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By using full-wave theory, an analysis is made of the radiation resistance of a short filamen-
tary electric dipole, oriented with an arbitrary angle with respect to the static magnetic field,
in a cold, uniform magnetoplasma. The frequency range considered lies below the local lower
hybrid resonance frequency and above the proton gyrofrequency, and in this range approxi-
mate closed-form expressions for the radiation resistance are obtained by using a plasma model
appropriate to the magnetosphere. These closed-form expressions are valid for dipoles of
moderately restricted length, and the physical implications of this length restriction are
discussed. It is found that the radiation resistance R increases rapidly as ¢, the angle of dipole
orientation with respect to the magnetic field, varies from 0° to 30° but only gradually as ¢
varies from 30° up to 90°. The ratio of R(¢o = 90°)/R(¢o = 0°) is approximately equal to
(fre/f)2. Except for the case of parallel orientation and f < 1072 fu,, the radiation resistance
of an electric dipole in the magnetoplasma is ~ 102 to 103 times larger than that in free space.
Thus, for the low frequency range considered, an electric dipole in the magnetoplasma is

generally much more efficient that it would be in free space.

INTRODUCTION

In an earlier paper [Wang and Bell, 1969], the
authors have used a full-wave treatment to investi-
gate the small-signal VLF radiation resistance of an
electric dipole immersed in a uniform, cold mag-
netoplasma modeled on the inner magnetosphere. Ap-
proximate closed-form expressions were derived for
the radiation resistance of an electric dipole antenna
oriented either parallel or perpendicular to the static
magnetic field for VLF frequencies that lie well above
the lower hybrid resonance frequency. The results
from the full-wave analysis led us to conclude that,
up to ‘moderate’ antenna length, the radiation re-
sistance can be adequately predicted by the quasi-
static theory, and the correction to the quasi-static
radiation resistance due to the wave fields is in gen-
eral small. It is clear that a similar conclusion cannot
be made for VLF frequencies below the lower hybrid
resonance frequency, since in this range the input
impedance calculated from a quasi-static approxima-
tion [Balmain, 19641 is a pure imaginary number
and the resistive part is zero. The first-order radia-
tion resistance must then be calculated from the
wave fields. It is the purpose of the present paper
to extend the full-wave analysis of the previous paper
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(Wang and Bell, [1969], hereafter denoted by
‘paper I') and to derive closed-form expressions of
the radiation resistance for frequencies below frmp
(LHR is the lower hybrid resonance frequency).
Although complicating effects due to finite tem-
perature and nonlinearities in the plasma are not
treated here, our closed-form expressions should
prove useful in providing ‘first-order’ insight into the
problem of the coupling between a satellite VLF
antenna system and the magnetospheric plasma.

FULL-WAVE ANALYSIS

In paper I the formal integral representation of
the radiation resistance of an electric dipole antenna
with a triangular current distribution was derived for
both parallel and perpendicular orientation. In this
section, the analysis is devoted to the derivation of
approximate closed-form expressions for the radiation
resistance of a similar antenna for frequencies that
lie below fupg but above the proton gyrofrequency.

Parallel orientation

For the case of a filamentary dipole antenna ori-
ented parallel to the static magnetic field, the formal
solution of R, can be written (see equation 23 in
paper I)
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where Ry = [Z, (hB)2]/6w, n = n(6), n, = ncos 6,
A = hB/2, h is the antenna half-length, and the other
notations are identical to those defined in paper L
As discussed in paper I, (1) gives the full radiation
resistance as long as: fu, < f < fg, and fo2 > fae?,
where fg, and fg, are the electron and proton gyro-
frequencies used, and f, is the plasma frequency.

