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the  beat  note  continues.  The  integrator  output  therefore  stays 
very  close t o  zero  as  long  as  the  loop is out  of  lock. 

The  frequency  rate  decreases  once  the  deviation  has  passed 
through  zero.  At  some  point  the  rate will become  small 
enough  that  the  loop  could  hold  track-if  it  were  already 
locked.  But  the  loop will not be  locked  at  that  point.  The 
VCO frequency is determined  by  the  integrator,  which  stayed 
near  zero  when  there was little  dc  output  from  the  phase 
detector,  while  the  signal  frequency  has  followed  the  modula- 
tion.  There is now  a  substantial  frequency  discrepancy  between 
VCO and  signal  and  that  discrepancy  increases,  at least up  to  
the  peak of the  modulation  cycle.  That  frequency  difference is 
large  enough to  prevent  rapid  relocking. 

Past the  modulation  peak,  the  modulation  frequency  turns 
around  and  starts  moving  back  towards  that of the VCO. If it 
were to  move  slowly  enough,  the  loop  would  lock  up  when  the 
two  frequencies  came  into  coincidence.  But,  because  the  mod- 
ulation is sinusoidal,  the  rate of  change of frequency  increases 
so that, when the  two  frequencies  coincide,  the  rate of change 
is excessive  and  the  loop is incapable of locking. 

And so it goes.  Whenever the  frequency  rate is small  enough, 
the  frequency  difference is too large for rapid  locking  and 
whenever the  frequency  difference is small,  the  frequency  rate 
is too large. As a  result,  the  loop  can  never  lock  at  any  point  in 
the  cycle.  That is why  one  observes  a  complete  breakup of 
tracking  in  the  second  order  PLL,  rather  than  the  isolated 
spikes  seen  in the  first  order  loop. 

If an nth-order  PLL is subjected  to  a  frequency  modulated 
signal  (whose  modulation  frequency is small  compared  to  the 
loop  bandwidth)  then  the  peak  phase  error  occurs  at  the  peak 
of the ( n  - 1)th derivative of the  modulation. If the  modula- 
tion is sinusoidal  and n is odd then the error peak will coincide 
with  the  modulation  peak.  That  raises  the  possibility  and  odd- 
order  PLLs will exhibit  isolated  spikes  as  seen  in  the  first  order 
loop,  rather  than  the  breakup  seen  in  the  second  order PLL. 
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A  Novel  Approach for Finding  the  Spectrum of Periodically 
Modulated FM Carriers 
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Abstract-A new technique for finding the frequency  spectrum of a 
carrier  frequency  modulated by a  periodic  signal is presented. The 
technique  is based on the frequency  modulation (FM) equation due to 
Hess,  which in the frequency  domain  is  a  double  convolution  equation. 
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The technique  reduces the FM spectrum  problem to the solution of a 
set of  linear  equations in which the FM  side-band ainplitudes  are the 
unknowns. The results  obtained  through this new  technique  can, in 
most  cases,  be  obtained  by other means.  However, the technique  is 
simple  and  as  a  result its implementation on a standard computer is 
both simple and  fast.  Furthermore, it is  especially  suitable  when the 
modulating  signal is in the form of a  Fourier  series with a  large  number 
of terms or requires  a  large  number  of  terms to approximate  it. 
Numerical  results  obtained  using the technique for a  large  number of 
complex  modulating  signals  are  presented. 

INTRODUCTION 

The  problem of finding  the  frequency  spectrum of a  sinus- 
oidal  carrier  whose  frequency is modulated  by  a  periodic  signal 
is a  relatively  old  one. The  results  for  sinusoidal  and  square 
wave modulation  are well known.  For  complex  modulating 
signals, one generally  starts  by  seeking  an  analytic  solution  for 
the  integral  expressions  for  the  Fourier  coefficients.  Another 
common  approach is to  search  for  a  series  expansion  for  the 
related  complex  exponential.  In  general  the  problem is a 
difficult  one  and  few  cases  in  which  analytic  solutions  are  pos- 
sible are  known. When  an analytic  solution  does  not  seem  pos- 
sible,  one  resorts  to  various  numerical  techniques  for  evalu- 
ating  the  Fourier  coefficients of the  modulated carrier. 

