator. The controlling factor in the interaction that de-
termines the amount of energy exchanged is the variation of
phase ¢ which determines whether electrons become trapped
in the wave’s potential well.

Next we consider the scattering of a single electron sheet
interacting with a monochromatic CW wave which is am-
plified near the equator by some other mechanism such as

gyroresonance interaction with counterstreaming electrons.
Such amplification of CW waves may take place close to
the equator [Helliwell, 1967).The length of the growth re-
gion is taken to be ~1000 km. The wave amplitude, before
it reaches the equatorial growth region, is taken to be 0.1
pT.

Figures 4 and 5 illustrate the scattering of a single sheet
as a function of the initial parallel velocity v eq,. In all
computations the wave amplitude is B, = 10 pT, or E=
15 uV/m, while the equatorial pitch angle is taken to be 10°,
30°, 50°, and 70°. The total sheet scattering is computed
twice for each parallel velocity increment; it is computed
once using the complete averaged equations of motion, and
again using only the ¢F term in (2) with Jo(n) =1 and J;1(7)
= 0. The latter case represents an electrostatic wave with
only a z component and with no transverse phase variation.
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Fig. 4. Mean scattering as a function of parallel velocity. The mean scattering is computed for longitudinal
resonance interactions with a CW signal which is amplified after it crosses the equator. The results indicate that
the wave magnetic forces become important at larger pitch angles; then it is necessary to include Bessel terms in

the equations of motion.

As discussed earlier, the effects of the Bessel terms, i.e., the
effects of the wave magnetic field forces, are expected to be
significant at larger pitch angles, while at lower pitch angles
the error in leaving out these terms is expected to be small
[Inan and Tkalcevic, 1982]. From Figure 4a, for aeq = 10°, it
is evident that this expectation is confirmed. On the other
hand, as the pitch angle increases, the difference between
the results becomes much larger, and for aeq = 70° there
is almost no scattering if we exclude the Bessel terms from
the equations of motion (Figure 5b), whereas the scattering
calculated using the complete equations is about —6° at
V|eg = Up|leg- These examples demonstrate that the wave
magnetic field forces are important in governing the motion
of electrons with high pitch angles.

The dependence of scattering on wave amplitude is de-
picted in Figure 6. The three different curves shown here
represent scattering of sheets with three different initial par-
allel velocities vy eq,. A sheet with v eq, = vp|eg has the
optimal parallel 'velocity as required by the resonance con-
dition. Two other sheets with v eq, = 0.995vp (eq and v eq,
= 1.005'Up||eq are slightly off resﬂnance when t}Ley encounter

the wave growth region at the equator being somewhat
slower and faster than the phase front of the wave, respec-
tively. We note from Figure 6 that, as an example, the
particle sheet with v ea = Vpjeq is scattered about —0.1°
when interacting wit]ll a relatively weak wave with By, =5
PT. On the other hand, the other two sheets require a wave
with B, = 18 pT to achieve the same amount of scatter-
ing. For B; < 18 pT, scattering of the sheet with v ¢q =
0.995vp eq is small and negative, whereas scattering of the
sheet wlkh Yjee = 1.005vp, eq is also small, but positive. The
direction of energy exchallxge depends on the relative mag-
nitudes of the parallel and phase velocities. If an electron
is faster than a wave, it is decelerated and loses its kinetic
energy. If an electron is slower than a wave, it is acceler-
ated and gains kinetic energy. If the parallel velocity of an
electron is increased (decreased), its equatorial pitch angle
becomes smaller (larger). This explains the behavior of the
two sheets with Yjje90 = 0.995vp| eq and Y = 1.0051),,I eq
for B; < 18 pT. Note here that the sheet with v eq,
Up)eq does not show similar behavior for B, > HS pT.
CaLeful study of the trajectories of individual test electrons
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Fig. 5. Mean scattering as a function of parallel velocity. The format is the same as Fig. 4, except that (a)

aeq = 30°, and (b) aeq = 70°.
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Fig. 6. Mean scattering as a function of wave amplitude for the amplified CW signal. The behavior of the mean
scattering indicates the presence of an amplitude threshold effect, i.e., significant scattering is possible only if the
wave amplitude exceeds a certain value. The threshold amplitude increases as the absolute difference between the

initial parallel and phase velocity becomes larger.

