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[1] An automated algorithm for detecting chorus and hiss emissions in ground‐based
extremely low frequency/very low frequency (ELF/VLF) wave receiver data is developed
and applied to 10 years of data collected at Palmer Station, Antarctica (L = 2.4, 50°S
invariant latitude). The algorithm consists of three major processing steps. First, sferics and
power line hum are removed from the broadband data. Second, individual events are
detected and a set of 19 scalar event parameters are determined. Finally, on the basis of the
parameters, detected events are categorized by a sequential pair of neural networks as
either chorus, hiss, or noise. The detector runs on a modern 8‐core computer at a speed of
350x real time. Results of training indicate that the neural networks are capable of
differentiating between noise and emissions with a 92% success rate and between chorus
and hiss with an 84% success rate. Data collected at Palmer from May 2000 to May 2010
were processed, and yearly and seasonal trends of chorus and hiss are analyzed. Yearly
occurrence rates of chorus and hiss are strongly dependent on the geomagnetic disturbance
level, as measured by Kp and AE, whereas seasonal occurrence rates are more strongly
dependent on variations of the day/night terminator and associated variations in
ionospheric absorption.

Citation: Golden, D. I., M. Spasojevic, and U. S. Inan (2011), Determination of solar cycle variations of midlatitude ELF/VLF
chorus and hiss via automated signal detection, J. Geophys. Res., 116, A03225, doi:10.1029/2010JA016193.

1. Introduction

[2] Extremely low frequency/very low frequency (ELF/
VLF) chorus and hiss are two common types of electro-
magnetic waves that are spontaneously generated in the
Earth’s magnetosphere. Both are thought to play major roles
in the acceleration [e.g., Meredith et al., 2002; Horne et al.,
2003, 2005] and loss [e.g., Lyons et al., 1972; Lyons and
Thorne, 1973; Abel and Thorne, 1998] of energetic elec-
trons in the Earth’s radiation belts.
[3] The main distinguishing feature between chorus and

hiss is in their frequency‐time structure. Chorus is charac-
terized by a closely spaced series of discrete tones, usually
rising in frequency with time, at a rate of up to a few kHz/s
[e.g., Storey, 1953]. Hiss, however, is an incoherent emis-
sion which exhibits no obvious structure [e.g., Helliwell,
1965, p. 207]. In this paper, we define chorus and hiss based
on these spectral characteristics, assuming that the signal‐to‐
noise ratio of the data is sufficient to distinguish them.
[4] Various types of hiss permeate the magnetosphere (see

section 1 ofGolden et al. [2009] for a short review), including

auroral hiss [e.g., Jørgensen, 1968; Makita, 1979], plasma-
spheric hiss [e.g., Thorne et al., 1973; Parady et al., 1975;
Meredith et al., 2004], exohiss (plasmaspheric hiss which
has escaped from the plasmasphere) [e.g., Thorne et al.
1973] midlatitude hiss [e.g., Taylor and Gurnett, 1968;
Dunckel and Helliwell, 1969], andELF hiss [e.g.,Russell et al.
1972]. These terms are particularly confusing because many
permutations of them may be observed within the plasma-
sphere, at midlatitudes, and in the ELF range, besides the
obvious eponymous varieties. Of these, only plasmaspheric
hiss and exohiss are thought to occur below ∼2 kHz at mid-
latitudes, and although the prevailing belief is that plasma-
spheric hiss cannot penetrate to the ground due to its
magnetospheric reflection near the local lower hybrid reso-
nance frequency [Thorne and Kennel, 1967], ground observa-
tions by Golden et al. [2009] at Palmer Station, Antarctica,
suggest that a subset of plasmaspheric hiss may in fact reach
the ground at midlatitudes. Therefore observations of hiss
on the ground at midlatitudes such as those presented in this
paper may include both plasmaspheric hiss and exohiss.
[5] Chorus and hiss emissions, regardless of their magne-

tospheric source, are frequently observed at midlatitude and
high‐latitude ground stations [e.g., Laaspere et al., 1964;
Golden et al., 2009; Smith et al., 2010]. Although the large
number of observed emissions presents a boon for scientific
statistics, it has traditionally been difficult to categorize
emissions on a large scale. Past attempts have typically used
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one of two methods. The first is a simplistic thresholding by
frequency, satellite position (for in situ measurements), or
other parameters which do not take into account the spectral
differences between chorus and hiss [e.g., Meredith et al.,
2001, 2004; Smith et al., 2004, 2010]. These potentially
suffer from errors in categorization. An alternative and more
reliable approach is a by‐hand examination of the broadband
emissions [e.g., Tsurutani and Smith, 1974; Burtis and
Helliwell, 1976; Smith et al., 1996]. However, broadband
data is not always available and, even when it is, this proce-
dure can be prohibitively time‐consuming.
[6] This paper describes an alternate approach to the prob-

lem of distinguishing between chorus and hiss in ground‐
based broadband ELF/VLF wave data. We use an artificial
neural network, which is an example of a machine learning
technique which must first be “trained” by the user with
example data before it is functional. After being trained with
a representative sample of events, which have been marked
as either “noise”, “chorus”, or “hiss”, the neural network is
able to operate on an arbitrarily large set of data and auto-
matically sort events into the appropriate categories. The
full system described herein consists of three broad sections:
(1) cleaning the source broadband data of common sources
of interference, (2) detecting “events” which, before cate-
gorization, may be either emissions or noise, and (3) cate-
gorizing the detected events as noise, chorus, and hiss. In
this paper, we use the term “event” to refer to events output
from the event detector which have not yet been categorized
as noise, chorus, or hiss, and the term “emission” to refer
to an event which has been categorized as either chorus or
hiss (or is otherwise a priori known to be either of these
emissions).
[7] The emission detector was run on 10 continuous years

of broadband data from Palmer Station, Antarctica (L = 2.4,
50°S invariant latitude), from May 2000 through May 2010.
We present several results from this analysis, including the
occurrence rates of chorus and hiss over the course of the
entire solar cycle as well as on a monthly basis, averaged
over the 10 years of data.

2. Automated Emission Detection

[8] Palmer Station is located on Anvers Island, near the
tip of the Antarctic peninsula, at 64.77°S, 64.05°W, with

IGRF geomagnetic parameters of L = 2.4, L = 50°S invariant
latitude, and magnetic local time (MLT) = UTC − 4.0 at
100 km altitude. The Palmer ELF/VLF receiver records
broadband ELF/VLF data at 100 kilosamples per second
using two cross‐loop magnetic field antennas, with 96 dB of
dynamic range. This analysis uses the North/South channel
exclusively, it being the less subjectively noisy of the two
channels; this has the additional effect of focusing Palmer’s
viewing area more tightly to its magnetic meridian than if
both channels were used. Data records used in this study are
10‐s broadband data files, sampled at a rate of 100 kilo-
samples/s, beginning every 15 min at 5, 20, 35, and 50 min
past the hour, 24 h per day. The 10‐s data record length was
chosen because we found that it is the optimal length for
manually identifying events on broadband spectrograms.
The start time of a data record is referred to as a “synoptic
epoch”.
[9] The automated emission detector consists of three

broad steps: (1) cleaning of the source broadband data of
common sources of interference (discussed in section 2.1),
(2) detection of “events” and characterization of their prop-
erties (discussed in sections 2.2 and 2.3), and (3) automatic
categorization of detected events as noise, chorus, and hiss,
using a sequential pair of complementary neural networks
(discussed in section 2.5). The properties of the neural
networks are initially determined using a training set of
events which have been categorized by a human operator
(discussed in section 2.4), after which the neural networks
operate autonomously. These steps are illustrated in the
system block diagram in Figure 1.