In  general, the  technique of solution  for  each  modulating 
signal  ends up being  specifically  useful  only for  that  particular 
signal. 

In  this  paper we present  a  general  technique  which is suit- 
able  for all types of periodic  modulating  signals. 

THE FM EQUATION 

The FM equation [ 1, 21 is a  second  order,  linear,  homoge- 
neous  equation,  which  in  integro-differential  form is given by 

This  equation  may  also  be  written  in  differential  form as 

where q ( t )  > 0 and u ( t )  = d u ( t ) / d t  etc. By direct  substitution 
into (1) or ( 2 )  it is easily  verified that  two linearly  independent 
solutions  to  the FM equation  are 

f t  ft 

Thus  the  general  solution  to  the FM equation  may  be  written 
either  as 

or  as 
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where A .  B. C. 6 are  constants. 

( 5 )  
m 

( ..),,w) + o o A o  ,=-m x w2 - on 

Clearly, (4) or ( 5 )  are  the well known  expressions  for  a 
sinusoidal FM carrier  with  an  instantaneous  radian  frequency V ( o - A )  + 2 - 
equal t o  wi(t), which  will  normally  be  of  the  form ,=-- w - n  

I , ,  

an 

where wo is the  unmodulated  carrier  radian  frequency, A a  Since the sine and coshe of periodic arguments is also Deriodic 
the  peak  deviation  and f(t) the  modulating signal. The  pre- the FM spectrum v(o) must normally bel of the form 
viously  made  assbmption wi(t) > 0, vt clearly is the same  as 
assuming that  the  deviation is always less than  the  carrier  fre- 
quency,  which  of  course is the case  in  all  realistic  situations.  1 - +  

To  obtain  information  about  the  spectral  properties of the 
FM signal u ( t ) ,  we transform  eq.  (1)  into  the  frequency  domain 
and  obtain  the  following  second  order  convolution  equation = V+(W) + V-(w) (12) 

V ( w )  = - x [ A p 6 ( o  - wo - p )  + Ap6(o + wo + p ) ]  
2 p=-m 

V(U)=-'{ 1 ai(@) * [ a i ( w )  * V ( 0 )  I], where V+(w) and V-(o) are  simply  the  positive  and  negative 
(2n)2 w frequency  portions  of  the  spectrum.  Replacing  (1  2)  into  (1 1) 

we obtain 
o f O .  (7) 

Here * denotes  convolution  and V ( o )  and ai(w) are  the 
Fourier  transforms  of ~ ( t )  and wi(t) respectively.  Equation ( 7 ) ,  w D=-m 

w o 2 - w 2  3 ' A p ~ 6 ( w - w 0 - p ) + 6 ( 0 + o o + p ) ]  

which  relates  the  spectrum  of  the  instantaneous  frequency  to 
the  spectrum of the FM signal, can  be  used to  give a  great  deal 
of information  concerning FM spectra.  For  example,  it  may  be +woAw n=-m x an( w2 2 w - n  - o n  ) 
used to  prove  in  a  very  simple  yet  elegant  way  that  no FM 
process  can  be  band-limited [ 3, 41. 

the  solution of eq. (7). 

m 

In the  remainder of this  paper we wiil be  concerned  with * 2 A p [ 6 ( w - w o - p - n ) + 6 ( w + o o + p - n ) l  
p = - m  

m 

FM SPECTRA  VIA  THE FM EQUATION + 2 a ,  
CY 

The  double  convolution  equation (7) does  not  appear  to 
belong to  any  of  the  various  types  of  equations  extensively 
studied  in  mathematics  literature.  The  technique we have 
developed  for  the  solution of (7) ,  when  the  modulating  signal 
f(t) is periodic,  will  be  presented  in  the  following [ 5 1 .  . + 6 ( w + w o + p - n - m ) ]  = O .  (13) 