It can be shown that within the frequency range
of consideration (fg, < f < frmr), n? varies from
€1 tO eneq/e; and ny from (eq)?/2 to 0 as @ varies
from O to =/2. It is clear that if we set a constraint on
the antenna length such that
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the sine function in (1) can then be closely approxi-
mated by its argument. This approximation leads to
the following form:
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Equation 3 can be expressed in terms of a new
variable, y (= n?), by making use of the dispersion
relation (see expression 11 in paper I) for the re-
fractive index
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as well as the differential relation that can be de-
rived from (4)
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By using (4) and (5), (3) becomes
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For the frequency range considered, we have
a>e; >0>b > ¢, and by using tabulated inte-
grals involving elliptical functions [Gradshteyn and

Ryzhik, 1965], (6) can be integrated in the follow-
ing closed form:
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F(q, p) and E(q, p) are the general elliptical in-
tegrals of the first and second kind, respectively, with
the arguments g, p defined by
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The solution given in (7) is appropriate as long as
b > &, and this condition is met for all frequencies
in the range frar > f > fu(1 + ¢), where ¢ ~
0(103).

Perpendicular orientation

For this case, the antenna is oriented along the
positive x axis, and the static magnetic field is along
the z axis. The formal solution for the radiation re-
sistance of a filamentary dipole is written

3R, [*T T2 n(n® — &)sin® @
Ri=a fo d‘bfo 40 G(6)
2 € sin® An,
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where n, = n(6) sin 6 cos y, and the remaining
notation is defined in paper L

Equation 8 gives the total R, as long as f,2 >
fa?, and fu, < f < fue It can be shown that both
n(6) and n, are bounded by ‘a’ as 6 varies from 0 to
w/2, and thus the sine function in (8) can be closely
approximated by its argument whenever the follow-
ing condition holds:

®
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With the constraint of (9), the ¢ integration can be
easily performed, and the leading term of (8) be-
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and E(q, p), F(q, p) are the elliptic integrals de-
fined previously in relation to (7).

The solution given in (12) is appropriate as long
as b > ¢ and thus applies to frequencies over the
same range as described following (7). It should be
noted, however, that (12) will not be correct for a
dipole of finite dimensions as f — frar, since a =
w0 as f = fuar and (9) cannot be satisfied. On the
other hand, (12) is still useful as f = frag, since it
serves as an upper bound to (8).

Arbitrary orientation

For a filamentary dipole oriented at an arbitrary
angle ¢, with respect to the static magnetic field, the
basic formulation developed in paper I can be gen-
eralized to yield the following formal integral repre-
sentation of the radiation resistance:

R = (3Ro/m)I($0) + 1(—¢o)] 13)
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Integration of (14), in general, is difficult. How-
ever, for an antenna length subject to the following
constraint:

H*B%(e.; cos’ ¢ + asin® ¢p) K 1 as)

the small-argument expansion of S(6, y, ¢o) can be
used. The leading term from the integration of (14)
then yields

R = cos® ¢oR; + sin® ¢oR, (16)
where R, and R, are defined as in (7) and (12).

Special cases

Intermediate frequencies. Equations 7 and 12
can be closely approximated by relatively simple ex-
pressions over the frequency range

5tme < | < 3fimm a7

Over this range, a*> < ¢? and the factor (y — )2
in (7) and (12) can be well approximated by the
constant |e|*/2. This substitution leads to the follow-
ing simple expressions for the leading terms of (7)
and (12):
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where we have used the fact that over the frequency
range of (17), eq = —e, en? > &2, and || = e

For a plasma in which protons are the dominant
ion, (18) also has a simple form in terms of basic
plasma parameters

Ry 22 3% Refo/ff/ e

(19)
~ 31 o fofudd
R =5 R o’
where f, is the plasma frequency, far =fuefrp, and
(fo/fue)? > 1 is assumed.

Frequencies close to the proton gyrofrequency.
For these frequencies the parameters ey, ¢, ¢ and
‘D> are all large compared with ‘a’ and in this case
(7) and (12) yield
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In terms of basic plasma parameters,
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Frequencies close to the lower hybrid resonance
frequency. For these frequencies, ey —> —e,
& —> 0, a = oo, and the leading terms of (7) and
(12) become
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1R s, SR e —
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where (fo/fue)? > 1.
NUMERICAL RESULTS AND DISCUSSION

To construct numerical plots, we normalize (7),
(12), and (16) by dividing both sides of each equation
by the radiation resistance of a short dipole in free
space (i.e., R, = (hB)’Z,/6r). In Figures 1 and 2

o

Fig. 1. Normalized radiation resistance as

a function of driving frequency for fo/fme

= 5 and various values of ¢, the angle of

dipole orientation. In this plot, fuas ~ 2.3
X 10-2fH'.
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Fig. 2. Normalized radiation resistance as

a function of driving frequency for fo/fz.