2.1. Removal of Sferics and Hum

[10] One inevitable disadvantage of ground‐based data
versus that gathered via in situ measurements is that they are
subject to certain sources of terrestrial interference which are
not found in appreciable quantities in space. The two most
prevalent and debilitating for automated detection are sfer-
ics, which are the broadband electromagnetic impulses from
terrestrial lightning flashes, and hum, which is the anthro-
pogenic parasitic radiation from terrestrial power distribu-
tion systems. Both of these noise sources are mitigated prior
to event detection.
[11] We first discuss the method of automatically removing

sferics from broadband data via a two‐step process of sferic
identification, followed by sferic removal. The sferic iden-
tification process is discussed first and follows the technique
of Said [2009, p. 110]. Sferics propagating in the Earth‐
ionosphere waveguide from larger propagation distances
have maximal energy roughly concentrated near 9–13 kHz,
which is the result of the convolution of their original
radiated spectrum with the attenuation characteristics of the
Earth‐ionosphere waveguide. Therefore the first step of
sferic identification is to apply a passband filter between 5
and 15 kHz to the original full‐spectrum 100‐kilosamples/s
broadband data. The frequency 5 kHz is above the typical
observed frequencies for chorus and hiss at Palmer, so this
frequency range is unlikely to contain spectral information
from those emissions (which may result in “false positives”
during sferic detection). The filtered signal is then squared
(to increase contrast) and decimated to a sampling frequency
of 6 kHz. The absolute value of the resulting signal is the

Figure 1. Full emission detector system block diagram.
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“detection signal”. The detection signal is then thresholded,
and any contiguous time points during which the detection
signal is above the threshold are labeled as sferics. A threshold
of 0.01sd, where sd is the standard deviation of the detection
signal, has been found to work well in practice. Detected
sferics of shorter duration than 1 ms are extended to have
duration of at least 1 ms. In addition, any discrete sferics
which are closer together than 1.5 ms are combined into a
single sferic. The output of sferic detection is only the time
indices of the data which contain sferics; the original data
has not yet been altered up to this point. Figure 2 shows the
process of sferic detection and removal for an example 10‐s
segment of Palmer data. Figure 2a shows the detection
signal in blue and the threshold at 0.01sd in red.
[12] After sferics have been identified, the cleaning pro-

cess begins with the unaltered original broadband data. This
data is decimated to a sampling frequency of 20 kilo-
samples/s, for a maximum observable frequency of 10 kHz.
This both isolates the frequencies over which chorus and
hiss are typically observed and increases processing speed
due to the reduced data volume. Figure 2b shows the time
domain data after decimation with detected sferics labeled in
red.
[13] Before sferic removal takes place, an IIR highpass

filter with a cutoff frequency of 375 Hz is applied to the data
to mitigate issues arising from sferic slowtails, i.e., the ELF,

high‐amplitude components of sferics that propagate below
∼500 Hz in the transverse electromagnetic (TEM) mode in
the Earth‐ionosphere waveguide. Because the upper fre-
quency cutoff of slowtails is variable, and chorus and hiss
emissions are often seen at ELF frequencies which overlap
the slowtail frequency range, the cutoff frequency of the
highpass filter is chosen to be a compromise between
eliminating most of the slowtail energy while preserving as
much of the full bandwidth as possible in which to detect
emissions.
[14] Sferics are mitigated by first zeroing out samples that

have been identified as sferics, and then interpolating over
those samples. By interpolating over the sferics instead of
simply zeroing them out and smoothing the result, we
attempt to maintain continuity of the underlying signals,
thereby preserving their spectral properties which are used
when characterizing events (section 2.3). Interpolation is
accomplished using linear‐predictive coding (LPC) with an
autoregressive (AR) model of the signal [Godsill and
Rayner, 1998, sec. 5.2.2]. Under the AR model, a given
sample of the signal is modeled as a linear combination of
prior samples, as

xn ¼
XP
i¼1

aixn�i þ en ð1Þ

Figure 2. Sferic removal procedure shown with 10 s of Palmer data from 22 April 2001, 1150:05 UTC.
(a) A detection signal is constructed from data between 5 and 15 kHz, where sferic strength is maximized.
Components of this detection signal above a threshold are labeled as sferics. (b) Time domain data, sam-
pled at 20 kilosamples/s. Detected sferics are colored red, and original data is colored blue. (c) Time
domain data after sferic removal. The modified sferic locations are marked in red, as above, and their
amplitude is now below that of the background data. (d) A spectrogram of the original data, showing
a chorus emission that is corrupted by sferics and hum. (e) The same spectrogram after sferic removal.
(f) A zoomed‐in portion of 35 ms of time domain data from Figure 2b. As before, detected sferics are
marked in red against the blue background data. The amplitude scale is now linear. (g) Same data
as above, after cleaning. A cleaned sferic of interest is shown in red. Data from 20 ms before to 5 ms
after the sferic are used in generating the LPC coefficients for interpolation over the sferic and are shown
in green.
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where xn represents a sample at discrete time index n, P is
the order of the AR process, the P coefficients ai are the AR
coefficients, and en is the error. Define the matrix A as

A ¼

�aP . . . �a1 1 0 0 . . . 0
0 �aP . . . �a1 1 0 . . . 0
..
. . .

. . .
. . .

. . .
. . .

. . .
. ..

.

0 . . . 0 �aP . . . �a1 1 0
0 . . . 0 0 �aP . . . �a1 1

2
666664

3
777775
: ð2Þ

Then, the error sequence can be expressed as

e ¼ Ax: ð3Þ

[15] For a given sferic, we create three segments of data:
xu is the detected sferic, which has been zeroed out and now
consists of unknown values to be estimated, xb is 20 ms of
data before the first sample of xu, and xa is 5 ms of data after
the last sample of xu. Because sferics are cleaned sequen-
tially, xb is known to be free of sferics, while xa is not. The
entire data segment of interest is then given by

x ¼
xb
xu
xa

2
4

3
5: ð4Þ

We can also express the known and unknown values of x as
xk = [xb

T xa
T]T and xu, respectively.