Without  any  loss  of  generality, we  assume that  the  modu- 

w - n , =-- 

- 2 A p [ 6 ( w - w o - p - n - m )  
p=-m 

lating  signalf(t)  in (6) is periodic  with  period  2n s. 

normalized to  1 rps, 

Since f(t) is periodic, with fundafiental radian frequency For  the  equality  in (1  3) to  be  true,  the  coefficients of  each  of 
the  impulse  terms  in  (1  3)  must  separately  be  equal  to  zero. 
These  coefficients  are  linear  equations  in  terms of Ap's ,  with 

m 1 n  wo a  parameter, 
f ( t >  = 2 a,ejnt q, = -1 f(t)e-inf d t  (8) Recall that we had  assumed  the  modulating  signal t o  have 

n=-m 2n -n an  infinite  number of terms  in  its  Fourier  expansion,  eq. (8). 
m Assume now  that f(t) can  be  represented  by  the  first N MAX 

n=-m in  terms of a  finite  number  of  terms  in  its  Fourier series, clearly 
~ ( w )  = F { f ( t ) )  = 2n, x a ,  6 (w - n).  (9) terms  in  its  Fourier  series  representation. If f(t) is expressible 

this  assumption  does  not  imply  an  approximation.  Otherwise, 
the  approximation  error  may  be  reduced  to negligible  levels by 
a  suitably  large  choice o fN  MAX. 

Furthermore, we assume that  a  finite  number of terms  in 
ai(o) = 2n wo6 (w)  + Am an6(w - n )  . (10) the  spectrum of the  modulated  carrier  are  significant.  That is, 

Taking  the  Fourier  transform of (6) and  substituting (9) 

[ 1 m 

n=- m 

This is  not strictly true when the carrier frequency and modu- 
Substituting  (1 0 )  into (71, we obtain  after Some simplification lating signal fundamental frequency  are close to each other and, are not 
the  following  infinite  order  difference  equation  with  varying related by an integer factor. Such cases must be treated separately. 
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we assume  that A,'s for I P I > P MAX are  of  negligible magni- 
tude.  By  choosing P MAX suitably  large,  one  may  obtain  any 
degree of accuracy  for  side-band  amplitudes.  Hence  this 
assumption  too is not  restrictive. 

As a  third  assumption we assume  that oo > P MAX, which 
clearly is also nonrestrictive.  Another  point is that, since  we 
assume oo to  be  sufficiently  large so that  the  positive  and 
negative  frequency  spectra do  not  over  lap, the V"(w) and 
T ( w )  terms  in  (1 2) must  each  satisfy  eq.  (1  1).  Thus we need 
only  consider V"(o ) .  

With these  assumptions,  eq.  (1 3) may  now  be  written as 

P M A X  x A , ~ ( G J  -w0  - p  - n )  
p=-P  MAX 

N M A X   N M A X  
+ - 

n = - N M A X   o - n m = - N M A X  

P M A X  
~ , 6 ( o - o ~ - p - n - m ) = 0 .  (14) 

p=-P  MAX 

When we equate  the  coefficients of the  impulse  terms  in 
(14)  to  zero, we obtain 2P MAX + 1 linear,  homogeneous 
equations  for  the 2P MAX + 1  unknowns A - p M A X ,  
A - p M A X + l ,  e.., A o ,  A l ,  * . a ,  A p M A X  = {Ai}. It is well known 
that,  with  the  exception of certain  pathological  cases, the 
power  of  an FM carrier is independent of the  modulating 
parameters  such as the deviation  and  the  modulating signal. 
This gives the  non-homogeneous  equation2 

P M A X  .~ 

A p 2  = 1 
p=-P  MAX 

for  the  unknowns { A i } .  
Thus,  the  equations  equating  impulse  term  coefficients  to 

zero  from  (14)  and  eq.  (15)  may  be  solved  simultaneously  to 
give the {Ai}. The  parameter wo is simply  assigned  a  suitably 
large  numerical  value. 