shows that for weak waves all electrons remain untrapped
regardless of their initial parallel velocities. As long as the
electron parallel velocity does not follow the phase velocity
variation, the interaction is generally limited to two rela-
tively small regions around the two resonance points. In the
case shown the interactions are further limited to only one
side of the equator where the wave amplitude is sufficiently
strong. As the wave amplitude increases beyond the equa-
tor, the interaction becomes stronger and some electrons be-
come trapped. This transition between the untrapped and
trapped mode is characterized by a significant increase in the
scattering. The amplitude threshold at which the trapped
mode scattering overtakes the untrapped mode scattering
depends on the initial parallel velocity vpeq,, as shown in
Figure 6. The threshold amplitude for veq, = vp)eq is as
low as B, = 3 pT, with a relatively smooth transition be-
tween the two interaction regimes. The amplitude threshold
in the two other cases is B, ~ 18 pT with a much sharper
transition between two regimes.

Some individual particle trajectories corresponding to the
cases described in Figure 6 are illustrated in Figures 7 and
8. Figure 7 shows parallel velocities and phases of four elec-
trons with Vjego = Upjeq; @ = 10°, and different initial
phases ¢,, as functions of latitude and time, respectively.
The wave amplitude is taken to be B; = 10 pT. As in the
case for a CW signal, the parallel velocity variation of those
electrons is controlled by the initial phase ¢. For exam-
ple, the electron trajectory of Figure 7a indicates absence of
trapping because of an improper phase, whereas the number
of oscillations for trapped electrons in the other three cases
also depends on the phase at the moment when the parallel
velocity equals the wave phase velocity. Figure 8 depicts a
time-expanded view of the electron trajectories around the
first resonance point. In Figure 8 the time ¢ = 0 indicates
the first resonance where v = vp I The phase at this point
is important in determining the further motion of particles.
For example, the phase of the electron shown in Figure 8a

is such that it is initially strongly decelerated and by the
time of phase reversal, i.e., electron acceleration, Y| and vpl
are too different for trapping to be possible. Observing thJs
phase of the electron in Figure 8b at ¢t = 0, we find it to be
significantly smaller than the phase in Figure 8a. Because of
the difference in phase the deceleration suffered by this sec-
ond electron is smaller, and eventually the particle becomes
trapped and executes one oscillation at the bottom of the
potential well. For the next two electrons shown in Figures
8¢ and 8d the phases at ¢ = 0 are even smaller, resulting
in an increasing number of oscillations. We note that the
amplitudes of both velocity and phase oscillations decrease
as the phase at ¢t = 0 decreases. In the example shown in
Figure 8d the phase at t = 0 is very close to the optimal 90°
which then results in the strongest trapping. As discussed
earlier the 90° phase indicates that an electron is exactly at
the bottom of the potential well.

Figure 9 shows the scattering of individual electrons as
a function of their initial phases ¢, for three different wave
amplitudes. This figure confirms the importance of phase as
a controlling factor in the longitudinal resonance interaction.

Next we determine the dependence of the scattering effi-
ciency on the wave normal angle. Figure 10 shows (Aaeq)
as a function of # for By = 10 pT, aeq = 10°, and
Uiedo = Upjeq- The wave function corresponds to that
shown in Fiéure 6. Also shown are the average initial and
final energy of the sheet, (E,) and (Eg), where () represent
averaging over the particles in a given sheet. As noted ear-
lier, the main effect of the wave normal angle increase is an
increase of E § Thus, as the wave normal angle increases,
the longitudinal interactions become more effective, as in-
dicated in Figure 10. Furthermore, when the wave normal
approaches the resonance cone, electrons are scattered by as
much as —5.5°, and the sheet energy is increased about 5
times.

