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ABSTRACT

The usual methods of spectrum analysis applied to analog tape recordings of very low
frequency (VLF) signals exiract only magnitude information and ignore phase information.
A digital signal processing system using a recorded constant-frequency .pilot, tone has been
developed which can correct tape errors due to wow and flutter, and reconstruct the signal
phases. Frequency shifts are corrected during analysis by interpolating between spectral.
points in the windowed Fourier transform, and the output phases of the synthesized filters
are corrected for timing errors. Having 51gnal component phases as well as magnitudes
doubles the available information.

Whistler-mode signals from the VLF transmitter at Siple Station, Antarctica, are
analyzed as received at Roberval, Quebec. The phase of a non-growing signal is found
to give a less-noisy measure of duct motion than Doppler frequency shift, with improved
time resolution. Correlations are seen between variations in the whistler-mode phase delay
and the earth’s magnetic field component D. They are interpreted as Pc 2 micropulsation
transients, short compared to the length of the field line, which propagate from equator to
ground as Alfvén waves.

Pulses with temporal growth show an advance in relative phase with time, indicating a
positive frequency offset from the transmitted signal. This offset is sometimes seen even at _
the beginning of a received pulse, an effect not explained by any current model of cyclotron-
resonant wave-particle interactions. Pre-termination triggering of an emission a.lwa.ys occurs .
after a phase advance of 1.5-3 revolutions. Instantaneous frequency measurements show
that all emissions, even termination fallers, begin above the frequency of the triggering
signal, and that the transition from a signal to a termination emission 100 Hz higher may
occur in less than 5 ms. Other phase effects give clues to the mechanisms of sideband
generation, suppression, entrainment, and whistler precursors.

- Magnetospheric signals with line structure are analyzed, and found to have little or
no connection with possible power line harmonic radiation. A model is developed to ex-
plain them based only on magnetospheric processes—growth, suppression, echoing, and
multipath coupling.
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PREFACE

The idea of building a digital analysis system for VLF data first occurred to me in 1974. At
that time [ was interested in retrieving weak, coherent signals from a noisy background. We had
started looking at recordings made at our receiving site in Roberval, Quebec, of signals from the
Siple Station VLF transmitter, which had just begun operation the previous year. The transmitter
had already produced some exciting effects, but its capabilities were still largely unknown. We
hadn’t learned the best frequencies and times of day to transmit, and much of the time we couldn’t
see any signals at Roberval. Dyke Stiles used a Sigma 5 computer (long since gone) to analyze a
small amount of VLF data and demonstrated the power of digital signal analysis, even though his
computer was not particularly well suited to this task. Why not build a special system for VLF
‘data. analysis, one that could average weak but repetitive signals and pick them out of the noise?

A proposal was submitted to the NSF in 1976 for the purchase of equipment and parts for the
system. I thought it would take about a year to put together. Work started early in 1977. Asis
often the case, the work was found to take much longer than expected, even excluding time spent
on other projects along the way. :

The impact of the digital analysis system is likely to be quite different from what was envisioned
in the original proposal. At that time the value of phase measurements was not fully appreciated.
The phase information present in VLF data is mentioned in the proposal, but rather parenthetically,
and only in regard to its need when integrating weak signals. The use of signal phase to identify
and classify signals, to make accurate frequency measurements, and in the study of wave-particle
interaction mechanisms is the most significant contribution of the present system.

Phase analysis is a valuable tool for certain kinds of signals—those from a coherent source
such as a VLF transmitter, for example. Phase information gives a new perspective from which
to view these signals, effectively doubling our information about them. Many of the signals I have
analyzed show new and interesting, and in some cases quite unexpected, behavior when their phase
information is included. However, if'any new phenomena are found in these pages, it is only because
I have had the good luck to be one of the first to look.

1 would like to thank those who have had faith in me and encouraged me in'various VLF projects
over the years. I would especially like to thank Professor Emeritus John Katsufrakis, under whose
able management of field programs I first became interested in these studies; and Bill Trabucco,
Old Antarctic Explorer and longtime friend with whom I have learned receivers and transmitters,
field operations and why not to trust data taken on New Year’s Day. I thank Professors Robert
Helliwell and Donald Carpenter, and spectrum analyst Jerry Yarbrough, for many stimulating and
illuminating conversations. And I thank my wife Freddie, whose patience and encouragement has
helped to bring this work about.

Equipment for the digital analysis system was purchased under grant DPP76-15678 from the
Division of Polar Programs of the National Science Foundation. The NSF also funds the operation
of Palmer, Siple, and South Pole Stations in Antarctica, and Roberval and Mistissini in Quebec,
Canada. The magnetometer data used in Sec. 3.4 was kindly provided by L. J. Lanzerotti and C. G,
Maclennan of Bell Laboratories. -

Ev Paschal
Dec. 6, 1987
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1. INTRODUCTION

1.1 The Nature of VL.F Research

“ Stanford University has been engaged in the study of very-low-frequency (VLF) radio wave propa-
gation since the mid 1950’s. These VLF waves include both those that travel in the earth-ionosphere
cavity (sub-ionospheric waves) and those that penetrate the ionosphere and travel through the mag-
netosphere above (whistler-mode waves).

Passive Studies. Many of these signals are of natural origin. The archetypal signal is the whistler.
‘A whistler starts when a lightning stroke at the surface of the earth creates an electromagnetic
. impulse. Some of its energy travels under the ionosphere and is heard in a distant radio receiver as a
click or spheric. Some of the energy from the stroke may penetrate the ionosphere and, if conditions
are right, will be guided along a path parallel to the earth’s magnetic field, coming down to the
surface again in the opposite hemisphere at the magnetic conjugate point. Because of dispersion
along the path, the magnetospheric signal is heard as a gently falling tone or whistler. When the
whistler reaches the opposite hemisphere some of its energy may not penetrate the ionosphere but
be reflected back along the magnetospheric path. In this way whistler echoes are generated. The
whistler is guided approximately along a field line because of the anisotropic refractive index of the
magnetospheric medium, an effect due to the presence of thermal (low-energy) electrons trapped by
the magnetic field. However, field-aligned density irregularities or ducts also seem to be necessary
in order for a whistler to be able to penetrate the opposite ionosphere and be heard on the ground.
See Helliwell [1965] for the history and theory of whistlers.

Much of the early work in the VLF field involved the study of whistlers. For instance, by
measuring the frequency of minimum dispersion or nose frequency of the whistler and the time
delay between the causative lightning stroke and the arrival of the whistler we can determine the
magunetic latitude of the path and the electron density along it. If several whistler ducts are present

- it is possible to map magnetospheric plasma density as a function of magnetic latitude. If whistlers
continue for several hours it is possible to plot the motion of the ducts and infer the presence of
large-scale electric fields in the magnetosphere. Whistler studies have followed the motion of plasma
in the niagnetosphere during magnetic storms, and have defined the flow of plasma between the
ionosphere and magnetosphere.

There are other types of naturally-occurring signals besides whistlers. Whistlers sometimes
trigger the generation of emissions, signals of magnetospheric origin due to the interaction of the
whistler with energetic electrons. These wave-particle interactions are thought to be due to cyclotron
(transverse field) resonance between energetic electrons spiraling along the magnetic field in one
direction and a whistler-mode wave (circularly polarized) going in the opposite direction. Sometimes
an emission can echo and trigger another emission. Sometimes the interaction may be strong enough
to be self-sustaining. Periodic emissions, chorus, and hiss are magnetospheric signals probably due
to these processes. See Park and Carpenter [1978] for  review of studies using natural signals.

Active Studies. Much of our current work involves the use of man-made signals from VLF
transmitters. With these signals we can actively probe the magnetosphere. We control what goes
in and monitor what comes out, and we don’t have to wait for nature to p'rovide a signal. These
active experiments have benefitted especially from the establishment of the VLF transmitter at Siple
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Figure 1.1. A whistler-mode signal from the transmitter, T', at Siple Station, Antarc-
tica, moves through the magnetosphere on a field-aligned tube or duct of enhanced ioniza-
tion. In the interaction region at the top of the path it undergoes cyclotron resonance with
energetic electrons moving in the opposite direction, extracting some of their energy and
becoming amplified. The amplified signal then travels back to the surface and is heard at
the receiver, R, in Roberval, Quebec.

Station, Antarctica. This transmitter is used mostly at frequencies from 1 to 6 kHz, and can radiate
several kilowatts of power. (The transmitter can put up to 170 kW into the antenna, but antenna
efficiency is only a few percent.) The transmitter is also relatively broadband, with a full-power
bandwidth of about 500 Hz.

We are particularly interested in studying wave-particle interactions. A whistler-mode signal
from the Siple transmitter may resonate with energetic electrons it encounters, as shown in Fig-
ure 1.1. The interaction region where the resonance occurs is at the top of the path, near the
equatorial plane. The interaction can cause the particles to give up energy to the wave, which has
several effects. First, the wave may be amplified by 30 dB or more., Second, if conditions are right,
the magnetospheric amplifier may become self-excited and turn into an oscillator, generating an
emission at a frequency different from the input signal, or continuing after the termination of the
input signal. Finally, the pitch angles of interacting electrons, normaﬂy trapped in the magneto-
sphere by the earth’s magnetic field, may be decreased sufficiently that the electroris fall into the
ionosphere and create a patch of enhanced ionization, x-rays, and light.

At the present time we have considerable information on the frequencies and power levels of sig-

nals that produce wave-particle interactions. Using the Siple transmitter we can stimulate whistler-

mode signal amplification relatively easily and reliably. The details of the amplification process are
still poorly understood and are the object of current study. The SEEP satellite experiment has
observed particle precipitation into the lonosphere caused by signals from VLF transmitters {Imhof
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et al., 1985]. We are still looking for ionospheric effects from this man-made precipitation, though

we have good evidence for effects caused by whistlers. See Helliwell and Katsufrakis [1978] for a -

review of some of the work using VLF transmitters.

On-Site Signal Analysis. In a few cases it is possible to build special equipment to measure
specific signal properties at a receiving site and answer specific scientific questions. For instance,
signals from VLF transmitters have been used for -many yéars at field stations to ensure the accu-
racy of local clocks. The phase of the sub-ionospheric signal is the important property here. The
transmitfed frequencies of some VLF stations are derived from primary frequency standards. By
comparing the phase of the received signal against the phase of a similar signal synthesized from
a local standard, any drift in the local standard can be measured and errors in local clocks can be
kept to a few microseconds. (Initially setting a local clock to this accuracy is another problem.) As
an extension of this technique, we are now starting to use improved phase comparators to detect

phase changes in sub-ionospheric signals produced by particle precipitation from the magnetosphere

(Trimpi events), and so identify the times and locations of such events.