A computer  program  in  FORTRAN IV which is inputted 
with f i  the  modulation  index  (deviation/fundamental  modu- 
lation  frequency), wo, N MAX, functional  expression  for a, 
(or values  of an) ,  P MAX and uses  Gauss  elimination  for  the 
solution of the  equations,  can  be  written  with  about  eighty 
statements3.  The  program  finds  the  side-band  amplitudes  for 
most  modulating signals in  the  order of tens of seconds  for 
each /3 with  an IBM 360/40. When  a program is written  for  the 

2 Strictly  speaking,  eq. (15) is an approximation  since PMAX is 
finite.  However, as stated  in  connection  with the assumptions, it is 

by suitably large  choices of PMAX. 
possible to reduce  the  resultant  numerical  errors to any desired level 

3 Program  information  will be supplied to interested  readers if they 
request so from D. Yavuz. 

solution of the  equations  in A ,  a  convenient  way  to  check  it is 
with  sinusoidal or  square wave modulation.  Side-band  ampli- 
tudes  are  easily  calculated  in  terms  of Bessel functions  and  are 
readily  available in  many  sources [ 6, 71. Those  for  square- 
wave modulation  may  be  found  in [S I .  Another  check is to 
change wo and  obtain  the  same  results,  assuming of course 
that oo is always  kept  suitably  large. 

As stated  previously, P MAX may  be  chosen  sufficiently 
large to give any  accuracy  desired,  provided  numerical  limi- 
tations  due  to  the  computer  word  size  are  not  encountered. 
However, in  practice,  knowing  the FM spectrum side-band 
amplitudes to   an  accuracy of about  (unmodulated 
carrier  amplitude = 1.0) is  generally  sufficient. It is thus  con- 
venient to  define a  Carson's  rule  multiplying  factor 'k' and 
choose P MAX according t o  P MAX = k(/3 -I- 1). As a  result of 
literally  hundreds  of  computer  runs, we  have found  that k = 
2, 3 ,  or  4 is sufficient for  almost all  possible  modulating wave- 
forms  that  could  be of interest.  As  seen  in  Fig. 1, k = 2  is 
suitable  for  relatively  smooth  modulating signals. For signals 
with  fast  edges, k = 3 or  4 should  be  used. 

Signals [ 1 ] and [ 131 are  program  test signals for  which  the 
spectrum is readily  found.  Signal [ 121  has  a  power  spectrum 
approximating  typical  speech signals. All fundamental fre- 
quencies  have  been  normalized to  2n s in  the  computer  pro- 
gram. The  spectrum  results  are given in  terms  of O, = 2nfm, 
f, = fundamental  frequency  of  the  modulating  signal f(t) in 
Hz. 

To illustrate  some of the  results  obtained  with  the  tech- 
nique  introduced  in  this  paper,  in  Table  1 we give the side- 
band  amplitudes  for  the 18 signals  shown  in  Fig. 1 .  For /3= 1 
five side-bands, for p = 5 thirteen  side-bands on  each  side of 
the  carrier oo are given. F M  spectrum  information  for most of 
these signals is not available  elsewhere.  Finally, in Fig.  2  we 
give the FM spectra  for  some of the  modulating signals in 
graphical  form. 

CONCLUSION 

A new  technique  for  finding  the  spectrum of a  sinusoidal 
carrier  frequency  modulated  by  any  periodic  signal is pre- 
sented.  The  technique  reduces  the FM spectrum  problem  to 
the  simultaneous  solution of linear  equations  in  which  side- 
band  amplitudes  are  the  unknowns. As such,  it is easily and 
speedily  implemented  with  a  simple  program  on  any  standard 
computer.  The  modulating signal  is  entered  into  the  program 
in  terms of its  Fourier  coefficients,  which is usually both 
desirable and  convenient. 