Figure 11 shows (Aaeq) versus v I’ and (AFE) versus Y for
interactions taking place inside an(i outside the plasmapause
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Fig. 7. Single electron trajectories for B, = 10 pT. Parallel velocity and phase behavior for electrons with
Vjjeg = Upeq and o = 10° interacting with variable amplitude CW signal. The initial electron phase is (a) 0°, (b)

120°, (¢) 150°, and (d) 300°.

as characterized by different values of the cold plasma den-
sity neq. These results clearly show that interactions outside
the plasmapause result in less scattering, but in more energy
exchange, than those interactions inside the plasmapause.
This result is partly due to the fact that the electric field
component of a 10-pT wave is larger in the lower density
region [Tkalcevic, 1982]. Another factor that plays a role
is the fact that for smaller neq the wave phase velocity is
larger and the parallel resonant energy is higher. Higher en-
ergy electrons move faster through the wave, and hence the
time available for scattering is reduced. Note that although
the resonant energy is about 288 eV for neq = 400 el/cm37
it is 11,529 €V for neq = 10 el/em®. Because of this differ-
ence in resonant energies, even a relatively small scattering
outside the plasmapause results in absolute energy changes
that are larger compared to those found inside the plasma-
pause. Note, however, that the percentage energy change
(AE/E) is larger in the higher density region.

This concludes our discussion of single sheet scattering

interacting with a one-sided wave function. In the next sec-
tion we present results involving single sheet scattering in
the case of a spatially ljmited wave distribution.

5. INTERACTION WITH A WAVE PULSE

In this section we examine the scattering of a single elec-
tron sheet as it moves through a wave structure with spa-
tially limited amplitude distribution. Such a distribution
may result from a particular configuration of nonducted ray
paths or may be due to a wave pulse with finite duration.
As depicted in Figure 12a the wave signal is taken to have
uniform intensity between A = —10° and A = —7°, which
is equivalent to 1000 km in length. Other interaction pa-
rameters are also specified in Figure 12a. The interaction is
studied for a wide range of initial parallel velocities, Av,,
as illustrated in Figure 12b. The minimum parallel velocily
increment is 0.001vp eq. The wave amplitude is assumed
to be zero everywhere except for —10° < A < —7°. The
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Fig. 8. Single electron trajectories for B] = 10 pT. Shown here are the parallel velocity and phase variations
around the first resonance point at t = 0. Other parameters are the same as those in Fig. 7.

scattering results are shown in Figure 13. We explain these
results as follows: when the initial parallel velocity is small,
for example v jea> the first resonance point is close to the
equator. Hence as these electrons travel up the field line
toward the equator, they encounter the spatial amplitude
pulse, but the electron parallel and wave phase velocities
are rather different, resulting in a very weak interaction. As
the initial parallel velocity of a sheet is increased, the first
resonance point moves away from the equator and closer
to the amplitude pulse. The two velocities are then bet-
ter matched, resulting in a stronger interaction and a neg-
ative scattering (Aceq). A negative sign of (Aaeq) means
that electrons are accelerated. This acceleration is consis-
tent with the relative ratio of two velocities; namely, before
electrons reach the first resonance point their velocity is less
than the wave phase velocity, in which case electrons are
accelerated in order to match the phase velocity. However,
further increase of the parallel velocity beyond 1.082vp eq
results in a change of sign of the effective scattering. ’IJ is
occurs when the first resonance point falls within approxi-

3 8y (°]
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Neq *400Qel/cc
{23000 H2
8:30° .
Vlleq'vplleq " N
2}
T}
OS5}
ol
-01
o] 60 120 180 240 300
& [°]

Fig. 9. Total scattering Aaeq versus initial phase for different
wave amplitudes. The initial pitch angle is aeq = 10°.
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Fig. 10. Mean scattering as a function of wave normal angle. The
difference (Es) — (Eo) represents the amount of energy gained by
electrons.

mately £0.5° of the pulse front edge at —10°. The principal
difference is that electrons become trapped as they interact
with the pulse, whereas for lower parallel velocities there
were no trapped electrons. When trapping takes place, the
parallel velocity follows the phase velocity, which decreases
as electrons approach the equator, and this results in a pos-
itive sign of scattering (Aaeq) in Figure 13. Furthermore,
as the parallel velocity is increased beyond 1.094vp eq, the
first resonance moves even farther down the field line and
interactions become small again. The shaded area in Figure
12b indicates the trapping velocity bandwidth Aw,;, which
is also indicated in Figure 13. When comparing areas of
positive and negative scattering in Figure 13, they turn out

(a)
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to be approximately the same, which means that the net
energy exchange is small.