Another example is Leavitt’s [1975] frequency-tracking direction finding system, which can
estimate the direction of arrival of whistler-mode signals. The amplitude and phase relationships
of signals received on two perpendicular loop antennas and a vertical whip antenna are used here.
Leavitt compares the amplitudes of signals from the loops to estimate signal bearing. However,
only those foop components which are in phase with the signal from the vertical whip are used, and
quadrature components are rejected. This tends to reduce azimuth errors caused by the elliptical
polarization of incident waves. His system has been used to try to identify the exit points of whistler
ducts. o .
Finally, systems have even been invented to automatically detect and classify whistlers on the
spot. The frequency dispersion or df/dt characteristic is the important signal féature here. As an
example of a recent effort, Okada et al. [1977] have developed an instrument that uses two frequency
discriminators covering the ranges 4.66-5.86 kHz and 3.79-4.66 kHz. When a whistler is received,
first the upper discriminator and then the lower one emits a characteristic response. The two
responses are cross-correlated, and the delay time from -the first to the second gives the dispersion
of the whistler. They have used this instrument in a system that measures the direction of arrival
and polarization of whistlets {Okada et al., 1981]. : '

Field Recording and Laboralory Analysis. In most cases, however, signals af a field station must
be recorded in tofo with the plan of analyzing their content at some later time. There are two reasons
for this. First, it is not often known ahead of time what signal characteristics will prove scientifically
interesting. Second, even if some interesting characteristics are known, it is usually impractical to
build complicated, special-purpose equipment to measure only them. We have two tasks: to record
the signals in the field with sufficient fidelity to preserve the information they centain, and then to
return to the laboratory and extract that information using some general-purpose analysis system.

1 have developed an analysis system which can process field recordings in a new way. For the first
time, signal phase measurements can be routinely made from analog tape fecordihgs, in addition
to the usual magnitude measurements. Finding the phase of signal components, phase analysis,
doubles the information available in certain cases. In this report I will describe the techniques used

in phase analysis, and a.ppl_y them to some current problems.
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1.2 Fundamentals of Spectrum Analysis

Before we discuss the measurement and use of signal phase information, we need to introduce
the general topic of spectrum analysis. This is the method most commonly used to study VLF
signals. Spectrum analysis involves the mapping of 2 one-dimensional signal waveform onto a two-
dimensional frequency-time space in order to isola.f:e, identify, and study individual signal features.
It might be more properly called “signal” analysis, since it involves more than just looking at the
Fourier transform of the waveform, the “spectrum.” However, spectrum analysis is the common
name, and the machines that do the work are called spectrum analyzers. To get started, let’s look
at two complementary aspects of the signal:. the waveform in the time domain, and the spectrum in
the frequency domain. '

The Time Domain and the Waveform. An obvious way to study a signal is to graph its value
(voltage, pressure, position, etc.) versus time, and examine the graph for relevant features. Wave-
form analysis is used to study brief, usually non-repetitive, events such as transients in electric power
distribution systems, or the movement of prices on the stock market. There are even reliable reports
[Randl, 1982a, 1982b] of a man who can identify the title and composer of a work of classical music
by examining the grooves (waveform) in a phonograph record.* However, direct exarnination of the
waveform doesn’t tell us everything.

Let us take as a problem the identification of the pitch of a given note in a recorded syrnphony
on a phonograph record. Assume we have identified that place in the waveform where the given note
was played, perhaps by listening to the record and stopping it when we reach the required passage.
.We can look at the waveform at this point and may be able to identify our note by eye, depending

- on the number of other sounds present at the same time. However, unless the note was played by a
solo flute (whose sound has a simple structure), the waveform will be very complex, full of ripples
of various periods 2ll interfering with each other. Estimating the pitch or frequency of this note by,
say, counting gero-crossings in the waveform is likely to be pretiy inaccurate.

The Frequency Domain and the Spectrum. As an alternative to waveform analysis, we can look
at the spectrum of the signal. Given a signal waveform z(t), its spectrum X(f) is defined as the
Fourier transform of (¢}, given by [e.g., Bracewell, 1965]:

X(f) = ]:m z(t);—mﬂ dt. (1.1)

o0

While the real function z(t) describes the waveform as a function of time, the complex function
X{f) specifies the spectrum of the signal as a function of the frequency variable f. When we express
X(f) at a given frequency in the form X = Aexp(j$), we will refer to the modulus 4 = |X]
as the magnitude of the signal, and the argument ¢ = £X as the phase of the signal, at that
frequency. We may also use the word amplitude, but the reader should know that this last term
15 somewhat ambiguous. An engineer may say “amplitude” when he means the magnitude of a
spectral component, but he may also mean some general measure of the size of a waveform, its rms

* There is nothing mysterious about this. The man, Dr. Arthur Lintgen, is apparently a music
buff and can identify post-Mozart, classical, fully-orchestrated compositions from his familiarity with
them. He was tested with a number of such records and identified them successfully. He declared
* an additional record to be “gibberish” and “disorganized”—it was an Alice Cooper number inserted

as a control.
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or peak voltage, for example. (Mathematicians sometimes use “amplitude” to mean the argument
of a complex number; that is, the phase ¢ in our case. We will never use it with this meaning. }

Since the waveform z(t) is a real-valued function, the spectrum is hermitian; that is, spectral
values at negative frequencies are just the complex conjugates of those at corresponding positive
frequencies, X(—f) = X*(f). We can restrict ourselves to only positive frequencies with no loss of
generality. For a signal of finite length such as a phonograph recording we may also limit the domain
of integration to the fimes between the beginning and end of the record, defining the waveform z(¢)
to be zero at other times. ,

The squared magnitude of the spectrum |X(f)I* shows the distribution of power versus fre-
quency summed over the entire recording. If we calculate the spectrum of the waveform on our
phonograph record we may be able to tell the key in which the music was played by looking for the
presence or absence of signal components at specific frequencies (specific notes of the scale). We
may even be able to tell if there was a bassoon in the orchestra by looking for signals at the lowest
frequencies. However, we cannot find the frequency of a given note by examining the spectrum of
the entire recording because it is impossible to separate the contribution of this one note, which
occurred for only a brief interval at a given time, from all the other notes which were played before
and after.

Conversely, even if we were sure that there was a bassoon in the orchestra playing a note at
a given pitch we would not be able to tell _exactly when it was played. The problem here is that
the time of occurrence of a signal element is encoded in the phase information in the spectrum,
and this is hard to mt.erpret in any but the simplest cases. For instance, assume that we have a
short signal element v(t), representing a certain note played by a given instrument, and its spectrum '
V(f). If this particular note had been played a time 7 later, then its spectrum would be given by
the function V(f) exp(j27 fr), the transform of v(t + 7). Note that the magnitude of each spectral
component is unchanged but the phase of a component at frequency f has been advanced by 2 fr
revolutions. The phase advance is proportional to frequency, and thus the shift in time of the given
note is translated into helicity in the spectrum, a winding up of the spectral phase as a function of
frequency. In the frequency domain we may be able to tell the key and mode of a piece of music, but
the time that a given note was played is represented in the spectrum phase structure in a complicated
and largely indecipherable way.

The Frequency-Time Plane and the Spectrogram. We see that these two representations, wave-
form and spectrum, give us different views of the signal. Examination of the waveform is useful in
those cases where brief events such as transuant.s are important. Examination of the spectrum is use-
ful where the structure of some repetitive, contmumg process is to be extracted. Neither approach
allows us to easily uncover much information about those signal elements which last long enough to
have an interesting structure in frequency (which structure may change with time) and yet are brief

' enough that their time of occurrence is also important. )

Many interesting signals show such dynamic, non-stationary behavior. How can we analyze
them? There are two possible solutions to this problem. Oune approach is to truncate the waveform
z(t) in time, eliminating all notes occurring before the desired one, and all music played after it,
and calculate the spectrum of this truncated signal. This process is called windowing. To do this
we choose some truncating or weighting® function w(¢) which is zero (or suitably small) outside
an interval of appropriate duration [—1At, $At], multiply (¢ + t)w(t) to select a signal segment’

- * We will follow the convention of Nuttall [1981], calling the temporal function w(t) the wezghtmg
function, and its transform, the spectral function W(f), the wmdowmg function.




around the desired time %, '(note that we view the window as stationary in time, and the signal as
moving through it}, and then calculate the windowed spectrum as the Fourier transform

_ oo —j2:rf:r | . '
S(to, f) = f 2(r + to)w(r)e =277 dr. (1.2)

— 00

The windowed spectrum S{tq, f) of the truncated waveform is a function of two variables since
its value depends on the segment time #g as well as the frequency f. Since we can calculate the
windowed spectrumn for any given value of fy, it is proper to think of it as a variable and not
just a parameter. The squared magnitude |S(fp, f)|? at the given time #; shows the distribution
in frequency of the music power of our isolated note. If the timbres (harmonic structures) of the
instruments playing at this time are not too complex we may hope to identify the pitch of the note.

We can also express the windowed spectrum as a convolution in the frequency domain. If the
windowing function W(f) is the Fourier transform of the weighting function w(t), then we can write

S(to, f) as

: +c0 .
S(to, f) = Xyl oW (f — v)dv = X(f)ef ¥t « W(F) (1.3)
where the asterisk (*) stands for convolution. Written in this form it is easy to see the effect
windowing'has on our ability to resolve signal components closely-spaced in frequency. If a'signal
z(t) is of the form cos(27 f1t), then (the positive-frequency half of) its spectrum X{f) will be §(f—f1);
that is, zero everywhere except for an impulse at frequency f,. However, this sharp line spectrum in
X(f) gets smeared out in the windowed spectrum and we find S(to, f) = 6(F~fL)*W(f) = W(f—f1)
{again considering only positive frequencies and ignoring the phase j2x fi15). The sharp line from
X(f) now has the shape of W{f) moved up to frequency fi. If there are other signals near f; we
" may be unable to separate them. For better frequency resolution we would need a window function
W(f) which is narrower in frequency, which in turn entails a weighting function w(t) that lasts
longer in time. Thus there is a tradeoff between frequency resolution and time resolution. We will
return to windows and their effect on frequency resolution in Section 2.5.3.