[16] The entire sequence x is used to estimate the LPC
coefficients, via the LPC function in the Matlab software
package, including xu which consists of all zeros. Although
it may seem that only xb should be used to estimate the LPC
coefficients, since xu consists of all zeros and xa may con-
tain sferics, in practice, there is negligible difference in the
results. The risk of including sferics in the LPC estimation
via xa is mitigated by ensuring that it is significantly smaller
(5 ms versus 20 ms) than the sferic‐free portion of the
estimation, xb. For reference, at the implemented sampling

rate of 20 kilosamples/s, the 25 ms of data used in LPC
coefficient estimation consists of 500 samples.
[17] To estimate the missing data xu, partition the columns

of A into columns for known Ak and unknown Au indices of
x such that

e ¼ Akxk þ Auxu: ð5Þ

[18] The objective is to obtain an estimate of xu given A
and xk, which minimizes the mean squared error, which is
proportional to eT e. This is achieved by setting e to zero and
solving for xu, as

�Akxk ¼ Auxu: ð6Þ

Assuming that Au is skinny and full rank, the traditional
least squares solution is

xu ¼ � AT
uAu

� ��1
AT

uAkxk : ð7Þ

The solution for xu gives the data sequence with which to
replace the zeroed‐out sferic. This process is repeated
sequentially for every detected sferic in the data.
[19] Figure 2c shows the result of the sferic removal

process in the time domain. Energy in the samples that
contained sferics has been reduced to below the background
levels of the signal. Figures 2d and 2e show spectrograms
of the signal before and after sferic removal. Although some
broadband “nulls” have been introduced in the place of
more powerful sferics (which generally have a longer extent
in time than less powerful ones), the majority of low‐
amplitude sferics are removed without nulls and there is no
broadband ringing as would have resulted from simply
zeroing‐out the sferics in the time domain data. Given that
events are detected based on their spectrum (section 2.2),
these occasional nulls are far more tolerable than either the
original sferics or nulls for every sferic.
[20] Figure 2f shows a zoomed‐in portion of 35 ms of

the time domain data from Figure 2b, highlighting several
detected sferics, where now the amplitude scale is linear
instead of logarithmic (1 picotesla = 60 dB‐f T). Figure 2g
shows in green the range of data used for estimating the
LPC coefficients for the given cleaned sferic, shown in red.
[21] Another noise source observed at Palmer is hum,

which consists of parasitic leakage of 60‐Hz noise and its
harmonics from the Palmer Station power distribution sys-
tem. Hum is mitigated using the technique of Cohen et al.
[2010]. Hum frequency is estimated via the “quadratic inter-
polation” method using odd hum harmonics 7–31 (420,
540, …, 1860 Hz). Odd harmonics are chosen because they
are significantly more intense than even harmonics at Palmer.
The lower frequency of 420 Hz is the first odd harmonic
in the passband of the slowtail highpass filter, and hum is
usually no longer significant at Palmer above the upper
frequency of 1860 Hz. After its frequency has been esti-
mated, hum is removed via the “least squares estimation”
method. This process is repeated in intervals of 200 ms to
account for a potentially slowly changing hum frequency.
[22] Figure 3 shows spectrograms of the same data seg-

ment from Figure 2 before and after both sferics and hum
are removed. Contrast of the chorus emission between 2 and

Figure 3. Result of removing both sferics and hum from
data. This is the same 10‐s broadband data segment as in
Figure 2. In the cleaned data, it is much easier to identify
the chorus emission between 2 and 6 kHz.
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6 kHz is greatly enhanced after cleaning, emphasizing the
usefulness of this preprocessing step before initiating the
actual detection of emissions.

2.2. Event Detection

[23] Once data is cleaned, events may be detected which
are candidates for being classified as chorus or hiss. In
contrast to transient electromagnetic phenomena from light-
ning, such as sferics and whistlers, and other transient
emissions, such as periodic and quasiperiodic emissions [e.g.,
Helliwell, 1965, pp. 206–207; Sazhin and Hayakawa, 1994],
chorus and hiss emissions may persist for minutes or hours
with similar spectral characteristics over their entire dura-
tion. Thus when examining individual 10‐s records for each
synoptic epoch, we are interested only in events whose
power spectral densities (PSDs) are approximately constant
throughout the 10‐s record. It is natural then to detect events
and their associated bandwidth using the one‐dimensional
frequency spectrum of the 10‐s record, instead of the two‐
dimensional spectrogram. A standard method of estimating
the spectrum of a signal is via the Welch periodogram
[Welch, 1967], which, assuming the same windowing and
Fourier transform parameters, can be thought of as the aver-
age of a spectrogram matrix over time. However, the Welch
periodogram in its usual form is not adequate for our pur-
poses. Despite the sferic removal discussed in section 2.1,
certain types of high‐amplitude, longer‐duration impulsive
signals may remain in the cleaned data, such as tweeks
(the highly dispersed components of sferics near the Earth‐

ionosphere waveguide cutoff frequencies) and lightning‐
generated whistlers (sferic energy which has escaped into
the magnetosphere, become dispersed in the magnetospheric
plasma, and returned through the ionosphere in the opposite
hemisphere). Though these transient signals may last for less
than 1 s, their high amplitude may result in a contribution
to the PSD of the Welch periodogram which is dispropor-
tionate to their duration. This may in turn mask a continuous
chorus or hiss emission with a lower PSD at the same fre-
quency. To mitigate this problem, we discard the Welch
periodogram, which is formed from the mean of the columns
of a spectrogram, in favor of what we term the “Welch
mediogram” (or more simply, “mediogram”) formed from the
median of the columns of a spectrogram. Like any median
filter, the mediogram has the property that it emphasizes
spectral content which is persistent in time and deemphasizes
transient signals.
[24] Six common types of events are shown in Figure 4,

where the full 10‐s record for each synoptic epoch is shown
and the event is marked with a red box. Note that, although
both the periodogram (blue, “mean”) and mediogram (green,
“median”) PSDs are shown, only the mediogram is used in
event detection. The most common sources of noise are those
from lightning, including sferic bursts from intracloud light-
ning (which appear in broadband data as many closely spaced
low‐amplitude sferics), tweeks, slowtails (Figures 4a, 4b,
and 4c) and whistlers (Figure 4d). The events of interest
are chorus and hiss (Figures 4e and 4f). Although periodic
and quasiperiodic emissions do occur at Palmer’s invariant

Figure 4. Examples of common types of events as output by the event detector. Spectrograms for each
type of event are shown, along with the associated periodogram (blue line) and mediogram (green line)
for that data segment. The detected event is indicated with a red box. Although the majority of high‐
amplitude sferics are removed in the broadband cleaning process prior to event detection, sferic bursts
are not removed in this manner and may be detected as events. Similarly, tweeks and slowtails are not
removed by the sferic removal process due to their nonimpulsive nature. Whistlers are a common broad-
band emission at Palmer and are of scientific interest for a variety of reasons, but they are not used in this
study and are therefore considered noise. Chorus and hiss are the emissions of interest in this study.
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latitude (L = 50°S) (see, e.g., observations at Seattle, L =
54°N, Dunedin, L = 51°S, Norwich, L = 55°N, and others
[Helliwell, 1965, section 7.1]), they are generally not
detected at Palmer due to their relative rarity compared to
chorus and hiss, and also due to their transient behavior,
which is deemphasized by the mediogram.
[25] The arithmetic difference between the PSDs of the