This example is a good illustration of the different fea-
tures of the longitudinal resonance interaction. We see that
the electron behavior is very dissimilar in cases with and
without trapping. Untrapped electrons change their velocity
depending on the ratio of phase and parallel velocities, while
the trapped electrons travel along together with their par-
allel velocity following the wave phase velocity. This means
that the number density of trapped electrons will build up as
more and more electrons fall into the trap. It has been sug-
gested that this trapping mechanism might account for the
production of whistler precursors [Park and Helliwell, 1977].
In this process a strong whistler, whose E || exceeds the trap-
ping threshold (~25 uV/m in Figure 6), traps longitudinally
resonant electrons as the whistler travels toward the equator.
An increase in the number deusity of up to a factor of 2 has
been estimated for this process [ Tkalcevic, 1982]. When this
temporary enhancement of particle flux reaches the equa-
tor, it causes the threshold for emission triggering [Helliwell
et al., 1980] to drop below the level of available triggering
signals, such as power line radiation. Cyclotron emissions
are then triggered in the backward direction, arriving at the
receiver aliead of the two-hop of the whistler. An inten-
sity threshold for the onset of precursors has been found in
the data, giving support to this hypothesis | Tkalcevic, 1982].
The same basic mechanism has been advanced to explain an
association between VLF chorus and electrostatic emissions
observed is the terrestrial [Reinlestner et al., 1984] as well as
Jovian and Saturnian magnetospheres.

Figure 14 illustrates the same type of interaction except
that the spatial amplitude pulse is on the other side of the
equator. The corresponding scattering results are shown
in Figure 15. These results may be explained using the
same analysis as that employed in the previous example.
Trapping occurs when the first resonance point is close to
the pulse front edge at A = 7°, although the trapped electron
scattering is now negative as the phase velocity increases.
The untrapped particle scattering is positive because the
phase velocity is smaller than the parallel velocity before
the resonance point is reached.
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L=4 B =10pT Vit =992 x10° m/sec
(Aa (0] n = 400 el/cc Plhnside
e €inside Vo =627 x 107 mfsec
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R e e AT 101 *~%77 V
-0 1k / 7 plleq
OUTSIDE PLASMAPAUSE
-02- ot INSIDE PLASMAPAUSE
(AE)[eV]
100r
(AE>z (Ex)-(Eg) (b)
. "."\\
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Fig. 11. Comparison between the effects of longitudinal resonance interactions inside and outside the plasmapause.
(a) The mean scattering {aeq). (b) The corresponding energy exchange (AE).
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Fig. 12. Interaction with spatial amplitude pulse extending be-
tween A = —10° and A = —7°. (a) The position of spatial pulse
on the field line. (b) The range of affected initial parallel veloci-
ties.

6. INTERACTION WITH A FULL
DISTRIBUTION OF PARTICLES

In the previous sections we have presented results on pitch
scattering of single test particles. The purpose of that anal-
ysis was to clarify various aspects of the longitudinal reso-
nance process. In this section we carry those calculations
one step further by increasing the number of test electrons

Bagy) [°]

02
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in order to simulate a full distribution for the purpose of
computing the wave-induced precipitation flux.

For the cases presented here we assume interactions with
a one-sided wave function. As was discussed earlier, the
wave-induced scattering for that type of wave function is
found to be larger than would result from interaction with
continuous wave signals.

The energetic electron population is described in terms
of an equatorial distribution function feq('u eq> Cteq). From
this point on we drop the subscript “eq” and all quantities
represent equatorial values unless spec1ﬁed otherwise. The
distribution function is given in v T space because it is
a convenient representation which directly shows the pitch
angle scattering A« and it is easy to determine a normalized
velocity v /vp which is one of the prime factors affecting
the interaxltlon process The velocity space volume element
is then given as v %‘f‘—dadv d¢ [Inan et al., 1978].