The second approach to analyzing the recorded signal is to pass it through a bank of bandpass
filters covering the frequencies of possible pitches and watch their outputs when the desired note
goes through. The filters serve to separate the different frequency components of the music, and by
comparing their responses at the proper time we can isolate and measure the pitch of our particular
note. N

Consider the output of the particular filter centered at frequency fo. If the impulse response of
this filter is hy,(¢) then its output sz, (2) in response to the waveform z(t) is

0= [ emhge-ndn (1.4)

o0

The transfer function Hy,(f) of the filter is the Fourier transform of its impulsé response hy, (t). If
the passband response of the filter is symmetrical about the frequency fy, that is, if Hy (fo + f) =
H; (fo— [) for |f} < fo, then we can write Hy,(f) = YH{(f — fo) + LH(f + fo), where Hi(f) is
the transfer function of the equivalent low-pass filter. Hi(f) is obtained by shifting the (positive
frequency) passband of Hy,(f) down to zero frequency. In this case, the impulse response of the
bandpass filter centered at fy can be expressed in terms of that of the equwalent low-pass filter as

hyo(t) = hy(t) cos(2r fot).
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Now comes the interesting part. Let us choose a weighting function as in Equation (1.2) that
is just the time inverse of the equivalent low-pass filter impulse response here; that is, let

w(t) = h(~1). | (1.5)

If we write

+o
S(t, fo) = / 2(r + u(r)e T2 dr = Ay (1, fo)ed =610 (1.6)

from Equation (1.2), evaluating the windowed spectrum at a fixed frequency f, and viewing it as a
function of time ¢, then we can show:*

) oo '
Csp(t) = ]_ 2(rhu(t — 1) cosl2n fo(t — T dr = Au(t, fo) coslbult, fo)].  (L7)

That is, the envelope of the ﬁlter output Ay is the same as the magnitude of the windowed spectrum,
and the instantaneous phase of the filter output ¢,, is the same as the phase of the windowed
spectrumn, when evaluated at the center frequency of the filter fy and the same time f. Note
that the phase is a rapidly-increasing function of time. We will often express it as dult, fo) =
27 fot + ¢rai(t, fo), where 27 fot is the advance in phase with time at the center frequency of the
particular filter, and the remaining term ¢rci(2, fo) is the relative phase, a slowly-varying function.
of time. The relative phase shows signal phase behavior with respect to an oscillator running at
frequency fb.

The windowed spectrum and bank of filters approaches are equivalent. They are equivalent in
the formal sense that for any given weighting function w(t) there is a corresponding set of bandpass
filters whose impulse responses are related to the weighting function. Both approaches have useful
features. When we process sampled data using the discrete Fourier transform as described in Sec. 2.5
we are calculating the digital equivalent of the windowed spectrum. Yet it is convenient to regard
the spectral values so calculated as the outputs of some fictitious bank of filters. We will refer to
these “synthesized filters” as if'they were the actual source of our information.j

The two approaches are also equivalent in the more general sense that they both provider‘a
means of mapping the one-dimensional waveform 2(t) (or the one-dimensional spectrum X (£)) onto
a two-dimensional space, the frequency-time or f¢ plane. They allow us to assign to each signal
element a time of occurrence and a frequency. A common procedure when analyzing a signal is to

* To prove this, separate Eq. (1.6) into its rea,l and imaginary parts, and compare to Eq. (1. 7)
evaluated after substituting Eq. (1.5). The symmetrical-passband case is particularly simple, but a
sitmilar correspondence exists between more general filter shapes and other windows. See Papoulis

[1962, Sec. 8-1] for further discussion.
i 1 presented the windowed transform approach first since it is the one we will actually use when

analyzing data. Historically, the bank of filters method was used first for whistler-mode signals (in
Potter’s {1951] sound spectrograph). In fact, it is only in the last two decades, since the invention

" of the FFT algorithm [Cooley and Tukey, 1965}, that it has become practical to calculate windowed

transforms tn quantity. And only for the last ten years have the best windows been available [Harris,
1978; Nuttall, 1981). For a view of spectrum analysis at the beginning of the modern era the reader
may wish to see Bingham et al. {1967], Welch [1967], and the introduction to Childers [1978] (which
contains reprints of the pfeﬁeeding two papers). Welch’s “modified periodogram” is, of course, the
magnitude of the windowed transform. ' '
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plot the signal over a lattice of points in the f-{ plane as various shades of gray or various colors,
where density or color at each point is proportional to the magnitude |8, )} at that time and
frequency. The resulting plot is cailed an f-1 spectrogram (see Figure 2.2 for an example).

This mapping procedure is the essence of spectrum analysis. In effect, spectrum analysis allows
us to reconstruct from the recorded waveform the fwo-dimensional score which specified the times
and pitches of the notes in the music. The analogy between f-t spectrograms and music scores
extends even to a similarity in layout, with frequency or pitch increasing toward the top and time
increasing to the right in the usual presentation. Here the analogy ends. A score, of course, is merely
a recipe for the performance of music, which is the desired product. Spectrum analysis works in the
other direction, starting with a signal and generating a spectrogram in an effort to understand the
. mechanisms that created the signal. It is as if music were incidental to a study of the process of
composition. .

There is another major difference between a music score and a spectrogram. While there is
usually only one authentic score {in many copies} for a given piece of music, there are many different
ways of mapping a given signal into a {requency-time spectrogram. By changing the duration of
the weigliting function, or the bandwidths of the corresponding bandpass filters, we will produce
a different spectrogram. Short weighting functions/wide filters are useful when analyzing brief or
quickly-changing signal components where time resclution is more important than frequency resolu-
tion. Conversely, long weighting functions/narrow filters provide maximum frequency discrimination
at the cost of lower resolution in time. When analyzing data in later chapters we will often try various
combinations of time ws. frequency resclution to tailor the analysis to a particular signal.

1.3 Benefits of Phase Information in Spectrum Analysis

The f-1 spectrogram described above shows the magnitude of the signal S(¢, f), but not its phase.
Most whistler-mode research has used the f-f spectrogram to study signal magnitudes as functions
of frequency and time. However, VLF signal phases have received scant attention. There are two
reasons for this. First, many naturally-occurring signals such as whistlers and chorus have a very
complicated structure and it is not clear that their phase information would be easy to interpret.
Second, until recently there have not been any machines capable of making relevant signal phase
measurements. Signals require special recording techniques in the field to preserve phase information,
~ and special processing in the laboratory to extract and display it.

Yet signal phases contain information independent of signal magnitudes. If the signals are
simple enough, such as phase-coherent signals from VLF transrﬁitters, their phases may be easy to
interpret and very interesting, as we will see in Chapters 3 and 4. The uses of phase information

fall into three broad catagories as follows:

1. Phase information can help identify and classify signals. The phase of a signal from a VLF
transmitter reveals its-modulation format, and may even say something about the complexity of its
keying equipment. By comparing the phases of constant-frequency signals in a recording we can sort
out those that are mutually phase-coherent, such as harmonics from local power lines, from those

that are not; such as magnetospheric fine emissions.

2. The phase of & signal may be an 'iniergsting parameter in iiself. Phase changes in sub-
ionospheric signals may be correlated with whistler-mode waves (Trimpi events), indicating electron’
precipitation into the ionosphere from wave-particle interactions. Phase changes in coherent whistler-

. mode signals can be used to measure path length changes (duct drift) caused by large-scale motions of
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the magnetosphere. And the phase changes that occur in whistler-mode signals during wave-particle
interactions may help to validate theoretical models of the interaction.

3. Phase informatlion allows us {o measure instantencous frequency. The mstantaneous fre-

quency of a signal is defined as . . _
3 1 (945(t, f) '

I =50 o (1.8)
where ¢(t, f) = arg{S(2, f)} is the phase of the signal at time ¢ and frequency f. The instantaneous
frequency clearly corresponds to the common-sense notion of frequency in signals where f varies
slowly with time. Ackroyd [1970] shows that it provides a measure of the frequency at which the
power of the signal acts at a given time even for signals where f varies rapidly. In practice, we will
approximate the instantaneous frequency by the finite difference

= 1 ¢t + AL, fo) — é(2, fo) -
f 2T At (1.9)

where ¢(t, fa) is the phase of the signal as passed by an analysis filter centered at frequency fo. If we
can make At sufficiently small we can measure the frequency of a signal very rapidly. The minimum
length of At is limited by the signal/noise ratio. If there is a lot of noise present, a measurement
made with a small Az will be inaccurate; we must use a longer interval to average out some of the
noise. As an example, with a typical VLF signal we might need an interval of 10 ms in order to
make a frequency measurement accurate to 10 Hz.

“Wait a minute,” I hear you say. Isn’t this a violation of the uncertainty principle that At-A f=
1?7 That is, shouldn’t it take about 100 ms to measure the frequency of a signal to within 10 Hz?
The answer is no, as long as there is only one signal component present. It is true that if we were
trying to separate two signals spaced Af apart, a filter which could discriminate between them
would have to have a response time no less than approximately 1/Af. (As engineers know, in a
practical filter with 10-80% risetime v and 3-dB bandwidth v, the product v is usually from 0.30 to
0.35.) However, separating two signals is a different problem from trying to measure the frequency
of one, providing we know there are ho interfering components at nearby frequencies. To take a
related problem, suppose we know that a given function is a sinusoid of the form A sin(27 fi 4+ &).
We need its value at only three closely spaced values of £, not necessarily over a full cycle, to detect
its curvature and determine the three unknown constants A, f, and ¢. In the case of our signal,
the magnitude |S(¢, fo)| (corresponding to A) is known separately, and only two measurements of
$(t, fo) are needed to determine f. :

Instantaneous frequency measurements provide a lot of information about VLF signals that
cannot be obtained from f-f spectrograms. For instance, when whistler-mode signals from the Siple
transmitter show growth due to wave-particle interactions, the output signal from the magnetosphere
Is usually higher in frequency, say by 1 to 5 Hz, than the transmitted input signal [Paschal and
Helliwell, 1984). This offset sometimes appears almost at the beginning of a received pulse. When a
triggered emission occurs at the end of a pulse, the emission always starts at a frequency well above
the input frequency, say 50 Hz higher. What is more, the transition from the frequency of the growing
input pulse to that of the emission seems to take place almost instantaneously, perhaps in less than
5 ms in some cases. These sorts of measurements cannot be made without phase information.