Welch periodogram and the Welch mediogram is generally a
good measure of the “impulsiveness” of a given event. This is
illustrated particularly well in the hiss event in Figure 4f,
where above ∼3 kHz, there is a large difference between the
mediogram and periodogram PSD due to impulsive sferics,
while below ∼3 kHz, the difference is minimal due to the
constant‐PSD hiss emission.
[26] As mentioned, sferic removal is only effective on the

short‐time impulsive sferics themselves. It does not remove
any other products of terrestrial lightning. Fortunately, two
of the most prevalent noise sources, namely sferic bursts
and slowtails (Figures 4a and 4c), have fairly predictable
spectrums. Additionally, owing to the intensity of these
noise sources, it is infeasible to find emissions in the same
frequency band. Therefore the first step of the event detec-
tion process is to determine the frequency extents of sferic
bursts and slowtails in a given broadband record and look
only for emissions outside of these ranges.
[27] We define the terms “peaks” and “valleys” as the

local maxima and minima in the mediogram, respectively.
Slowtails dominate the spectrum at low frequencies, from
the 375 Hz slowtail highpass filter cutoff to slightly above.
Slowtail PSD has its maximum at frequencies below the
filter cutoff and rolls off quickly with increasing frequency
on a mediogram. An empirically determined reasonable
estimate for the slowtail upper cutoff in a given synoptic
epoch is one of (1) the frequency of the first (lowest fre-
quency) valley, (2) the first frequency at which the medio-
gram slope is less steep than −20 dB/kHz, or (3) 600 Hz,
whichever is lowest.
[28] The high end of the spectrum is dominated by sferic

bursts. Sferic burst energy peaks above the ∼8 kHz anti-
aliasing filter cutoff, so its PSD tends to rise monotonically
up to that cutoff. An empirically determined reasonable
estimate of the sferic burst lower cutoff is either (1) the
highest frequency at which the mediogram PSD (smoothed
over 1 kHz) becomes monotonically increasing up to the
antialiasing filter cutoff or (2) 8 kHz, whichever is lowest.
We refer to the slowtail and sferic burst cutoffs as the sferic
lower and upper cutoffs, respectively.
[29] Between the sferic cutoffs, we then search for events.

First, all peaks between the two sferic cutoffs are detected
and assumed to be candidates for unique events. Because
low‐frequency emissions are often seen on the edge of the
sferic lower cutoff, the frequency of the sferic lower cutoff is
added to the list of peaks (though, owing to the fact that
emission and slowtail PSDs reach their maximums below
the sferic lower cutoff, it is rarely a true peak). Second, the
3‐dB points for each peak, defined as the nearest frequen-
cies above and below each peak at which the mediogram
PSD is 3 dB or more below that of the peak, is determined.
The width of the peak is then defined as the frequency
difference between its two 3‐dB points, i.e., the full width at
half maximum (FWHM). If either 3‐dB point is beyond
either sferic cutoff, then the FWHM is defined as twice the

frequency difference between the peak and the remaining
3‐dB point. If both 3‐dB points are beyond the sferic cutoffs,
the peak is discarded. Additionally, peaks which have a
FWHM of less than 100 Hz are discarded.
[30] The upper and lower “extents” of each peak are then

determined to be the closest frequencies that can be reached
from the peak for which (1) the mediogram PSD is at least
9 dB less than the PSD at the peak, or if no such point is
found, (2) the frequency of the lowest mediogram PSD
between the peak and the respective sferic cutoff, inclusive.
Additionally, the extents may not include any mediogram
PSDs which are greater than the given peak. The bandwidth
of a given peak is then defined as the frequency difference
between its upper and lower extents. Peaks with bandwidths
less than 300 Hz are discarded. Finally, each peak is checked
to determine whether it is contained within the extents of a
higher‐PSD peak. If so, it is discarded.
[31] Each peak which passes this gauntlet of tests is then

labeled as an “event” and is a potential candidate for being
categorized as an emission. At this point, events are not yet
categorized and may include either chorus, hiss, or noise (i.e.,
anything other than chorus or hiss).
[32] The relevant metric for the efficacy of the event

detector is its missed detection rate, i.e., the percent of chorus
or hiss emissions that the event detector fails to identify. In
this implementation, there are no false positives from the
event detector since those events are discarded using the noise
neural network (section 2.5). To evaluate the missed detec-
tion rate, we manually examined a subset of synoptic epochs
that were processed with the event detector. In 1000 synoptic
epochs, we noted 15 chorus or hiss emissions that were not
detected by the event detector, primarily as a result of their
blending into the sferic cutoffs. To make a concrete state-
ment about the event detector’s missed detection rate, we
model each sampled synoptic epoch as an independent
Bernoulli trial and test the null hypothesis of the form

H0 : p � p0 ð8Þ

where p is the true (unknown) missed detection rate of
the detector, and p0 is a missed detection rate which we say
with 95% confidence is greater than the true missed detec-
tion rate. To test this hypothesis, the z‐score is computed as
[Navidi, 2006, sec. 6.3]

z ¼ p̂� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 1� p0ð Þ=np : ð9Þ

where n = 1000 is the number of trials, and p̂ = 0.015 is the
observed missed detection rate. The P‐value of the
hypothesis test is then the area to the left of z under the
standard normal probability distribution function with mean
0 and standard deviation 1. To reject the null hypothesis at
the 5% level, the P value and corresponding normal
cumulative distribution function should equal 0.05, which
gives z = −1.65. Equation (9) can then be solved for p0 to give
p0 = 0.023. Thus we can state with 95% confidence that the
missed detection rate of the event detector is less than 2.3%,
or conversely, at least 97.7% of emissions are detected.

2.3. Event Characterization

[33] Once events are detected, various scalar character-
istics are determined about each event. These characteristics
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are used as inputs to the neural network, described in
section 2.5. Each characteristic is chosen because of the
potential that it may have, possibly in conjunction with
other characteristics, to aid the neural network in differ-
entiating between different types of events. A total of 19
characteristics are determined for each event; they are
summarized in Table 1 and are discussed in more detail
below. As many reasonable characteristics were chosen as
possible, without an in‐depth analysis of the influence of
each characteristic on the result.
[34] The year and day of year of the synoptic epoch are

included to incorporate seasonal and long‐term differences
in emission characteristics. The peak frequency, upper cut-
off frequency, lower cutoff frequency, and bandwidth are
basic parameters for each event and are determined during
event detection, described in section 2.2.
[35] Additional emission spectral parameters include the

maximum positive and negative mediogram slopes over the
course of the emission (measurements of how rigidly band‐
limited the event is), average mediogram and periodogram
PSD (the difference of which is a measure of the impul-
siveness of the event), and maximum mediogram and peri-
odogram PSDs. The “median power” is the integral of the
mediogram PSD (in fT2/Hz) over the bandwidth of the
event. This value is integrated in power space and therefore
is different from the event’s average mediogram amplitude,
which is averaged in log space and is not multiplied by the
bandwidth.
[36] The “time to day/night terminator” is defined as the

time from the synoptic epoch to the nearest terminator,
either dawn or dusk. If Palmer is in darkness during the
synoptic epoch, then this number is positive, otherwise it is
negative. This parameter is incorporated because all types of
events are more common during darkness; this is a conse-
quence of the lower absorption of the ionosphere during the
night that affects both transionospheric propagation and
propagation in the Earth‐ionosphere waveguide.
[37] The “burstiness” parameter is somewhat more involved