Although  this  paper  has  presented  the  technique based on 
the  frequency  domain  version of the FM equation,  it is  also 
possible to  arrive at   the  same  method  of  solution of the FM 
spectrum  problem  by  using  time  domain  techniques, e.g. 
writing u ( t )  and wi(t) as series  of  complex  exponentials. How- 
ever,  this  approach is somewhat  more  involved. 

An interesting  area  of  work is the  problem  of  solving (7) for 
continuous  modulating  spectra, i.e. for  deterministic  finite 
energy signals. Althoughsuch  results  would  probably  be  mainly 
of theoretical  interest,  they  could  lead  to  interesting insights. 
For  example,  it  might  be  possible  to  find  the  exact  spectrum 
when the  modulating  signal  has  a  spectrum  of  the  form 
where k is a  positive  real  constant  through  an  iterative  tech- 
nique  using (7). 
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0.1 w NMAX.3 

- 12 4 6  6 I B W  123 

Figure 1. The 18 modulating  signals for which the frequency  spectrum 
has  been  calculated.  Signals [ l ]  to  [6] are  shown  in the time- 
domain, the remainder in the frequency  domain. [ 11 and [ 131  are 
program test signals. 
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TABLE 1 
SOME  NUMERICAL  RESULTS  GIVING  THE  MAGNITUDE OF THE 