Dowden’s Analog “Phasogrdm 7 Technique. The earliest atternpt I know of to explicitly examine
the phase information in magnetospheric signals is that of Dowden et al. [1978]. They recorded
a phase reference tone along with whistler-mode signals from a 6.6 kHz VLF transmitter using an
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analog recorder with FM modulation. In the laboratory, a frequency synthesizer was phase-locked to
the reference tone and its output (which could be tuned in frequency) was compared in phase to the
whistler-mode signal. The result was a “phasogram,” plotting relative phase (1 revolution full-scale)
versus time. They were able to measure the positive frequency offset of a growing whistler-mode
signal, as well as other effects such as the Doppler'shift in frequency due to duct motion [Rietveld
et al., 1978]. Rietveld [1980] has since used the phasogram technique to measure the frequency of
whistler precursors. .

In some ways the system I will describe parallels Dowden’s phasogram system, though they
were developed independently. However, there are many differences. One is that we use digital
rather than analog signal processing. This adds flexibility to the analysis and presentation of the
data. Also, while Dowden uses his reference tone to correct for timing errors and reconstruct signal
phases, he cannot unshift the spectrum to correct for rate (speed) errors. We do, and are able to

use narrower analysis filters as a result.

1.4 History of VLF Spectrum Analysis at Stanford

The pace of scientific discovery in many fields has historically been driven (or limited) by the -

invention of machines that allow men to observe nature in new ways. Even in such an esoteric field
as VLF research and over such a short history as that of the past thirty years, our ability to recognize
and understand new phenomena has been determined by the observational tools in existence at any
given time. In order to appreciate the features and limitations of the current analysis system, we
need to see it in its proper context. This section describes the various spectrum analyzers that have
been used at Stanford. (I am glad to be able to preserve some of the details of these instrurnents
before they are completely forgotten.)

Table 1.1 lists the characteristics of spectrum analyzers used by the VLF Group at Stanford
University during the thirty years up to 1986. There are a few other units that have also been used,
particularly at field stations, but these six have done almost all of the laboratory data analysis.
They are listed in chronological order. The UA-6B/H, SD350—6 and Paschal system (the subject of
this report) are currently still in use.

Looking at this table it may be hard to tell the direction of the arrow of progress. There is
no steady movement to increased input bandwidths or faster analysis, for instance, though there is
some change in that direction. Nor (though it isn’t shown in the table) have spectrum analyzers

become simpler or easier to use. Instead, these machines have evolved toward extracting more -

information from the signal, through higher-quality analysis (such as greater uniformity in the filter
- responses), better presentation (such as computer plots), and additional features {such as using
phase information). '

Sona-Graph. Early VLF recordings made by Stanford in the mid 1950’ were analyzed. with a
Kay Electric Company (now Kay Elemetrics Corp.) Sona-Graph spectrum analyzer. This sound
. spectrograph was originally invented for the analysis of speech; it was first applied to the study of
whistlers by Potter [1951]. The Sona-Graph has a single bandpass filter which is scanned through
the input signal bandwidth as follows: A short interval (2.4 s) of signal is recorded on a magnetic
drum. Connected to the drum is a cylinder wrapped with a piece of specially-treated paper. During
analysis, the drum rotates and the signal is played back through the filter. The detected output of
the filter controls the darkness of a line being drawn on the paper by a pen. With each rotation
of the drum, the whole 2.4 s interval of signal is analyzed. After each rotation the frequency of
the filter is increased, the pen is moved along the axis of the cylinder, and another trace is drawn
representing signals at an adjacent frequency. After many revolutions, the paper is unwrapped to
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TABLE 1.1

. Spectrum Analyzer Characteristics

Sona-Graph Rayspan UA-6B/H  Stiles SD350-6 Paschal

Input BW! 8 kHz 10.5kHz .01-40kHz 2.1kHz .01-300kHz 10.6kHz
Filter BW 45 Hz 32Hz  30-120 Hz* 33,65 Hz 19-600 Hz* 20-640 Hz
Speed? 1:125 real-time real-time <1:15% real-time® < 1:10
Duration?d 94 s o0 0 minutes oo 400s
Output thermofax 35 mm- 35 mm line 35 mm dot-matrix

paper film film plots film® plots
Phase Info? no no no no no yes
Technique single bank of  time com- . computer special computer

filter filters pression FFT  FPFT FI'T

Notes:

1. The Rayspan, UA-6B/H, and Stiles system allow the input signal to be translated in
frequency. The SD350-6 has a zoom function which has a similar effect. The Sona-
Graph and Paschal system analyze baseband signals only. Effective data bandwidths
can also be changed by playing back tape-recorded data at different speeds.

2. Speed is the processing time for a unit time of signal. Real-time means a ratio of 1 : 1

or greater. - ‘

- Duration is the maximum continuous interval of signal which can be processed.

4. Filter bandwidths are listed for a 10 kHz input bandwidth. Qther filters are available

with different input ranges. . ‘

. FFT calculation only. Output plotting is very slow.

. Real-time for input bandwidths to 50 kHz.

7. Digital output of spectrum magnitudes also available.

[E]
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reveal a “Sonagram,” an f-f spectrogram which displays the magnituc{es of signal components at
different frequencies and times through varying shades of gray. -
The Sona-Graph was the first instrument to make a spectrogram. It was a major improvement
over the swept-frequency analyzers (such as the Panoramic analyzer) that were also used about this
time. A swepi-frequency analyzer generates a graph of signal magnitude versus frequency by slowly
tuning a bandpass filter through the frequency interval of interest. If the signal is not stationary the
swept-frequency analyzer may fail to observe some signal feature by being at the wrong frequency
at ‘a given time. By playing the signal over and over again while the filter is swept slowly, the
Sona-Graph is sure to catch all signal features, no matter at what time or frequency they occur.
However, the Sona-Graph suffers from two major limitations. First, it can only analyze a short
segment of data at one time. Second, and more important, it is very slow. On each rotation of the
drum the signal is played back and analyzed at one frequency. To generate a complete spectrogram
‘requires about five minutes [Helliwell, 1965, p. 88]. - -
' Despite its limitations, the Sona-Graph has remained a popular spectrum analyzer. In 1984
Kay came out with their model 7800 Digital Sona-Graph, a solid-state machine that stores the
signal digitally and has 2 number of features not found in the original machine. It still produces
“Sonagrams” with the same thermofax paper on a rotating drum.

Rayspan. The slow speed of the Sona-Graph was overcome in the Raytheon Rayspan, introduced
about 1961. The Rayspan has a bank of 420 magnetostrictive rod {mechanical) bandpass filters
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spaced every 25 Hz from 167,000 to 177,475 Hz, each with a bandwidth of 32 Hz. The input signal
is translated in frequency {by mixing with a 167 kHz local oscillator, say, for 0 to 10.5 kHz analysis)
and applied to all the filters in parallel. The outputs of the filters are then sampled in sequence by
4 rotating capacitive commutator and detected. The commutator can make up to 150.scans of the

complete filter bank each second. The output of the Rayspan is recorded on 35 mm photographic

paper or film by varying the brightness of a trace moving across an oscilloscope with each scan (in
the frequency direction) while the paper is slowly pulled through the camera (in the time direction).
The resulting spectrogram is very similar to that produced by the Sona-Graph, except that the scan
lines run in frequency for each moment in time, rather than in time at each increment in frequency.
The Rayspan operates at real-time speed, analyzing one second’s worth of data in one second. It is
also capable of a.ﬁa.lyzing data segments of unlimited length, rather than the few seconds at a time
processed by the Sona-Graph. 7 - :

The Rayspan greatly increased the rate of data analysis. Whereas a trained operator in one
working day might generate spectrograms. for about one minute’s worth of data using the Sona-
Graph, now he could process several hours of field recordings. Also, the output of the Rayspan could
be displayed momentarily in spectrogram form on a lohg—persistance oscilloscope without having to
be filmed. For the first time interesting events suitable for detailed study could be identified from
field tapes by their spectral characteristics as analyzed by machine rather than just by ear.

Still, the Rayspan has its shortcomings. The most serious is the lack of uniformity between
the responses of the 420 individual filters. Some are more sensitive than others; the manufacturer’s
specifications permit a variation of +3 dB. This can create horizontal lines in the spectrogram
indistinguishable from true constant-frequency signal components. In fact, magnetospheric signals
with line structure were not routinely seen until the Rayspan was replaced because lines in the
spectrogram were taken to be artifacts of the analyzer rather than real signals.

Another shortcoming is the inability to change the bandwidth of the analysm filters to ma.tch
the signals being analyzed. By changing the playback speed of the tape recorder, the effective
" bandwidth of the analysis filters can be changed, but only by a limited factor. (This technique can

be used with all spectrum analyzers, of course.)

Ubiquitous UA-6B/H. The next spectrurn analyzer was the Federal Scientific Corporation (now

Nicolet Scientific) Ubiquitous UA-6B/H, acquired in 1972 and still in use. This is a so-called “time ~

compression” spectrum analyzer. A digital delay line is used to make a recirculating buffer that can
hold about 1500 samples. The input signal is sampled and digitized. As each sample is taken it is
' entered into the buffer, replacing the oldest sample stored there so the buffer always contains the
latest 1500 samples. At the same time that new samples are being taken in, the buffer is scanned
at a much higher rate and the samples read out are converted back into an analog signal. This
output signal is just a reproduction of the input signal stored in the buffer, but since it is read out

faster it is compressed in time. All components in the input signal are multiplied in frequency by

the compresston factor. An input signal from 0 to 10 kHz will be reproduced from the buffer as a
‘'signal spanning 0 0 5 MIIZ a speed-up of a factor of 500. The sped—up signal 1s then analyzed by
a sweeping filter. The bandwndth of the sweeping filter is wider by the compression factor and its
response time correspondingly short, with the result that a single sweeping filter can now provide
complete real-time coverage. In fact, the UA-6B/H uses a bank of 5 sweeping filters positioned at
adjaéent frequencies for a further increase in analysis speed, and a complete scan of 500 spectral
lines is output every 10 ms. The bandwidth of each filter is about 1.6 times the filter spacing, so
10 kHz data will be analyzed by 500 filters spaced every 20 Hz, each with a bandwidth of 32 Hz.

Tarm e




13

The innovation introduced with the UA-6B/H analyzer is the ability to change the overall
analysis bandwidth, and thus the bandwidth of each of the 500 effective spectral filters. This is done
by changing the input sampling rate but not the buffer readout rate. For example, by sampling the
(appropriately filtered) input signal at half of the rate for 10 kHz analysis, we will store only those
components lying between 0 and 5 kHz; but we still generate a 500-line spectrum every 10 ms, whose
spectral filters are now only 16 Hz wide. By sampling at even lower rates we can analyze with even
narrower filters. .{(Of course, as spectral filters become narrower there is less independence between
one spectrum and the following one 10 ms later. The spectral data are becoming increasingly smooth
and redundant.) The UA-6B/H is used in conjunction with a frequency translator so a total analysis
bandwidth of 1, 2, 5, or 10 kHz can be centered about any arbitrary input frequency.