and attempts to measure the canonical spectral difference
between chorus and hiss, namely that the former is a “bursty”
emission (containing discrete structure in time) while the

latter is not. Burstiness is estimated as follows. First, the
event is mixed to baseband by multiplying with a cosine at
the event center frequency and decimating to a sampling
frequency equivalent to the bandwidth of the event. Then, the
signal is squared so that it is in units of power and decimated
again to a sampling frequency of 100 Hz. Finally, the Welch
periodogram is calculated for the signal, and the centroid of
the Welch periodogram (for positive frequencies only) is
obtained. In this case, the centroid represents the mean fre-
quency of the Welch periodogram, weighted by periodogram
amplitude (in units of power) and is a measure of the fre-
quency at which the signal power tends to be concentrated.
Signals which are not bursty (such as hiss) will have a
spectrum which resembles random noise and will have a
centroid near the center of the spectrum, at 25 Hz. Signals
which are bursty (such as chorus) will have spectral power
concentrated near the low end of the spectrum and will have
a centroid lower than 25 Hz (representing a significant
amplitude modulation of a few Hz). The centroid is used as
the burstiness parameter and has units of Hz.
[38] The four remaining parameters, prefixed with the

letters “XC”, represent parameters relating to the cross‐
correlation of adjacent rows of a signal spectrogram. For
each adjacent pair of rows in the spectrogram (correspond-
ing to a pair of frequencies), the cross‐correlation is com-
puted. The cross‐correlation vector provides a measure of
the total correlation between the two rows (given by the
peak value of the cross‐correlation vector) and the dominant
slope of the event in that frequency range (given by the lag
of the peak of the cross‐correlation). The “XC slope”
parameter is calculated as the centroid of the average (over
frequency) of all of the cross‐correlation vectors, divided by
the frequency step of the spectrogram. It is a measure of the
dominant slope of the event and has units of s/Hz. The “XC
correlation coefficient” is the mean of the amplitudes of
each cross‐correlation vector at the lag indicated by XC
slope and is a measure of the “strength” of that dominant
slope, from 0 to 1. “XC mean value” is the mean of all
values of all cross‐correlation vectors; a higher value in-
dicates a wider range of lags over which correlation is high
and suggests thicker event elements in time (e.g., chorus and
whistlers) as opposed to thinner ones (e.g., sferics). “XC
mean standard deviation” is the mean of the standard de-
viations of each cross‐correlation vector and is a comple-
mentary parameter to the XC mean value. Events which tend
to have large XC correlation coefficients include whistlers,
which have negative slopes, chorus emissions, which usu-
ally have positive slopes, and sferics, which usually have
slopes near zero. Hiss tends to have a low XC correlation
coefficient since its spectrogram rows are random noise and
therefore are minimally correlated. Additionally, hiss tends
to have an XC slope near zero, since its cross‐correlation
vectors appear as random noise with centroids near zero lag.

2.4. Construction of the Neural Network Training Set

[39] After the events have been detected and character-
ized, the next step in the emission detection process is the
construction of a training set for the neural network. The set
of events included in the training set is a subset of all (un-
categorized) events output from the event detector. We use
events from 1 day out of every 15 for training, or approxi-
mately 24 days per year, for a total of approximately 240 days

Table 1. List of Event Characteristics and Units

Name Units

1 Year Years (2000–2010)
2 Day of year Days (1–366)
3 Peak frequency Hz
4 Upper cutoff frequency Hz
5 Lower cutoff frequency Hz
6 Bandwidth Hz
7 Max positive mediogram slope (dB‐f T/Hz1/2)/Hz
8 Max negative mediogram slope (dB‐f T/Hz1/2)/Hz
9 Avg mediogram PSD dB‐f T/Hz1/2

10 Avg periodogram PSD dB‐f T/Hz1/2

11 Max mediogram PSD dB‐f T/Hz1/2

12 Max periodogram PSD dB‐f T/Hz1/2

13 Median power dB‐f T
14 Time to day/night terminator Hours
15 Burstiness Hz
16 XC slope sec/Hz
17 XC correlation coefficient Unitless (0–1)
18 XC mean value Unitless (0–1)
19 XC mean standard deviation Unitless (0–1)
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of training data for the 10‐year data set. This cadence is a
compromise between having adequate training data and the
general tediousness of the training process. The training data
used contains 10,013 out of a total of 154,639 events for the
10 years of data used in this study.
[40] Assembly of the training set is simple and repetitive.

The human trainer makes use of a graphic user interface
which displays a spectrogram for a given event in the
training set. The event is highlighted on the spectrogram
with a red box. The trainer categorizes the event as either
(1) chorus, (2) hiss, (3) an unknown nonnoise emission
(which the trainer is unable to categorize as chorus or hiss
from the spectrogram), or (4) noise. This process is repeated
for all 10,013 events in the training set. In the case of a
“mixed” detection with more than one type of event in the
same bandwidth (e.g., the relatively common simultaneous
whistlers and hiss), the detected event is categorized
according to the event with the greater PSD. This decision
is made under the principle that the characteristics of the
detected event (discussed in section 2.3) are primarily
based on the event with the greater PSD (i.e., the dominant
constituent of the detected event’s spectrum).
[41] The result of this procedure is a 1 × 10,013 vector of

“target” values, each of which is either chorus, hiss, unknown
emission, or noise. Independently, the automated event
characterizer determines the characteristics for each event,
resulting in a 19 × 10,013matrix of input values. Note that the
input values are not used by the trainer in assembling the
training set; only the event time, frequency range, and
broadband spectrogram are used.

2.5. Neural Network Implementation and Training

[42] The training set is then in a suitable format for being
used to train a neural network. The Matlab Neural Network
Toolbox is used for all neural network operations. Two
completely separate neural networks are implemented: a
neural network to distinguish between emissions and noise,
which we refer to as the “noise neural network”, and a
neural network to distinguish between chorus and hiss,
which we refer to as the “emission neural network”. A
neural network is capable of having an arbitrary number of
outputs, and we could have created a single neural network
to distinguish between chorus, hiss, and noise. However, we
choose to use a sequence of two neural networks so that they

may be trained using different training sets, as is explained
later.
[43] Both the noise and emission neural networks are

known in Matlab as “pattern recognition networks” and
have identical structure, shown in Figure 5. Each neural
network consists of a 20‐neuron hidden layer followed by a
single‐neuron output layer and takes as input the 19‐value
event characteristics vector (p) described in section 2.3.
Trial and error has shown that 20 neurons in the hidden
layer is sufficient to achieve reasonable performance for
both networks. Each neuron in the hidden layer contains a
single weight for each of the 19 inputs and a single bias. The
resulting matrix of weights (IW) is a 20 × 19 matrix, and the
resulting vector of biases (b1) is a 20 × 1 vector. Similarly,
the single neuron in the output layer contains 20 weights,
one for each output of the 20 neurons from the hidden layer
and a single bias. The resulting matrix of weights (LW) is
a 1 × 20 matrix, and the resulting bias (b2) is a scalar. The
transfer function for both layers is the hyperbolic tangent
sigmoid function (tansig), which transforms unbounded
input into bounded output in the range [−1, +1]. The output
of the output layer is further thresholded so that the final
output of the network is a boolean true/false value (corre-
sponding to emission/noise and hiss/chorus, respectively).
In theory, the threshold may be set to preferentially maxi-
mize true positives or minimize false positives, but in
practice, it is left at the point which minimizes the total
number of detection errors. The output of the hidden layer is
given by