Now we recall rgsults of Flgures 4 and 5 showmg the mean
scattering of a single sheet as a function of the sheet initial
parallel velocity. From these it is evident that the trapping
velocity range considered is limited to a narrow strip around
v” = vp,, while the pitch angle range extends from ¢, to
Omaz. The value of amqz may be as large as 90°, although
in our model we employ a slightly lower value because of the
time-averaged nature of the equations of motion. The an-
gle oy, = 5.5° is the nominal loss cone angle for the dipole
field line L = 4 [Inan et al., 1978]. As already shown in
Figures 4 and 5, the trapping velocity bandwidth increases
with increasing pitch angle due to the effects of the wave
magnetic field forces. For the parameters used here the
trapping velocity bandwidth Av ¢ is ~ 0.4% of vp eq for
a = 10°, and ~ 1% of vp, eq for (L = 70°. Again, it |Lhould
be noted that this velocity bandwidth refers to the trapped
clectrons only. The untrapped electrons have quite differ-
ent behavior; if the initial parallel velocity is smaller than
the lower trapping velocity limit, the scattering is negligible
because the vp, and the v|| are never matched along the
field line. On the other hand, if the initial parallel velocity
of an untrapped electron is larger than the upper trapping

|

o .‘J\I A il . il — . A2 A .vnﬂ
SV UU\HOAO 1050 1060 /\1o7o Jroso 1090 7 Votieq
¢ /
M) oy
i, J\ ] P
ol \]
[ av, |
Fig. 13. Mean scattering for interactions with a spatial amplitude pulse extending between A = —10° and

A= -=7°
parallel velocities remain untrapped.

Electrons with initial velocities within the Av

I range are trapped, while electrons with other initial
t
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Fig. 14. Interaction with spatial amplitude pulse extending be-
tween A = 7° and A = 10°. The format is the same as that of
Fig. 13.

velocity limit, there are always two resonances; scattering
at the first resonance is negligible because the wave ampli-
tude is very small, whereas at the second resonance point,
where y| exceeds vp, , the untrapped electrons are deceler-
ated. The above mentioned different classes of electrons are
illustrated in Figure 16. The scattering of untrapped elec-
trons is much smaller than it is for the trapped electrons,
but the interaction velocity range for untrapped electrons
is larger than the trapping velocity bandwidth. The effects
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of trapped and untrapped electrons on the wave amplitude
are exactly opposite; the trapped electrons are accelerated
and derive energy from the wave, whereas the untrapped
electrons are decelerated and give energy to the wave. This
behavior of trapped and untrapped particles is similar to
that in the case of first-order gyroresonance interaction in-
volving longitudinally (k || Bo) propagating waves [Bell and
Inan, 1981].

As illustrated in Figure 16, we consider a region in v, — «
space (cross-shaded) containing electrons that are effectively
scattered into the loss cone. Here the determination of amaz
is based on the maximum expected scattering under given
conditions. This region in the v| —a space is further divided
into a number of mesh points' identified by their Y and
o, and this mesh then represents the initial distribution.
The number of electrons at each mesh point is equal to 12,
reflecting the fact that electrons are uniformly distributed in
phase. Figure 17a illustrates the unperturbed distribution
function; note that we use the number density of electrons
Ne rather than f(v” ,&). The number density and f(v” ,0)
are related through [Inan et al.,1978]

2 sina

Ne = 27rf(v” , a)v” Eos,TaAUHAa (6)

Using (6) it is also possible to find the actual number of
electrons represented by a single test electron.

During the interaction the initial distribution of electrons
(Figure 17a) is perturbed by the wave, and the final dis-
tribution shown in Figure 17b is obtained. Note that the
velocity mesh size is different in Figures 17a and 17b, since
the energy of the electrons tends to be significantly increased
during the interaction. In addition to an overall increase in
electron energy, three fast electrons are seen to scatter into
the loss cone. In the next section we estimate the wave-
induced precipitation fluxes for three particular cases.