The UA-6B/H is currently the most popular analyzer at Stanford, primarily because of its

_simple and straightforward operation. However, it still suffers a bit from filter non-uniformity. It is
difficult to keep the gains of the 5 sweeping filters exactly equal, though they are much more uniform
than the 420 filters of the Rayspan. :

Stiles’ Digital Analysis. G. Stiles [1974] was the first person at Stanford to make extensive use
of a general-purpose computer to analyze VLF signals. In his work, a 2.1 kHz segment of input
data was translated in frequency, filtered; digitized, and stored on magnetic tape. Then the signal -
was analyzed using digital signal processing techniques on a mainframe computer, an XDS Sigma-5.
Some of the programs used, including the FFT procedure, were previously described by Cousins
[1971]. (The FFT or Fast Fourier Transform procedure is an algorithm for calculating the discrete
Fourier transform, the counterpart for sampled signals of the integral Fourier transform of Eq. (1.1).
We will return to this in Section 2.5.) ,

Stiles was primarily interested in the smaill-scale structure of VLF emissions triggered by pulses
from VLF transmxtters In particular, he was interested in what happens at the very beginning of
an emission as it starts to separate from the triggering signal. The question is whether an emission
starts at the transmitted frequency and then drifts up, or does it begin already above the input
frequency. His conclusion was that the emission starts at the transmitted frequency, though, as he
noted, any model in which the emission starts within about 50 Hz of the input signal would agree
fairly well with his results. Stiles was not able to use the phase information in his signals, and this
limited to some extent his ability to resolve the fine structure of emissions. Emissions are a subject
of continuing interest, as we will see in Chapter 4. _

Stiles’ work is important in several ways beyond his direct contributions to magnetospheric
physics. - He showed that VLF spectrum analysis could be done on a computer as well as on special-
purpose spectrum analyzers. He demonstrated the power of the computer to examine small details
of signal structure. One of the benefits of computer processing here is the variety of plotting routines
that can be devised to display spectral information. It is much easier to show the detail in a small
region of the f-1 plane with computer graphics than it is with the more restricted 35 mm film format
of the analog analyzers.

5D350-6. The Spectral Dynamics (a subsidiary of Scientific Atlanta) SD350-6 spectrum ana-
lyzer arrived in 1980. This is a general-purpose unit that uses digital signal processing techniques
internally, but still has analog input and output ports. The input signal is digitized and stored
in memory. Special-purpose hardware is used to calculate the FFT of overlapping input segments.
The magnitudes of filtered spectral components are then converted back to analog form for external
display or filming. The outputs of the synthesized spectrai filters can also be averaged (magnitudes
only) before being dlsplayed if desired. Though it is presumably present mterna,lly, no signal phase
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information is available at the output.

The bandwidth of the signal to be analyzed can be varied, as with the UA-6B/H, by changing
the input sampling rate. For a fixed number of synthesized filters, this changes their bandwidths
while the spectrum output rate remains constant. SD350-6 input bandwidths range from 10 Hz to
300 kHz. However, a new dimension of control has been added with the SD350-6. Not only can the
input sampling rate, and thus the analyzed bandwidth, be changed, but the FFT transform size,

. and thus the number of filters synthesized over that bandwidth, can also be selected. For instance,
a 10 kHz input bandwidth can be analyzed with 25 filters spaced every 400 Hz (transform size =
64, one output spectrum generated every 300 ps), or with 50, 100, ..., on up to 800 filters spaced
every 12.5 Hz (transform size = 2048, one output every 14 ms). 7

The SD350-6 also has a “zoom” function which allows the analyzer to concentrate on a limited
portion of the input bandwidth. Zoom magnifications range in powers of two from 2 to 128. For
example, with an input bandwidth of 10 kHz, using a magnification of 8 will analyze a 1.25 kHz
section of the input signal. This section can be centered anywhere in the 10 kHz range of the
mput. With a transform size of 2048, the 800 filters synthesized will now be placed every 12.5/8 or
1.5625 Hz. The zoom feature is similar in effect to frequency translation of the input signal as used
in the previous three analyzers, though it is a bit harder to adjust.

The SD350-6 is a complicated machine and represents the present peak of stand-alone analyzer
development. Despite its complexity, it is being used more frequently as its virtues become better
known. Recently its digital output was hooked up to a small computer in the analysis lab. OQutput
spectra can now be recorded on digital tape or sent to other computers around campus for further
processing and plotting. This is starting to supplement the standard use of 35 mm filmed spectra.

Paschal’s Digilal Analysis System. As we gather from the previous discussion, the system that
is the topic of this report is merely the latest in a long line of spectrum analyzers. This system uses
digital signal processing techniques performed on a computer. To this extent it is a descendant of
Stiles’s system. However, the hardware 15 dedicated especially to VLF analysis, and represents a

step away from the large central systems of the past towards the smaller individual computers of -

the present. Chapter 2 describes this system-in more detail.

Table 1.1 shows that this digital analysis system is not as wide-band or as fast as some of -

the other systems. It is not a general-purpose spectrum analyzer like, say, the SD350-6. Its main
innovation is to make signal phase information available for use. In this it represents another stage

in the evolution of techniques to extract more and more information from the signal. It is not,

however, the final answer. Chapter 5 has some suggestions for future analysis systems.
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1.5 Digital versus Analog Analysis

Finally, T want to say something about the differences between the analog and digital analyzers
mentioned above as we use them for the study of VLF signals. These differences are not really
about the way signals are processed, since any analog filter can be mimicked arbitrarily closely by a
corresponding digital filter, and vice versa. Rather, the important differences lie in the presentation
of spectral data. _

All of the recent analog analyzers above (Rayspan, UA-6B/H, and SD350-6 using its analog
output) make spectrograms on 35 rnm film or paper. This medium has both some advantages and
some severe limitations. The visual examination of filmed (analog) spectrograms is relatively fast
and inexpensive, and is the best method for quickly identifying the gross features of the recorded
VLF signals. However, converting these features into quantitative data by scaling the film on an
optical digitizer is a time-consuming and labdr—intensive task. Even more serious is the fact that
many important spectral properties cannot be readily extracted from the image. These are as follows:

1. Magnitude Information. Tt is very difficult to extract quantitative magnitude information from
photographed spectra. Magnitude information is present as variations in optical density, and
there is no easy way to scale the density to determine absolute (or even relative) signal magni-
tudes. Most of our analysis is limited to saying “yes, there is a signal present at this frequency
and time,” or “no, there is no signal present.” Displays that show magnitude directly (such
as the A-scan format, which produces a series of line graphs of magnitude versus frequency
ab successive times) are expensive in terms of the amount of film used, and are awkward to

generate.

2. Dynamic Range. The dynamic range of the analyzer-film system is only about 20 dB. Within
this range, signals show variations in density in the film proportional to‘signa,l magnitude.
Outside this rahge, stronger signals appear uniformly black and weaker signals are not visible.
Also, if there is a strong signal present it may be very difficult to detect.a weak signal (such as
the leading edge of an emission} which is near it in frequency.

3. Precise Time and Frequency. Even if a signal stands out strongly in the filmed spectrogram, and
is easily identified, it is stili difficult to measure accurately its frequency and time of gccurrence.
Qur present accuracy is about 30 Hz over a 10 kHz bandwidth, and 30 ms over a time interval
of a few seconds. This is due to difficulties in measuring and compensating for various errors in
the recording and analysis process. Fundamental problems are variations in tape speéd during
recording and playback, variations in camera film speed when photographing the spectra, and
limitations in the bandwidth and spectral output rate of the analog analyzers. At present we
cannot use the recorded pilot tone to compensate for tape speed variations when using an analog
.analyzer, though it is conceivable that such a system could be built.

' The digital analysis system overcomes some of the above limitations and is a powerful tool
for the analyzing certain types of VLF data. Some measurements, such as phase and instantaneous
frequency, can only'be made using digital techniques. Some types of oﬁtput, such as A-scan plots, can
be made more easily with the digital system. However, analog analysis also has distinct advantages,
and the two methods are best used when their capabilities complement each other.
For routine data surveys and for studies where sufficient information can be gleaned from filmed
f-t spectrograms, analog ané.lysis wins hands down. The advantage of analog analysis here comes
from two factors. First, our analog machines are capable of analyzing data in real time; that is, the
spectrum appears almost immediately after the tape is played into the system. The digital analysis
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system requires a significant amount of time just to digitize the data, and the subsequent analysis
proceeds at much less than real-time speed. Generating an f-t spectrogram on the digital system
typically takes about 10 seconds of processing for each second of data, and phase analysis is even
slower. Second, the analog analyzers are capable of processing larger amounts of data at one time.
For data surveys where the operator sits at the screen and watches for interesting signals, our analog
‘analysis systems can process data segments whose duration is limited only by operator endurance.
Even if the results are to be filmed, data may be processed an hour or so at a time. The digital
analysis system limits data segments to a length that will fit on the computer disk (say 30 seconds
of 10.6 kHz data) or on one digital tape (about 7 minutes of data).

Because of these differences, digital analysis is currently only useful for short, well-defined data
- segments. The first step in using the digital analysis system is to locate an interesting data segment
in a field recording, either by monitoring the tape on an analog analyzer or by examining existing
analog spectrograms.. Only then is it profitable to take the field tape, digitize, and analyze it.

The types of signals that can be usefully examined with the digital system are also limited.
Generally speaking, the simpler the signal, the more the information that can be uncovered by digital
'analysis. For phase analysis, relatively constant-frequency signals are needed. When very narrow-
band signal structure is to be analyzed, even the narrowest filters available in the digital system
may be too wide, and frequency translation followed by analog analysis may be the better choice.
The analysis of more complicated signals such as chorus and whistlers is beyond the capabilities of

the current digital system.

1.6 Qutline of the Thesis

General Philosophy. This is primarily an observational, one might almost say experimental,

thesis. Part of the work describes the methods of observation; the remainder uses these methods,

primarily phase analysis, to study in furn a variety of VLF phenomena. Some phenomena reveal
new and unexpected features while others are merely viewed in greater or mare accurate detail than
before. When there is an existing body of relevant theoretical work, it is usually discussed at the
end of each section of observations. However, while discrepencies between the observations and the
predictions of current theories are noted where they occur, the development of new theories is in

most cases beyond the scope of this thesis.