a1 ¼ b1 þ IWpð Þ ð10Þ

and the output of the output layer before thresholding is
given by

a2 ¼ b2 þ LWa1ð Þ: ð11Þ

[44] The training set used for the noise neural network is
the full training set (10,013 events), with targets set to 0 if
the event is noise and 1 if the event is any type of emission
other than noise. The training set used for the emission
neural network is only those events in the full training set
which have been categorized as chorus or hiss (2453
events); unknown emissions and noise are discarded from
the training set for this neural network. The principle behind
this is that, once noise events are eliminated with the noise
neural network, the emission neural network will categorize
all remaining events, including those which would be cat-
egorized by the trainer as unknown emissions, as either
chorus or hiss. In this way, the neural network is expected to
outperform the trainer by categorizing emissions based on
their similarity, in the 19‐dimensional property space shown
in Table 1, to events which the trainer is able to categorize.
[45] For example, let us say that the human trainer cate-

gorizes emission A as chorus and emission B as hiss but is
unable to make a decision about emission C. The neural
network would then categorize emission A as chorus, based
on its similarity to other known chorus emissions (previ-
ously categorized by the trainer), and emission B as hiss,
based on its similarity to other known hiss emissions.
Finally, it would examine the characteristics of emission C;

Figure 5. Neural network block diagram. This block dia-
gram describes both the noise neural network and the emis-
sion neural network, which are structurally equivalent, but
have different weights and biases. The size of each element
is indicated by the dimensions below the given element;
e.g., IW is a matrix with 20 rows and 19 columns.
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if they more closely resembled those of known chorus
emissions, emission C would be categorized as chorus, and
if they more closely resembled those of known hiss emis-
sions, emission C would be categorized as hiss. In this way,
the neural network is capable of making intelligent decisions
about event categorization based on information and pro-
cessing power which are not readily available to the trainer.
[46] Both neural networks are trained using the scaled

conjugate gradient backpropagation method [Møller, 1993]
with initial weights and biases chosen via the Nguyen‐
Widrow initialization algorithm [Nguyen andWidrow, 1990].
The training set for each neural network is split into three
groups: the “main” set (70% of values), the “validation” set
(15% of values), and the “test” set (15% of values). The
backpropagation training procedure is performed only with
the main set. The validation set is used to improve the
generalization of the neural network via early stopping as
follows. During training, the error of the main set (defined
as the mean squared error between the targets and the
current outputs of the network) decreases monotonically

and, initially, so does the error of the validation set. How-
ever, at a certain point, the error of the validation set stops
decreasing due to overfitting of the neural network to the
main set. The training is halted after the error of the vali-
dation set fails to decrease for six iterations. In contrast, the
test set is a completely independent measure of the effec-
tiveness of training and is not used in the training at all.
[47] The results of training are shown via the confusion

matrices in Figure 6, and instructions on interpreting the
confusion matrices are contained in the caption. It can be
seen that the noise neural network, on the left of Figure 6,
correctly categorizes 91.9% of the input data and shows no
signs of overfitting, as seen from the fact that the total
success rates of the main and test sets are very similar
(92.1% versus 91.3%). The emission neural network per-
forms nearly as well, correctly categorizing 87.9% of
emissions, but with some symptoms of overfitting, as seen
from the fact that the percent of correct detections for the
main set (89.5%) is significantly higher than that of the test
and validation sets (both 84.0%). However, when we tried to

Figure 6. Neural network confusion matrices for training of (left) the noise neural network and (right)
the emission neural network. Each training set is split into three subsets: the “main” set (70% of inputs),
the “validation” set (15% of inputs), and the “test” set (15% of inputs). The “total” set represents the sum
of all three sets. In the noise neural network, the labels “EM” and “NO” mean emissions and noise,
respectively, and in the emission neural network, the labels “HI” and “CH” mean hiss and chorus, respec-
tively. The boxes in each confusion matrix are described with respect to the noise main confusion matrix
in the upper left. Squares 1 and 5 (green background) represent the number of neural network outputs
which matched the targets, and squares 2 and 4 (red background) indicate the number of neural network
outputs which failed to do so. Squares 7 and 8 represent the percent of each target class which were (upper
green number) and were not (lower red number) categorized correctly. Squares 3 and 6 represent the per-
cent of each output class which were and were not categorized correctly. Square 9 (blue background)
indicates the total percent of outputs which matched their targets (correct detections, upper green number)
and those that did not (lower red number).
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reduce overfitting by reducing the number of neurons in the
hidden layer, the number of correct detections decreased for
all three sets. Therefore we tolerate this mild overfitting and
accept the fact that the correct detection rate of the emission
neural network is expected to be closer to the test and val-
idation rates of 84.0% than the total rate of 87.9%.
[48] Once the neural network has been trained, it is ready

to be used on the full catalog of 154,639 detected events
over the 10 years of data for this study. Initially, all events
are passed through the noise neural network and are cate-
gorized as either noise or emissions. All noise events are
discarded. All emission events are then passed through the
emission neural network, and they are further categorized
as either chorus or hiss. The end result is a database of all
chorus and hiss emissions detected over the course of this
study, including time, frequency, amplitude, and other char-
acteristics from section 2.3. From this database, many dif-
ferent statistics may be determined about chorus and hiss
emissions observed at Palmer, a small subset of which is
discussed in section 3.

2.6. Algorithm Speed

[49] All aspects of the emission detector are implemented
in Matlab Version 2010a. The sferic removal, hum removal,
event detection, and event characterization steps are run in
parallel using the Matlab parallel computing toolbox with
eight simultaneous threads on a Dell PowerEdge R710 rack‐
mount server with two quad‐core Intel Xeon X5550 pro-
cessors with 8 MB of cache and 16 GB of system RAM. The
median time for cleaning one day of data (consisting of a
total of 960 s of broadband data from four 10 s data seg-
ments per hour) is 234 s. The median time for detecting and
characterizing events for one day of data is 16 s.
[50] The neural networks are run on a workstation with an

AMD Athlon 64 X2 4200+ dual‐core processor with 512 kB

of cache and 4 GB of system RAM. The total time required
for the human trainer to create the training set by manually
categorizing emissions is approximately one work week.
The time required to run the training algorithm on the neural
networks and to run the neural networks on the detected
events for the entire 10‐year data set is less than 5 min.
[51] If only the CPU‐bound cleaning and event detection/

characterization steps are considered, the chorus/hiss detec-
tion system runs at a rate of 350x real time on modern server
hardware, assuming four 10‐s data segments sampled per
hour. If data were sampled continuously, with 360 10‐s data
samples per hour, the speed would drop to 3.8x real time. In
the future, the detection system may be easily implemented
in a real time setting at field sites using standard workstation
hardware. However, in a real time setting, it would be
necessary to periodically add current data to the training set
and retrain the network, in the event that site conditions
change over time (for example, due to solar cycle variations
or changes in system calibration).