7. WAVE-INDUCED PRECIPITATION FLUX

Here we compute the precipitated electron fluxes involv-
ing a one-sided wave function and for three different maxi-
mum wave intensities (£ = 50, 150, and 250 uV/m). The
maximum initial pitch angle amqz considered in these calcu-

thagy [°]
0100 !A\ j/\ [\ [\ !\ \ / . \
e Uy il \-l'\ )
O fromemrcst ; j : : \ {” DA Vireq
\ 1040 ;o 1060 1080 VYV VNN
/
-0100 \\ /
/
\\ /
-0200+ '\.\/_,,../

av)

Fig. 15. Mean scattering for interactions with a spatial amplitude pulse extending between A = 7° and A = 10°.

Only electrons with v” in the AUH range are trapped.
t
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Fig. 16. General distribution function. Differently shaded areas
indicate the various behavior of electrons as they interact with
the variable amplitude wave.

lations is 10°, since there are no electrons with a > 10° that
can be scattered into the loss cone even for the largest E”
considered. The initial unperturbed number density func-
tion is the same in all three examples and was already shown
in Figure 17a. Furthermore, the particle distribution func-
tion is taken to be

J(v.0) = Zo(e) ™)

where A is a constant and g(«) is some function of pitch
angle. In our calculations, g(a) is assumed to be an isotropic
function given by

_J1 a > o
o) = {5z ®)

The following analysis is similar to that presented by Inan
et al. [1978], where pitch angle scattering due to gyroreso-
nance was studied. We first determine the wave-induced per-
turbations of the pitch angle distribution f(«) as obtained
by integrating f(v,,a) over the velocity range of interest.
In the cases considered here, for a 5-kHz wave it is found
that the maximum parallel velocity after the interaction is
whereas the minimum parallel velocity is

ymaz = 180
The equatorial phase velocity Up” for a

”mm = 0. 98'Up”

5-kHz wave is 11.23 x 10% m/s. Thus the pitch angle distri-
bution is given by

18v
_ i 2
f(a) = 271'/0981)1,|| f(v”,a)v”dv” (9)

remembering that electrons are uniformly distributed in ini-
tial phase, which accounts for the factor 27 in (9).

Figure 18 shows the normalized pitch angle distribution
f(a) as a function of e for different wave intensities. The
dashed curves show the initial unperturbed distributions,
whereas the solid curves indicate the final distributions.
These results show that the longitudinal resonance interac-
tion requires rather strong waves in order to scatter electrons
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into the loss cone. For a wave with E, =50 uV/m (B = 14
pT) the perturbations are very smajll and only a few elec-
trons are scattered below op.. When the wave amplitude
is increased, the loss cone starts to fill with electrons, and
also electrons with higher pitch angles are scattered down
to lower pitch angles. This process is best illustrated in the
case of a 250 uV/m wave, where the loss cone is filled with
electrons having a wider range of initial pitch angles than
the electrons reaching the loss cone in the two other cases.

The total number density of electrons precipitated in the
velocity range 0.98 7%7 to LSUPH is given by

o rl. 8Up|| 9
=27 I || a)v”
0.98vp)

dv”daL3(1 +3sin? A)1/2

3
COs® «x (10)

where the factor L3(1+3sin? A)1/2 accounts for the conver-
gence of the field line going from the equator to ionospheric
heights. The precipitated energy deposition rate is com-

puted in simi%ar fashion by including the energy weighting
v
factor %m in (10) which then yields
cOos“ o

2
e 18vp g sina 1l Y|
Q=2r flv )Il 355" oos?
098vp” cos® COo8“ «¢

v”dv“daL3(1 + 3sin /\)1/2

(11)

The integrals in (10) and (11) are easily evaluated by nu-
merical integration. For the three examples considered, the
normalized energy deposition rates, defined as Qn = Q/A
where A is defined in (7) are
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Fig. 17. Simulation of the distribution function. (a) The unper-
turbed distribution. (b) Perturbed distribution. The numbers in
each individual cell indicate the number density of electrons.
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E) (uV/m) Qn 1or
50 0.96 x 10~ 14 o 5L
150 0.81 x 10712 ] £1i 750 pyim
— =14p
250 0.35 x 1012 i ‘
To compute the total energy deposition, it is necessary to
evaluate the constant A. This can be done by computing the N
total number density N in electrons per cubic centimeter ’
. . . . t
in the specific velocity range 0.98-1.8 vp”. In this case, !
fta) 05 ! €, = 150 uVim
1.8vp ! Bra3et
Ne = 27r/ / A v sin advda (12) :
0. 981),,”
10p
The above integral yields :
8 0 5r i E|)=250 pv/m
A=2x10°N, (13) | 8,:71pT
Finally, to determine typical values of A, we use data '23 4 516 ‘7,[0]8 s 10
from reported measurements of Ne. From Schield and Frank LOSS
[1970] we find that N ~ 1 el/cm® in the 1-2 keV range and CONE
that the number density varies as v™% where v is the particle ~ Fig. 18. Normalized electron distribution f(a). The dashed