"Chapler 2 describes the various algorithms used in the digital analysis system, with an emphasis
on those pertaining to phase measurement. Particularly important are the techniques that have been
developed to measure and correct for analog tape timing errors (wow and flutter). I hope to give
enough detail that the reader who sits down to develop the next-generation spectrum analyzer will
have a head start. ,

Chapter 2 also describes the instruments that are used at field stations to record data so that
the reader may have some understanding of the data’s limitations. The computer hardware used in

the digital analysis system to run the programs and plot the results is briefly described. However,

I do not go into detail here. Computer hardware has changed so rapidly in the past decade that
almost all of the analysis equipment described is already obsolete. . '

Nor do I give any software listings, not out of secrecy but because the analysis programs are
not usable on other systems. In order to attain reasonable program efficiency, in memory use as
well as in processing time, much of the software had to be written in Data General Nova/Eclipse
assembly language, not exactly the lingua franca of the computer world. Much of the FFT algorithm
is writfen in Eclipse 5/230 microéode, an even more restricted dialect. I am sorry about this, as the
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major investment in a computer system is the effort needed to write the software, and it would have
been nice to pass on some of my work. We can only hope the situation improves in the future as
more powerful processors enable more programs to be written in high-level languages. (Computer
manufacturers have been forecasting this for years.)

Chapler 3 analyzes several examples of signals without growth. _These are signals that move

from source to receiver unchanged in form by the medium through which they travel, except possibly
+ for some general attenuation and time delay. With some we can use their phase characteristics to

classify them, such as the various modulations of naval VLF transmitters. With others, phase is a
means of monitoring their path of propagatibn. We will see phase chénges that occur during Trimpi
events, perturbations in sub-ionospheric paths due to magnetospheric ba.rticle precipitation. And
we will see changes in phase as whistler-mode ducts stretch and compress due to large-scale motions
of the magnetosphere.

Chapter 4 is concerned with growing signals, whistler-mode signals changing because of wave-
particle interactions. Here we encounter a wide variety of phenomena. We will look at some old
events from a new perspective, such as the growth of transmitted pulses (particularly fruitful signals)
and the generation of sidebands. We will sce some events in greater detail than before, such as the
behavior of emissions at the moment of separation: And we will see some completely new effects, such
as the phase-locking that occurs during entrainment. Chapter 4 includes references to theoretical
models that make predictions relating to the observations.

Chapter 5§ summarizes the results and presents a few suggestions for future work. Improvements
should be made in the equipment used at field stations to record VLF signals. A new generation
of analysis systems needs to be developed with smaller, individual workstations, perhaps based
on personal computers. Analysis algorithms need improvement to give better measurement and
correction of analog tape errors, as well as providing a greater range of analysis filler bandwidths

“and output formats. Finally, some new and exciting observations, such as the correlation between

whistler-mode phase delay and transient magnetic field disturbances, are very tedious to reduce from
broadband data and warrant the use of dedicated hardware in the field.

The three appendlces present some incidental resultS. Appendiz A gives a mathematical deriva-
tion not found in textbooks, the discrete Fourier transform of a sinewave with arbitrary frequency
and phase. This is used in Chapter 2 when discussing the phase errors in the analysis procedure.
Appendiz B extends the group delay calculations of Park [1972] and finds the ratio of phase delay
to group delay over a whistler-mode path. This turns out to be a simple function of the ratio of
signal frequency to equatorial gyrofrequency, at least inside the plasmapause. ‘Appendiz C gives a
procedure using the chirp z-transform algorithm to perform data resampling for the correction of
tape timing errors. This procedure was too time-consuming to use in the current system but may
be useful in some future design.
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1.7 Contributions of the Present Work

1. A technique has been developed to correct analog tape recordings for errors due to wow
and flutter, for the first time enabling signal phase information to be extracted on a routine basis.

During spectrum analysis, the phase of a recorded pilot tone provides a time reference, and its .

frequency gives the tape speed error. We correct for frequency shifts caused by the speed error,
and correct the phase at the output of each analysis filter for timing errors. (All tapes recorded by
Stanford since 1973 have included a phase-reference pilot tone in preparation for this technique.)
Knowmg the phase as well as the magnitude of signal components effectively doubles the available
information. Phase enables the measurement of instantaneous signal frequency, and facilitates the
study of coherent and almost-coherent signals.

2. Non-growing whistler-mode signals from the Siple Station transmitter are found to show
changes in phase delay which are correlated with the earth’s magnetic field at the ends of the
duct. Previous studies found similar correlations between whistler-mode Doppler frequency shifts

and continuous micropulsations. Phase is found to give a less-noisy measure of path motion than

Doppler shift, with much better time resolution. For the first time it is possible to study relatively
rapid events, and wé find new evidence for trans:ent mmropulsatlons which move from equator to
ground as Alfvén waves.

3. The relative phase of a growing whistler-mode signal is found to advance with time, often
parabolically. That is, the growing signal at the output of the interaction region exhibits a positive
frequency offset from the input signal; this offset generally increases with time. Such behavior places
an important new constraint on the predictions of theoretical models of wave-particle interactions.
Occasionally the instantaneous frequency is offset even at the beginning of a pulse, an effect which
is not explained by any current model. '

4. There are as yet no completely satisfactory models for emission triggering. Phase analysis
now offers some clues for future models. When pre-termination triggering occurs, it is always after
a phase advance of 1.5--3 revolutions. When triggering occurs at the end of a pulse, the frequency
can change from the growing pulse to the emission 100 Hz higher very rapidly, sometimes in a few
milliseconds or less. When growth resumes after a pre-termination emission, the signal phase restarts
at its initial value, '

5. Phase analysis shows that the mechanism whlch causes a two-tone transmitted signal to

develop sidebands on a whistler-mode path is the mechanism of growth, supporting the model of

Helliwell et al. [1986a]. ‘Each beat in a two-tone signal behaves like a growing pulse, showing a
phase advance accompanying an increase in magnitude. Yet successive beats remain phase-locked,
resulting in discrete sidebands at harmonics of the two-tone separation.

6. It is known that the components in a two-tone signal suppfess each other’s growth when their
frequencies are separated by 10 to 50 Hz. Phase analysis now shows that the suppressed components
are slightly advanced (= (.15 rev) over their input phases, evidence for linear amplification. When
the amplitude of one component is reduced by 20 dB while the other remains constant, the output
phases show an additional advance as suppression weakens, but the compo'nents still remain colerent.

7. Falling emissions are generated when the interaction region moves upstream (down-wave) of
the equator. When a faller is entrained by a constani frequency pulse, the phase behavior in this

off-equatorial interaction is seen to be similar to that during equatorial growth. Entrained signals -

show a phase advance accompanying an increase in amplitude, and a brief phase wrap-up at the end
of the entraining pulse. _
8. Whistler precursors are seen for the first time on a transmitted signal. Amplitude, phase,
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and sideband behavior indicates the precursors are due to a momentary increase in growth activity.
They cannot be explained merely by the presence of a triggering signal, as proposed in some models
of natural precursors. ‘

9. Magnetospheric signals with line structure have been observed for some time, often with
components spaced roughly 60 Hz apart.” They have been thought to be caused by radiation of
harmonics from power lines. Phase analysis now shows that magnetospheric lines, at least in the
cases studied, are not spaced by 60 Hz, are incoherent, and have no relation to power line components,
A model is developed to explain them based on magnetospheric processes only-—growth, suppression,
echoing, and multipath coupling. :
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2. METHOD

2.1 Field Station Recording Equipment

In this section I briefly describe the equipment used to receive and record signals at a typical field
station. While it is not necessary to understand this equipment in great detail, a basic knowledge
will help explain some of the characteristics and limitations of the recorded data. Figure 2.1 shows
a simplified block diagram of a t.yplca.l VLF recelvmg system. The various items in the system are-
as follows:

. Loop Anlenna and VLF Receiver. The VLF receiver uses a loop antenna to receive very-low-
- frequency radio waves. It generates an output voltage proportional to the magnetic field B of the
incident wave. The frequeﬂcy response of the receiver is flat fromn 300 Hz to about 50 kHz. That
is, over this frequency range the output voltage depends only on the strength of an incident signal
component, and not on its frequency. (Note that the vblta.ge induced in the loop is proportional
to dB/dt, and rises with frequency. We-overcome this effect by designing the receiver so that the
input circuit impedance is -dominated by the loop inductance L. Since the loop reactance jwl
also rises with frequency, the input current to the receiver is comstant with frequency.) A flat
frequency response gives the receiver the greatest dynamic range since the peak amplitudes of signal
components at the low-frequency end (like whistlers) are about the same as those of components at
the high end (like VLF communications transmitters).

Frequency Standard. The frequency standard at most stations is an ovenized quartz oscillator
with a good short-term frequency stability of 1 x 1071° or better. However, depending on the time
elapsed since the oscillator was last calibrated, the output frequency, though stable, may be offset
from its desired value by as much as 1 x 103, The frequency of the output signal from the standard
is divided down by the clock to provide the station local time reference, against which signals are
compared when making phase measurements. An error in frequency of 1 x 108 will give a clock
rate error of about one microsecond per minute. Were it not for other factors, this error would limnit
the accuracy with which we could measure changes in the phase of a received signal over time and
thus, say, the exact frequency of the signal. In practice, timing accuracy during analysis is limited

. by the signal-to-noise ratio of the recorded signals and the pllot tone, and we may regard the station -
frequency standard as being essentially perfect.

Clock. The clock counts cycles from the frequency standard to keep track of time. The clock
is set by the operator according to standard time signals from shortwave stations such as WWY,
and is usually accurate to within a few milliseconds. The clock generates the pilot tone and time
mark signal which is recorded on the analog tape. The pilot tone is a constant-frequency signal,
synthesized from the output of the frequency standard and possessing its stability, that serves as a
phase reference in the recorded data. Pilot tone frequencies we have used are 1, 9, and 10 kHz. The
time mark signal is encoded by amplitude modulation of the pilot tone. The pilot tone is increased
by 10 dB for 40 ms on each second and for 1040 ms on the minute to generate time ticks. Station
identification, day of year, and time of day are also inserted in Morse code during the first 20 seconds

of each minute.

Mizer. The mixer combines the data signal from the VLF receiver and the pilot tone and time
mark signal from the.clock. The combined signal is fed to the analog tape recorder. The mixer also
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Figure 2.1. Block diagram of a typical VLF receiving system. The pilot tone/time
mark signal is added to the recording to enable reconstruction of signal phases during
analysis. ' '

allows the operator to make voice annotations at the beginning of each tape recording, identifying .

the station, date and time, and nature of the recording.