= 10, 5, 2, and two particular dipole
orientations: ¢ = 15° and ¢, = 45°.

b—eghy= 15°

the normalized radiation resistance £ is plotted against
the normalized frequency f/fy;, for various angles ¢,
of antenna orientation with respect to the static mag-
netic field and for three different values of f,/fx..
In all cases, an electron-proton plasma is assumed.
From these numerical plots and from (7) and (12),
we observe the following interesting properties of the
radiation resistance: (1). B — « as f— fune(firs
~ 23 X 107%fz,). (2). For a fixed value of f,/fx,
and f ¥ fuug, the radiation resistance increases
rapidly as ¢, varies from 0° to ~30° and gradually
from 30° up to 90°. The ratio of B,/R, is approxi-
mately equal to (fy./f)’. (3). For a fixed angle of
dipole orientation, the radiation resistance is propor-
tional to fy/fn, for values of frequency neither close
to frur oI close to fy,. On the other hand, if f~ fLag,
R tends to increase as f;/fy, decreases because of the
shift in fias to lower frequencies as f, decreases.
(4). Except for the case of ¢, =~ 0 and f < 107%fy,,
R is from ~10* to ~10°. This indicates that for the
low frequency range considered, a dipole antenna in
the magnetoplasma is much more efficient than it
would be in free space. (5). In regard to the case
J— frar, it should be noted that (224) is independent

| 1 ! 1 1
02 04 06 08 1.0 1.2

14 16 18 20

/4,4 (x10°%)

of restriction (2) as f— fy, ux, but (22b) is not independ-
ent of (9). Thus (22b) is useful only as long as (9) is
satisfied.

The result that R, >> R, may be qualitatively
explained as follows: For the VLF frequency range
considered, the dipole with parallel orientation pri-
marily excites the ordinary mode wave, which is not a
propagating mode. However, some power is still
transmitted through the medium because of the
secondary sources that result from the finite electrical
compressibility of the plasma (i.e., V-E = 0). On
the other hand, the dipole with perpendicular orienta-
tion primarily excites two ‘principal’ wave modes,
E., and E_,, [Wang and Bell, 1969], which are prop-
agating modes for the VLF range, and these two
modes further excite all three ‘principal’ modes E,,
v = +1, —1, 0 through the ¥+ E term. Consequently,
it might be expected that considerably more power
will be radiated from the dipole oriented perpendicular
to the magnetic field and a much higher radiation
resistance achieved than in the case of a dipole in a
parallel orientation.

In deriving (1), (8), and (16), we have neglected
complicating effects due to finite plasma temperature,
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finite plasma dimensions, and plasma inhomogenei-
ties and nonlinearities. Furthermore, we have not
considered the presence of conducting or dielectric
bodies in the vicinity of the antenna. However, if
we assume that there are realistic circumstances un-
der which these idealizations are acceptable, then
the usefulness of the relations derived in this paper
depend on satisfying the general restriction (15).
In this case, it is worthwhile to give a few examples
of the range of antenna lengths for which (15) can
be satisfied in the magnetosphere. If we adopt the
gyrofrequency model of electron density [Helliwell,
1965] and the centered dipole model of the earth’s
magnetic field, (15) can be reduced to the following
inequality:

4L K 10[(Par/f?) — 1] meters®  (23)

where L is the distance from the earth’s center to
the antenna location in units of earth radii.
From (23), it can be seen that for L > 2, (16)

will hold for antennas whose total length is as long
as 100 meters, given that f < 1.4 fugg. Furthermore,
at L = 3, (16) would apply to a 100-meter antenna
for frequencies in the approximate range fgp, < f <
1.16 frug. Finally, at L = 2 and f < 107 frgg, (16)
should hold for dipole antennas > 1 km in length.
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