velocity. In our case the electron energies are 300-1000 eV
which results in Ne = 10 el/cm®, since the number density
increases with decreasing electron energy. Substituting Ne
= 10 el/em?® in (13), we find A = 2 x 10°.

Using this value for A, the precipitated energy deposition
rates are found to be

E|(uV/m)  Q(ergs/cm?)
50 1.94 x 1078
150 1.66 x 103
250 740x 1073

The above values represent the flux precipitated by a 5-
kHz wave, having a one-sided wave intensity distribution,
from an initial distribution of energetic particles given by
(7) and (8). These flux levels are much smaller than those
expected under similar conditions from gyroresonant wave-
particle interactions [Inan et al., 1978], where flux levels of
0.01-0.2 erg/cm s would be expected for a 10-pT wave. Note
that 10 pT of perpendicular wave magnetic field intensity
corresponds to E, = 30uV/m for # = 30° and f = 5 kHz,
at the equator. i’or the parameters considered here, the
difference between the two cases is almost three orders of
magnitude.

8. CONCLUSIONS

In conclusion, we summarize our results as follows:

1.) Using the time-averaged nonlinear equations of mo-
tion in computing the nonlinear trajectories of electrons in-
teracting in the Landau resonance made with whistler mode
signals propagating obliquely in an inhomogeneous medium,
it was confirmed that the effects of wave magnetic forces can
be neglected for low pitch angles, high wave normal angles,
and/or high normalized wave frequency as predicted by Inan
and Tkalcevic [1982]. It was also shown that at higher pitch
angles the wave magnetic field forces become significant and
must be included for a correct formulation of the problem.

2.) Our test particle results distinguished between two
classes of electrons on the basis of the variation of their
phases with respect to the wave. In a case where the phase

lines represent the unperturbed distribution. The solid curves

represent the perturbed distribution.

variation is bounded, i.e., remains less than 2w, the elec-
tron is said to be trapped, whereas unbounded phase vari-
ation characterizes the untrapped electrons. The scattering
and corresponding energy exchange for the trapped and un-
trapped electrons exhibit significantly different characteris-
tics.

3.1t is also found that the trapping of electrons is easier
under conditions of spatial amplitude variation of a narrow-
band signal rather than for a constant amplitude. Results
were presented for a constant amplitude continuous wave
signal, a continuous wave signal amplified at the equator
through some other mechanism (e.g., gyroresonance), and
also for a pulse with a spatially limited amplitude distri-
bution that might be established as a result of a particular
distribution of nonducted ray paths in the magnetosphere.

4. Tt is also shown that the longitudinal resonance pro-
cess involves a wave amplitude threshold effect, i.e., the trap-
ping of electrons is possible only if the amplitude of the
wave parallel electric field F || exceeds a certain value. The
trapped electrons also become space bunched and temporar-
ily increase the electron density over a particular range of
parallel velocities. Such a density enhancement may play
a role in the triggering of gyroresonance emissions, such
as whistler precursors [Park and Helliwell, 1977; Tkalcevic,
1982]. This same basic mechanism has also been advanced
to explain an association between VLF chorus and electro-
static bursts observed in the terrestrial as well as Jovian and
Saturnian magnetospheres [Reinleitner et al., 1984].

5. The full distribution results show that the precipita-
tion expected from longitudinal resonance scattering is small
compared to gyroresonance-induced precipitation for waves
of comparable amplitude. At L = 4 and for the parameters
considered here the scattering efficiencies of the two pro-
cesses may differ by as much as three orders of magnitude
under similar conditions.
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