Analog Tape Recorder. The recorders we use are high-quality professional recorders such as
Ampex 350, AG-440, and ATR-100 models. They record the output of the mixer on 1/4-inch analog
magnetic tape using direct {AM) recording. Usual tape speeds are 3.75, 7.5, or 15 inches per second
(ips). Almost all recordings are made with half-track heads, recording one channel along half the
width of the tape in one direction and then swapping tape reels to continue recording in the other
direction along the other half. Used in this way, a 3600-foot reel of tape at 7.5 ips can hold 96
minutes of single-channel data on each side. We have also occasionally used quarter-track heads and

. made 4-channel recordings (one direction only) for direction-finding experiments.

One of the special characteristics of our recorders is that they have all been modified to use
constant-current recording equalization, so-called because the recording head current {and thus the
magnetic flux left on the tape) depends only on signal amplitude but not on signal frequency. Like
the flat frequency response of the VLF receiver, constant-current equalization is used to maximize
the dynamic range of the tape recording since the peak levels of VLF signals at high freciuencies
(over 10 kHz) are as large as those at middle and low frequencies. This equalization differs from
standard audio practice; standard audio equalizations emphasize high frequencies during recording
so they can be attenuated, along with tape noise, on playback.

Despite the care taken in the selection and maintenance of the analog tape recorder, it remains
the weakest link in the system.” The recorder has the least dynamic range of any signal-handling
component, and limits the weakest or strongest signals which can be analyzed. The frequency
response of the recorder is limited, especially at slower tape speeds, and it may not record higher
frequency signals such as the various VLF transmitters from 15 to 25 kHz. Particularly bothersome
are tape recorder wow and flutter. These are periodic'variat'ions in tape speed. Variations that
repeat at intervals of a second or longer are called wow, and faster ones are flutter. Wow and flutter

"cause small timing variations when tapes are reproduced, and are the main source of error when
measuring signal phase (causing much larger phase errors than those typically due, say, to noise in
the recorded signal). Using a pilot tone to correct these tape timing errors is the major innovation

of the present analysis system,
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We are now experimenting with digital recording in the field using a Sony PCM converter and
a video cassette recorder. This gives a larger dynamic range than with analog recording. It also
greatly reduces, though it does not completely eliminate, the wow and flutter problem. Future field
stations may record all signals digitally to overcome the limitations of analog recorders.

VLF Signal Characteristics. Now I will discuss some of the characteristics of the VLF signals
as received and recorded. The minimum detectable received signal level is limited by the inherent
noise of the loop a.ntenn'a. and the input stages of the receiver. The equivalent noise density of our
receivers is typically less than 3 x 10~!7 T/HzY? (equivalent to an incident wave electric field B
of 1 x 10=® V/m-Hz!/ %) from 3 to 30 kHz, rising slightly at lower and higher frequencies. The
maximum signal which can be received without clipping is on the order of 1 nT (300 mV/m). The
only signals stronger than this are impulsive spherics from nearby lightning strokes, and we are not
particularly interested in them. The VLF receiver is capable of responding to a very large range of
signal amplitudes, typically about 150 dB over a 1 Hz bandwidth.

The range of signals that can be recorded on an analog tape is considerably less than this. The
minimum signal level is limited by the level of tape noise when the tape is played back (caused by

+ the magnetic granularity of the recording medium). The maximum recordable signal is limited by

the saturation flux density of the tape. Over the frequency range from 300 Hz to 20 kHz the typical
1/2-track analog tape has a broadband dynamic range between 50 and 60 dB. This is a range in a
1 Hz bandwidth (assuming white noise) of 93 to 103 dB, or about 50 dB less than that of the VLF
receiver.

We see immediately that we cannot record the full dynamic range of the signals from the
receiver. Instead, we can only record ‘some portion of this range, determined by the amount of gain
in the VLF receiver and the sensitivity of the recorder. The maximum gain we should use is that
which brings receiver noise up to the level of tape noise; with any more gain we are just making a
higher fidelity recording of receiver noise. In practice we usually use less gain than this to limit the
intermodulation products that appear when strong signals (particularly VLF transmitters) saturate
the tape. : '

All stations suffer to some extent from interference generated by local power lines. This ap-
pears as harmonics of 60 Hz that may extend to frequencies as high as 3 or 4 kHz. Usually the
odd-numbered harmonics are the strongest. This interference is not from freely-propagating elec-
tromagnetic waves, of course, but is a local problem caused by currents induced in the antenna by
the magnetic fields surrounding nearby power lines. This type of interference is easy to identify in
the record because all of the lines in the spectrum are harmonically related and track each other
in phase. At some stations this interference is very strong and it is necessary to filter out signals
below, say, 1 kIlz to prevent.overloading at the tape recorder. One of the main criteria in selecting
a receiving site is freedom from local power-line hum.

At frequencies above 10 kHz the spectrum is dominated by the various VLF transmitters used
for navigation and communication. The signals from these transmitters can be very strong, especially

at night, and at some stations it has been necessary to use filters to attenuate or eliminate certain

ones. Two different schemes have been used. One is to use narrow notch filters to knock out one

or two speciﬁc signals, such as NAA at 24.0 kHz and NSS at 21.4 kHz, which are quite s'trong in

the eastern US and Canada. The rest of the spectrum is left as is in this case. This technique is
good when only one or two transmitiers are a problem, but the notch filter destroys any phase or
amplitude information that those signals carry. That is, 2 notched signal cannot be examined for

- things like Trimpi events. The second scheme is to use a filter that attenuates all signals above
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Figure 2.2. Spectrogram showing signal characteristics at Roberval, Quebec. Vertical
- lines are spheric impulses due to lightning. Horizontal lines below 2600 Hz are harmonics

.of the local power-line frequency. Chorus occurs around 1 kHz. At 3980 Hz there is a
whistler-mode signal transmitted from Siple Station, Antarctica. A strong spheric causes
a whistler echo, and a whistler precursor on the Siple signal (very unusual). The pilot tone
is at 10 kilz, and above it are pulses from the Omega North Dakota transmitter.

10 kHz by, say, 20 dB. The advantages of this technique are that all VLF transmitters that might
cause overloading are attenuated, yet their phase information is preserved. However, this type of

filter (at least as we have implemented it) introduces a little ripple in the frequency response below
10 kHz.
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Typical Spectrogram. Figure 2.2 is an f-{ spectrogram of signals recorded at Roberval, Quebec,
and shows some typical signals (as well as one very unusual one). The vertical lines are impulsive
noise or spherics due to lightning strokes. Note that the mtensity of all of the spherics drops above
9.5 kHz. This is due to a low-pass filter that attenuates signals above this frequency by 20 dB to limit
interference from strong VLF stations. Mahy of the spherics also decrease in intensity below 5 kHz.
This is not due to the receiver but to attenuation in the earth-ionosphere waveguide. Some spherics
show no attenuation within the receiver passband. These are from lightning strokes relatively close

- to the station. Note in particular the very strong group of spherics at 1612:48.3. This group is strong

enough to cause a whistler. The two-hop whistler echo is seen starting about :52.2, and there is a
very faint four-hop echo about :57. Nose frequencies of different components of the whistler range
from 3 to almost 4 kHz.

' Horizontal lines in the spectrogram represent constant-frequency signals. Local power-line in-
teference is present as odd-numbered harmonics of 60 Hz from 60 to about 2600 Hz. There is also
a constant-frequency signal just below 4000 Hz. This is not a power-line harmonic. It is a whistler-
mode signal from the VLF transmitter at Siple Station, Antarctica, which was sending a two-tone

' signal at 3950 and 3980 Hz. An interesting feature is the short, variable-frequency signal that occurs

on top-of the Siple tones just before the whistler echo, at about :51.4. This is & whistler precursor,
a very unusual signal that is discussed in Sec. 4.5.3.

The fuzzy signal on top of the power-line harmonics from about 700 to 1100 Hz is a band of
chorus. This is a naturally-occurring signal of magnetospheric origin. The processes that generate
chorus are not completely understood at the present time. _ '

~ The strong signal at 10 kHz is the pilot tone, recorded to provide a phase reference for data
analysis. Note that there is a little ripple at about a 6 Hz rate in the frequency of the pilot tone, due
to flutter in the tape recording. This recording was processed to take out any avérag;e tape speed
error (tracker time constant = 1 s), but not the faster speed variations. Above the pilot tone are
approximately one-second pulses from the Omega navigation system transmitter in North Dakota.
Signals are seen at 10.2, 11.05, 11.33§, and 13.1 kHz. At the very top of the plot is a strip giving
time ticks and showing the amplitude of the pilot tone. Time marks are recorded by amplitude
modulation of the pilot tone. There is a 40 ms tick on each second (except seconds :09, :19, ..., :59)
and a 1 s tick on the minute. o
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Figure 2.3. Block diagram of the digital analysis system. Analysis takes place in two
steps. First the analog recording is played back, sampled, and digitized. Then the digital
samples are processed and the results plotted. The playback speed control to the tape
recorder is used to change the bandwidth of digitized signals, not as a servo to correct
speed errors. '

2.2 Pigital Apalysis System Components

In this section I describe the hardware of the digital analysis system. The reader will note that this
system was designed in-1976, and there have been revolutionary changes in the power and cost of
-computing and signal-processing equipment since then. The digital analysis system is now obsolete
" in many ways. However, it is still useful to describe the system at hand since it incorporates many
features that will be required in any more modern signal processing system. Chapter 5 has some
suggestions for such a future system, and I will make a few comments here as well. Figure 2.3 shows
the components of the digital analysis system, which are as follows: '

Computer.” This is the heart of the system. The Data (General Eclipse $/230 computer is a

general-purpose minicomputer well suited to low-cost dedicated data analysis. It has 64 Kbytes -

(32 Kwords) of core memory, just (barely) sufficient for our needs. Two features of the Eclipse
particularly useful for us are a very fast floating-point unit and a writable-control-store {WCS). The
WCS is a special section of one of the processor boards that allows us to program using microcode,
special low-level and very fast (200 ns cycle time) computer instructions. The FFT algorithm has
been written in microcode and runs much faster than would a similar program written in a high-
level language or even in assembly language. This FFT routine is not as fast as those found in
special-purpose signal processors or in computer systems with arr.ay-processors, but is it fast by
minicomputer standards. . _

- The computer also contains interface boards wlhiich allow it to communicate with external devices
such as the terminal, printer/plotter, disk-drive, digital ia.pe drive, and the digital coupler.