3. Solar Cycle Variation of Emissions

[52] The first property of chorus and hiss which we
investigate using the emission database is the most common
frequency and time ranges for emission occurrence at Palmer.
This is visualized using the “cumulative spectrogram” approach
described by Golden et al. [2009, sec. 2.2]. The cumulative
spectrogram is the sum, in log space, of the average med-
iogram amplitude of each emission, divided by the number of
available data files for each synoptic epoch. This is effec-
tively a plot of normalized emission occurrence, weighted by
emission PSD, with respect to frequency and local time.
[53] Cumulative spectrograms of chorus and hiss emissions

from May 2000 through May 2010 are shown in Figure 7.
Figure 7 may be compared withGolden et al. [2009, Figure 5],
though, in Figure 7, we have broken down chorus and hiss
in a different way. In particular, when chorus and hiss
appear in the same broadband record, regardless of whether
they appear in the same or different frequency bands, Golden
et al. [2009] labeled that entire broadband record as “chorus
with hiss”. In contrast, in this study, we independently label
multiple emissions in a given broadband record if they occur
in different frequency bands. Additionally, we label a given
bandlimited emission as “chorus” if it contains chorus‐like
features, regardless of background hiss in the same frequency
band, in light of the fact that the background hiss may simply
be an artifact of magnetospheric or subionospheric multi-
path of the original chorus emission. Golden et al. [2009]
examined only one year of data, 2003, completely by hand.
The similarity then of the automated results from this study
to the manual results fromGolden et al. [2009] are an excellent
verification of the automated algorithm (though it should be
noted that the same human trainer was used for manual
emission identification in both studies, and theremay be small
systematic biases).
[54] Consistent with other ground studies of chorus [Storey,

1953;Allcock, 1957;Pope, 1957, 1960] and hiss [e.g.,Laaspere
et al., 1964] at similar geomagnetic latitudes, Figure 7 shows
that chorus is essentially restricted to the dawn sector at
Palmer at frequencies up to ∼6 kHz, while hiss appears at all
local times below ∼1 kHz, peaking in occurrence in the dawn
and dusk sectors. A component of hiss is also seen up to

Figure 7. Cumulative spectrograms for chorus and hiss
computed over the entire 10‐year data set. The cumulative
spectrogram is effectively a plot of normalized occurrence
for chorus and hiss, weighted by emission PSD, as a func-
tion of frequency and local time. Chorus is observed exclu-
sively in the dawn sector. Hiss is observed at all local times,
with peaks near dawn and dusk. Additional higher‐frequency
structure for hiss is observed in the dusk sector.
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∼4 kHz in the dusk sector between 1600 and 2200 MLT
[Vershinin, 1970; Carpenter et al., 1975; Hayakawa et al.,
1988]. Golden et al. [2009] hypothesized that the observed
dawn hiss may be partially caused by chorus [Santolík et al.,
2006; Bortnik et al., 2008] while the observed dusk hiss may
be partially caused by terrestrial lightning [Sonwalkar and
Inan, 1989; Draganov et al., 1992; Green et al., 2005;
Meredith et al., 2006].
[55] We also break chorus and hiss occurrence down into

a count of average number of emissions per day with a
monthly cadence over the course of the entire data set.
These occurrence rates are shown in Figure 8 (top), along
with monthly average Kp and AE indices (Figure 8, middle)
and the 10.7‐cm solar radio flux from Penticton, British
Columbia, Canada (Figure 8, bottom). Two main trends can
be seen in the occurrence rates in Figure 8 for both chorus
and hiss. First, there is a variation in emission occurrence
with year, generally declining from 2000 through 2010 with
the exception of 2003, a particularly disturbed year. This
corresponds to the decline of solar cycle 23 (as indicated by
the decline in 10.7‐cm radio flux) and the monthly average
Kp and AE values over that range, consistent with the known
control of chorus and hiss by geomagnetic activity [e.g.,
Storey, 1953; Laaspere et al., 1964; Meredith et al., 2001,

2004]. Second, there is a variation in emission occurrence
with season, generally peaking in austral winter (June, July,
and August) and reaching a minimum in austral summer
(November, December, January) due to variations in iono-
spheric density and absorption that result from seasonal
variations in solar illumination [e.g., Helliwell, 1965, sec.
3.8–3.10]. The correlation of geomagnetic activity and,
correspondingly, emission occurrence with 10.7‐cm radio
flux is very weak, and the plot of 10.7‐cm radio flux is
simply meant to illustrate the phase of the solar cycle.
[56] The solar‐cyclical and seasonal trends of emission

occurrence can be explored in more detail by focusing
individually on the yearly and monthly variation of emis-
sions. Figure 9 (top) shows histograms of chorus and hiss
occurrence versus year averaged over all months (left) and
occurrence versus month averaged over all years (right).
Figure 9 (bottom) shows the Kp and AE indices averaged
over the same periods. Note that we have only averaged
over synoptic epochs for which we have Palmer data from
May 2000 through May 2010, so the 2000 and 2010
averages are only over partial years.
[57] The yearly occurrence rates shown in Figure 9 (left)

show a strong correlation with the average Kp and AE values
for a given year, indicating strong dependence for both

Figure 8. (top) Chorus and hiss occurrence rate, (middle) average Kp and AE indices, and (bottom) solar
10.7‐cm radio flux for the entire data set, plotted with a monthly cadence. The 12‐month smoothed average
of the 10.7‐cm radio flux is also plotted as an orange line. Chorus and hiss occurrence is well‐correlated with
geomagnetic activity in a given month, though neither emission occurrence nor geomagnetic activity is par-
ticularly well‐correlated with radio flux. In the plot of emission occurrence, months with fewer than 12 full
days of data (fewer than 1152 synoptic epochs) have been discarded.
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emissions on the geomagnetic disturbance level. The general
trend of decreasing occurrence with increasing year is seen,
consistent with the decline of Kp and AE in later years
coinciding with the waning of solar cycle 23. The obvious
exception is 2003, which saw significantly more disturbed
geomagnetic conditions than surrounding years. This cor-
responds to a doubling of chorus occurrence in this year
versus 2002 and 2004 and a near‐doubling in hiss occur-
rence versus those same years.
[58] The decline of emission occurrence frequency with

waning solar cycle is in contrast to the results of Smith et al.
[2010], who saw no obvious correlation of average receiver
amplitude with sunspot number at the higher‐latitude Halley
Station (L = 4.5, 61.8°S invariant latitude). The lack of
correlation observed by Smith et al. [2010] may have been
due to a variety of factors, including (1) the poor correlation
of sunspot number with geomagnetic activity, (2) the cor-
rupting influence of terrestrial lightning in their data, (3) the
fact that Halley is on the Antarctic coast and therefore
emissions propagating in the Earth‐ionosphere waveguide
from the Antarctic continent suffer greater attenuation over
the Antarctic ice than do emissions observed at Palmer, which
primarily propagate over seawater, or (4) simply the fact that
Halley is located at a significantly higher L‐shell than Palmer
and tends to observe a somewhat different set of emissions.
[59] The monthly occurrence rates shown in the right