SIDE-BANDS  FOR  THE  SPECTRUM OF A  SINUSOIDAL 

18 SIGNALS OF FIG. 1 
CARRIER,  FREQUENCY MODULATED BY THE 

of side-band 
locat ion 

w -  5 

w -  4 

w -  3 

w -  2 

0 -  1 

carr ier  w 

w t  1 

w t 2  

w O t  3 

w o t  4 

u t 5  

w -13 

w -12 

w -11 

w -10 

0 - 9  

i" - 8 

P 

w -  7 

wO- 6 

iri - 5 

w - 4  

(0 - 3 

w -  2 

w -  1 

carr ier  w 

0 t 1 

u t 2  

w t  3 

w t 4  

"i t 5 

w +  6 

I,/ t 7 

ill + 8 

0 

0 

to"+ 9 

I,) f 1 0  

I,/ t 11 
0 

w0t12 

wO+ 1 3  

1 

.042 

.212 

.499 

.637 

.499 

. 2 1 2  

.042 

,026 

,042  

.081 

.288  

.499 

.354 

.152 

.127 

.15 2 

.354 

.500 

.289 

.081 

.042 

.0?6 

2 

.020 

.030 

. 021  

.046 

.470 

.784 

.324 

.194 

.111 

.052 

.012 

.005 

.006 

.018 

.022 

.011 

.014 

.Oh4 

.061 

.038 

.070 

.560 

.619 

.095  

.Ob5 

.129 

.118 

.049 

.053 

.15 7 

. 2  30 

.256 

.231  

.170 

.093 

.025  

. 018  

.034 

3 

.016 

.027 

.047 

.086 

.218 

.947 

.164 

.090 

.Ob0 

.043 

.032 

.006 

.003 

.006 

.013  

. 0 2 1  

. 031  

.042  

.053  

.065 

.077 

.089 

.900 

. l o 9  

. 1 1 7  

, 1 2 2  

.126 

.127 

.126 

, 1 2 2  

.116 

. lo8 

.099 

,089  

.077 

.065  

, 0 5 3  

4 

.009 

.014 

.Ob0 

.338 

. a 7 3  

. 3  38 

.Ob0 

.014 

.009 

.001 

, 0 0 3  

.009 

. O M  

.021 

.008 

. l o8  

.289 

.486 

.576 

,486 

.?89 

. l o 8  

.008 

.021 

.018 

.009 

.003 

.001 

5 

.004 

.011 

.026 

.067 

.265 

.927 

.213 

.130 

.029 

.001 

.001 

.001  

.003 

.002 

.008 

.004 

.019 

.009 

.053  

.023 

.167 

.114 

.451  

.653  

.005 

.014 

.309 

.349 

.270 

.153 

.073 

.034 

.014 

.003 

.001 

6 

.041 

.202 

.954 

.212 

.021 

.044 

.095 

.zoo 

.372 

.489 

.142 

.648 

.343 

.099 

.014 

.003 

7 

.020 

.017 

.154 

.126 

.072 

.955 

.020 

. 1 1 2  

.167 

.012 

.019 

.014 

.009 

. 0 20 

.064 

.013  

.093 

.195 

.052 

.237 

.362 

.278 

.186 

.313  

.301  

.361 

.071 

.403  

.040 

.235  

.242 

. 0 75 

,139 

.097 

.047 

.049 

.028 

.014 

S I G N A L  

8 9 10 

.004  .010 .012 

.026  .002  .075 

.048 . l o 1  .144 

.ZOO .073  .039 

.290  ,523  .446 

.E80 .718   .738  

.164   , 301  .446 

.252  .296  .039 

.Ob8 .111 .144 

.039  .053  .075 

.OIL . m 7  .012 

f 3 = 1  

. 0 0 1   . 0 0 1   . 0 4 1  

.003 .006 .064 

.005 .092 

.015 .028 .111 

.022 .021 .157 

,059  .086 .203  

.OB1 .134  .156 

.167  .135  .185 

.230  .444  .245 

.308 .031 .063  

.431 .506 .113  

.245 .288 .165 

.283  .052  .390 

. lo8  .360   . 423  

.474 .120 .390 

, 095  .114 .165 

.056  .240  .113 

.242 .090 .063 

.201  .037 .245  

.247   .173   .185  

.190 .232 .156 

.151  ,237 .203 

. l o 1  .202 .157 

.Ob6 .152 .111 

.039   . l o4  .092 

.022 .Ob6 .064 

.011 .039 .Oh1 

B = 5  

11 

.052 

.loo 

.051 

.120 

. 523  

.692 

.316 

.288 

.055 

.035 

.064 

.031  

.075 

.035 

.177  

.045 

.240 

.241 

.312 

.184 

.229 

.209 

.255 

.286 

.297 

.144 

.156 

.091  

.338 

.054 

.050 

.203 

.031  

.121  

.Ob5 

.133 

.024 

12 

.OlO 

.118 

.008 

.167 

.158 

.9 36 

.116 
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Figure 2. Some  representative  examples of magnitude  spectra tor p = 

1, 3, 5. All horizontal  and  vertical  axis  are  identical.  Vertical  axis 

indicated  (unmodulated  carrier  amplitude = 1 .O). 
is  linear.  Side-bands  whose  magnitude  is  less than 0.02 are  not 
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Bounds on the Number of Possible Distinct Networks 

MARTIN  NESENBERGS 

Absrrucr-This note is  Concerned  with the number of all distinct 
networks,  also  called  connected  graphs, or Cayley, or linear  graphs 
that are  possible for n given  nodes.  Since for any  practical  number of 
nodes  an  explicit  enumeration  appears  difficult, if not impossible,  we 
offer an  improved  lower bound that enables tight approximation for 
n reasonably  large. 

I. BACKGROUND 

First,  a  few  words on  nomenclature. By a network we  shall 
mean  a  connected  graph  that  consists of nodes  (points)  and 
links (lines). The  nodes  are  labeled, so that  interchange of 
communications  stations is not feasible without  configuring  a 
generally  new  network.  The  connected  graphs  are  to  be  inter- 
preted  in  the  sense  of  Cayley [ 11 as  simple  linear  bidirectional 
graphs.  According to  this,  a  tree,  a  star,  or  a  loop  network 
(graph)  has  its  conventional  topology. 

It  has  been  known  for  some  time  that  the  number of distinct 
tree  networks is nn-2 for n > 2 nodes.  An  early  proof was 
given by  Cayley [ 11, followed  by  others [ 2,  31 . Cayley’s 
standard  tree  network  with n nodes is configured  without 
closed loops  and possesses n - 1 links. 

In communications  one  encounters  other  types of networks 
besides  trees,  such  as  the  familiar  loops, grids, ARPA  multi- 
loop  types,  and so forth.  The  common  feature  of all such  net- 
works is connectivity  and  a  numerical  value  for n in  the  neigh- 
borhood of 100 or  more. In  this  note we are  concerned  with 
the  number; N(n) ,  of  all  possible  and  distinct  connected  net- 
works  that  can  be  formed  for n nodes.  To  our  knowledge,  a 
simple  closed  form  expression  for N ( n )  is lacking.  The  follow- 
ing  is  known. 

Paper  approved  by the Editor for Computer  Communication  of the 
IEEE  Communications  Society for publication after presentation at the 
USNC/URSI  National  Radio  Science  Meeting,  Boulder,’  CO, January 
1978. Manuscript  received  September  26, 1977; revised  April 10, 1978. 

The  author is with the U.S. Department of Commerce,  National 
Telecommunications  and  Information  Administration, Institute for 
Telecommunication  Sciences,  Boulder,  CO  80303. 

Since  a  direct  line is possible  between  any  pair of nodes, 
and  there  are n(n - 1)/2 pairs, the  total  number of distinct 
connected plus disjoint graphs is 2“(”-l)l2. For n > 2 there 
are  always  some  disjoint  graphs and,  therefore, N ( n )  < 
p ( n - 1 ) / 2 .  

Furthermore,  it  has  been  shown  by  graph  theorists  that  the 
disjoint  graphs  form  a  more  and  more  insignificant  fraction  as 
n increases,  and that  asymptotically N(n)  - 2n(”-1)/2 for 
large n [ 4-71 . 

Attempts  to  find  a  lower  bound  for  N(n)  have  also  been 
made.  Thus,  it  has  been  shown [ 7, Section 9.41 that 

11. THE  LOWER  BOUND 

In  this  section we present  a  lower  bound  on N ( n )  that is 
considerably  tighter  for n 9 1. A  lower  bound on N ( n )  is the 
same as an  upper  bound  on  the  number of  disjoint  graphs, 
namely on 2n(n-1)/2 - N ( n ) .  Each  disjoint  graph  for n 2 2 
points  has  at  least  one  cut  that  partitions  that  graph  into  two 
sub-graphs.  These  sub-graphs  may  be  permitted to  be  arbitrarily 
connected  or  not.  Let  the  two sub-graphs  have j and n - j 
nodes,  respectively,  and  assume 1 < j < n - j < n - 1. For 
each  fixed i, there  are  then  at  most (7) possible  cuts,  and  for 
each  cut  there  are  as  many  as 2j(jP1)I2 times 2(n-j)(n-j-1)/2 
distinct possibilities. For all n > 3,  duplication of  sub-graphs 
occurs.  Thus,  whether  the  number of nodes is even ( n  = 2 m )  
or  odd ( n  = 2m + l),  this  type of partition  must  yield  a  strict 
inequality  for  the  number of  disjoint  graphs: 

where the  partial  bound N(n I j )  is defined  for  each j as 

Substitution of (3) into ( 2 )  yields  a  temporary  bound  on N(n) ,  

This  lower  bound is reasonably  tractable  for  smaller n or  with 
the aid of computing  machines. By separately  upper-bounding 
the  summed  entities  in  (4),  namely (7)  and 2-j(”-j), one  can 
in  fact  deduce  another  bound  that is nearly  twice  as  tight  as 
previously quoted  in  (1). 

To  obtain  an even better  bound,  return  to  the  term N(n  1 j )  
defined  in  (3).  The  ratio of such  successive  terms is 

which  happens  to  be less than  or  equal  to  unity  for ali j in  the 
interval 1 < j < m - 1. One  way to  show  this is to  note  that 
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