panels of Figure 9 show a very different trend than the yearly
occurrence rates. Here, we see a slight seasonal variation of
geomagnetic disturbance levels, generally weaker during
austral summer and stronger during austral winter [Berthelier,
1976], with slight peaks during the equinoxes [Russell and
McPherron, 1973]. However, the hiss and especially chorus
occurrence rates show a very strong seasonal variation which
is disproportionately greater than would be expected from the
seasonal variation in geomagnetic activity alone (though
there is a slight peak in hiss occurrence during the equinoxes).
[60] The large seasonal variation in chorus and hiss occur-

rence is the result of one of the most debilitating factors for

interpreting ground‐based measurements of magnetospheric
phenomena, namely variations in ionospheric absorption.
Daytime absorption rates for trans‐ionospheric propagation
can be tens of dB higher than nighttime rates at 50° invariant
latitude [Helliwell, 1965, Figure 3–35], and the signal strength
is further reduced during the day due to increased absorption
in the Earth‐ionosphere waveguide.
[61] To illustrate the effect of ionospheric absorption on

received chorus wave power, Figure 10 shows cumulative
spectrograms of chorus on a monthly basis, from January
to December, averaged over the full 10‐year data set. The
dawn day/night terminator is marked with a golden dashed
line on the left of each image, and the dusk day/night ter-
minator is marked with a blue dashed like on the right of
each image. As the onset of daylight shifts to later local
times from January to June, the region of observed chorus
emerges between 0400 and 1000 MLT. Then as the onset of
daylight moves to earlier local times from June through
December, the region of observed chorus fades away. This
monthly progression clearly shows that, due to increased
ionospheric attenuation during daytime, chorus is only
observable during local night, the times of which change
dramatically throughout the year at Palmer’s high geographic
latitude (64.05°S). The “preferred” interval for observing
chorus at Palmer is somewhere between 0400 and 1300 MLT
although it is only observed between 0400 and 1000 MLT
because the hours between 1000 and 1300 MLT are always
sunlit.
[62] Results are similar for hiss (not shown), except that

hiss is often seen at lower amplitudes below 1 kHz, even
when Palmer is in daylight (as suggested by the band below
1 kHz in Figure 7 (bottom), even at local noon). This is
probably the result of ionospheric absorption decreasing
with decreasing frequency [e.g., Helliwell, 1965, Figure 3–
35]. The hiss amplitudes below 1 kHz at dawn and dusk do
however increase when Palmer is in darkness versus when it
is sunlit. These results are consistent with those of Smith et al.
[2010], who found a significantly stronger influence of the

Figure 9. (left) Histogram of chorus and hiss occurrence rate by (top) year and (bottom) average Kp and
AE indices. The chorus and hiss occurrence rates naturally follow the average Kp and AE in a given year.
(right) Histogram of chorus and hiss occurrence by (top) month and (bottom) average Kp and AE indices.
The seasonal variation of hiss is at least partially affected by the mild seasonal variation of geomagnetic
activity, while the seasonal variation of chorus is primarily dependent on the seasonal variations of iono-
spheric absorption due to changing solar illumination. Error bars shown are 95% confidence intervals.
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day/night terminator for emissions at ∼3 kHz than for those at
∼1 kHz, although they did not systematically differentiate
between chorus and hiss.

4. Summary and Future Work

[63] An algorithm for automatically detecting and differ-
entiating between chorus and hiss on data from ground‐
based ELF/VLF wave receivers has been developed. The
algorithm operates on 10‐s broadband data records, sampled
at 100 kHz. Data is first cleaned of sferics and hum. Next,
events are detected using empirical methods and fed to a
pair of previously trained neural networks which discard
noise events and categorize remaining events as either chorus
or hiss.
[64] All aspects of the algorithm are automatic and require

no operator intervention with the exception of the initial
training of the neural network. This is accomplished by
having a human trainer manually create a training set by
categorizing a subset of detected events as either noise,
chorus, or hiss. The neural networks are then trained using
this training set. The noise neural network used in this study
is capable of correctly differentiating between noise and
emissions for 91.9% of the 10,013 events in the noise neural
network training set. The emission neural network is capable
of correctly differentiating between chorus and hiss for
84.0% of the 2453 events in the emission neural training set.
Excluding the one‐time assembly of the neural network

training set by the trainer, the algorithm runs at 350x real
time on a single modern 8‐core computer and could easily
run at better than real time on more conservative hardware.
[65] The algorithm was run on 10 years of broadband data

from Palmer Station, Antarctica, from May 2000 through
May 2010. On the basis of the output of the automated
detector, we show that chorus is primarily observed in the
dawn sector, at frequencies from 400 Hz to ∼6 kHz, while
hiss is observed below 1 kHz at all local times and up to
∼4 kHz in the dusk sector. The average occurrence rates of
chorus and hiss in a given year, over the course of a solar
cycle, are strongly dependent on the average geomagnetic
disturbance levels in that year.
[66] Over the course of a single year, chorus occurrence in

particular varies significantly from June to December, as a
result of the longer daylight hours and resulting increased
ionospheric absorption during austral summer versus austral
winter. Hiss occurrence varies in this same manner for the
same reason although the difference is less dramatic due to
the lower frequencies of hiss and resulting decreased iono-
spheric absorption. Although the perils of high ionospheric
absorption in interpreting ground‐based ELF/VLF wave data
have long been known, Figure 10 starkly illustrates its effects
and shows that caution must be used when comparing data
from summer months to winter months.
[67] The scientific results presented here have only

scratched the surface of the capabilities of this automated
emission detector and the resulting 10‐year database of

Figure 10. Cumulative spectrograms of chorus by month. The dawn terminator is shown as the golden
dashed line on the left of each image, and the dusk terminator is shown as the blue dashed line on the right
of each image. The region between the two terminator lines is sunlit, and the region beyond either line is
in darkness. As the onset of daylight shifts to later local times from January to June, the region of chorus
observations emerges between 0400 and 1000 MLT; then, as the onset of daylight moves to earlier local
times from June through December, the region of chorus observations fades away. This monthly progres-
sion clearly shows that, due to increased ionospheric attenuation during daytime, chorus is only observ-
able during local night.
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Palmer emissions. In the future, this database may be
combined with similar databases of, e.g., in situ measure-
ments of chorus and hiss, or plasmapause location, to gen-
erate statistics relating to how chorus and hiss may propagate
from their source to the ground, and the attenuation suffered
therein. This has been done previously via a study of how
the plasmapause affects chorus propagation to the ground
using a smaller data set from Palmer [Golden et al., 2010].
Whistlers, which were discarded as “noise” for this study,
may also be detected with some simple modifications to the
neural networks. The automated detector may also be used
on data from different ground stations, e.g., at different
L shells, and, with some modifications, on broadband in
situ satellite wave data. Thus, many different emission data
sets may be easily generated from a wide variety of receivers
using the same technique. Finally, as suggested earlier in
section 2.6, it would be a simple matter to run the automated
detector in real time at Palmer or at a similar remote site in
order to produce real time measurements of chorus and hiss.
We expect that this study is merely an introduction to the
capabilities of the automated emission detector and the
Palmer emission database, and we expect them both to
continue to bear scientific fruit for some time to come.
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