The use of a Data General machine was dictated by several factors. First, this computer and its
associated beripherals are compatible with other computers in the VLF Group at Stanford. Second,
Data General machines provided (at least when this system was purchased) the most number-
crunching power per dollar, especially if the user was willing to do low-level programming.

To give the reader some idea of the speed of this machine, here are some instruction execution

times. The Eclipse S/230 has a basic instruction time of 0.6 ps. This is the time to perform
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most register-to-register arithmetic and logical instructions. Load and store register instructions
{memory access) take 1.0 us. A 16 x 16-bit integer muitiply takes 7.2 ps. Floating-point operations
are very fast—a single-precision multiply takes about 4.5 ps. (The floating-point unit occupies two
15-inch square boards, which is pretty big.} The WCS has a micro—inst:uction cycle time of 0.2 ps. -
Microcoded programs will run maybe half again faster than those written in assembly language.
For purposes of comparison, an 8-MHz IBM PC/AT style machine {a personal computer using the
Intel 80286 microprocessor) takes about 0.5 us for registeero-register arithmetic, 0.75 ps to move a
word between a register and memory, and 3.0 ps for a 16-bit multiply. If used with an Intel 80287 .
floating-point chip (at 5.33 MHz) a single-precision mult.lply might take 12.5 gs. Thus the Echpse
§/230 is comparable in power to a modern high-end personal computer.

Analog Tape Deck. An Ampex AG-440C analog tape deck is used to reproduce field recordings
when digitizing data. This deck is a high-quality commercial unit just like those used at field stations.
The analog deck takes 1/4-inch tape reels up to 10-1/2 inches in diameter (3600 feet of tape) and
has half-track heads. It can reproduce two channels of data at once, but is usually used to play back
one channel only. The AG-440C uéeg constant-current equalization to reproduce field tapes with
maximurmn fidelity. ‘

The transport has a servo-controlled capstan motor. The motor speed can be set by an external
signal. The speed control signal is generated by the digital coupler {described below) under control
of the computer, and allows a wide variety of tape speeds to be used, ranging from 1.172 ips up
to 30 ips. Field tapes are all recorded at either 3.75, 7.5, or 15 ips, but using other speeds during
playback allows us to digitize different effective data bandwidths without changing the digitizer
sampling rate.

Tapes recorded with other equalizations or other head configurations can not usually be re--
produced accurately on this machine. In particular, tapes made on standard stereo equipment can -
only be played if the tape has been recorded on one side only (since one quarter-width track for the
reverse direction will also be picked up be the playback head). Also, most stereo equipment uses
NAB equalization, where the tape flux at high frequencies is emphasized with respect to that at
low frequencies, and these tapes will be reproduced with improper frequency response. Tapes made
using frequency modulation and 1/2-inch audio tapes (such as NASA analog data tapes) cannot be

played back at all.

A/D Interface. This is an analog instrument built at Stanford. The interface takes from one to
four audio input signals in the range of 0.1 to 5 V peak, and amplifies them to the level needed by
the A/I} converter. Next, the signals are clipped to help eliminate impulsive noise due to spherics.
Finally, the clipped signals are filtered to prevent aliasing during the sampling process. The frequency
cutoff of the anti-aliasing filters is 10.6, 5.3, or 2.65 kHz for 1, 2, or 4-channel sampling, respectively.
(Multi-channel sampling is done by interleaving samples from different inputs while the total sample
rate remains fixed; hence the lower cutoff frequencies.) 7

The A/D interface also contains circuits to generate various types of calibration signals. A

‘very pure 1 kHz tone can be generated to test for distortion effects during sampling or analysis. A
_comb signal with equal-level components every 200 Hz can be used to measure the system frequency

response. Two pseudo-random signals can be used to check the performance of certain analysis
routines. The short-period random signal repeats every 320 ms and generates a spectrum with
components every 3.122 Hz. The long-period signal repeats only every 82.0 s, and has components
every 0.01220 Hz. .

~The A/D interface also allows all input and output signals to be monitored with either a
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loudspeaker or earphones, and their broadband amplitudes can be measured on a meter.

Digital Cauﬁlcr. -This is a Stanford-built unit. It contains a clock, and a set of input and output
buffers to control the speed and functions of the analog tape transport. It also has buffers to receive
tape deck motion commands and sampling start and stop commands from the operator via a small
hand-held control box. The coupler has a series of LED indicators which are used during analysis
to indicate such things as the elapsed data time and the instantaneous tape rate error.

‘The coupler contains a 1 MHz quartz crystal oscillator whose frequency is divided down to
provide the 25.6 kHz sampling signal which triggers the A/D converter. This oscillator has an
accuracy of only about 1 x 10~¢. However, this is so much more accurate than the speed of the
analog tape deck that sample timing variations due to this oscillator are insignificant. In any case,
a small rate error in the 25.6 kHz sampling signal will be corrected when the pilot tone signal is

measured.

Analog to Digital Converter. The sample-and-hold and analog-to-digital (A/D) converter board
is in the computer. The unit has eight differential inputs, though we use only one most of the time.
The aperature uncertainty {jitter) of the sample-and-hold unit is speci'ﬁed as 5 ns peak. The A/D
converter is a 12-bit unit with an accuracy of 0.25% +1/2 LSB (least significant bit). The maximum
system conversion rate is 28 ksamples/s.

The A/D converter board also contains address registers, word counters, and interrupt logic
to perform direct memory access when digitizing. That is, it is only necessary to load an initial
memory destination and a sample count, start the first conversion, and the rest will follow and be

stored automatically in the computer memory.

Digital Tape Drive.’ The digital tape drive is used during data analysis to store the digitized

signal data. This drive takes 10-inch reels of 1/2-inch digital tape, and writes at 800 bpi in NRZI
format. One reel of tape can hold about 6.5 minutes of 10.6 kHz sampled data, either in one

continuous stream or separated into shorter tape files. Because of the speed needed during digitizing
(25600 samples or 51200 bytes per second), the tape drive is a vacuum-column unit that can read
or write at 75 ips. Because the tape transport is working very close to its maximum capacity when
digitizing data, there is no time for tape errors to be corrected. Tape performance must be perfect
(no tape dropouts) and only high-quality magnetic tape can be used. _

When this system was first proposed, 800 bpi was a common tape density. Since then other
 higher-density standards have come along, and one priority for modernizing the system would be

to get a higher-density tape drive. Other types of data storage are also becoming available. For

- instance, cartridge tape drives may make more sense for desk-top analysis systems. Optical disks

may soon be an even better choice.

Disk. This disk is a 10 megabyte top-loading unit that holds the various programs‘used as well
as small sections of data. Most of the system and user programs reside on the lower fixed disk, which
is always present. The upper removable disk (5 Mbyte) contains particular programs for different
applications, and different disk cartridges may be fitted for special uses. All of the programs used
in data analysis are contained in one disk cartridge, which also has about 4 Mbytes of blank space

for temporary data and plof files.

Printer/Plotter. All permanent data output is produced on a Versatec DI00A printer/plotter.

This unit uses an electrostatic technique to write images on specially coated paper. Qur unit uses
fan-fold paper in 8-1/2 by 11 inch sheets. The writing head contains an array of 1600 writing nibs

(each of which can write one tiny dot) covering a line 8 inches wide across the paper. When printing

]
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or plotting, the paper is slowly advanced over the writing head and individual nibs are turned on
or off as needed. The nibs leave small charges on the paper which is then flushed with toner. Toner
ﬁarticlw settle out where the paper is charged, and the toner solvent is dried. The result is a
high-quality half-tone plot with a resolution of 200 dots/inch in both the horizontal and vertical
directions. In the data analysis system, the plot is always oriented so that time runs along the long
edge of the paper (vertically), and frequency, magnitude, or phase is plotted along the short edge
(horizontally). Plots are viewed sideways, much like photographic spectrograms on film or paper.
This plotter has the virtues of being relatively fast, say 10 seconds per page, depending on the

* type of plot; and che.ap, about 3 cents per page. However, the paper is definitely not of archival

quality. A better modern alternative would be a laser printer which uses ordinary xerographic paper
and -also has higher resolution.

Graphics Terminal. The operator communicates with the system via a Tektronix 4012 graphics
terminal. The terminal has a keyboard for typing in commands and a display screen for reading
the results. The terminal has the capability of drawing graphs on a matrix of dots 780 high by
1024 wide, sufficient for a quick look during analysis but not providing quite the detail available
from the plotter. '

This terminal provided the most graphics power at a reasonable cost when the analysis system
was designed. However, it has several drawbacks. First, the terminal uses a storage display rather
than a raster-scan display, so changing a display means erasing and then rewriting the whole screen.
Second, graphic output is written by sending the beginning and ending coordinates of each vector
to be drawn. If only a single pixel is to be turned on, it is viewed as a vector of zero length and still |
requires at least two bytes to specify. This process (as well as the limited speed of the writing gun in
the display tube itself) limits the rate at which random graphs such as spectrograms can be drawn.

~ Pinally, the brightness, contrast, and actual resolution of the display are not as good as desired. A

better choice at the moment would be a raster-scan display using directly-addressable bit-mapped
graphics. Raster-scan displays are brighter and have more contrast than storage screens. Bit-mapped
displays (where individual pixels are represented by individual bits in the main computer memory)
are much faster to generate. A color display can show more data for a given-size picture matrix than
a monochrome display, but more about this in Chapter 5.
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2.3 Tape Timing Errors

Time and Rate Errors. Analog tape speed variations cause two related errors which must be
corrected before accurate phase measurements can be made. First, and most important, speed
variations cause the phases of recorded signals to vary. For instance, if a constant—fréquency signal
were recorded on a tape deck running below its correct speed, upon playback we would find that
signal zero-crossings were occurring before the expected times, and this phase error would increase
the further down the tape we looked. We will refer to this as the time error. Second, if the tape
speed change is large enough, the signal frequency on playback will be shifted significantly, and may
even be shifted outside the passband of the analysis filter. We will call this effect the rate error.

These two errors are obviously related, since the time error is just the integral of the rate error, -

but it is convenient to think of them separately since they require different techniques for correction
during analysis. First, the analysis procedure must correct for the rate error so the desired signal is

filtered cotrectly, and then the time error must be corrected to reconstruct the phase of the signal

as originaily received.

The rate error will also cause the amplitude of the signal on playback to vary, since p!ayback
head response increases with rising signal frequency, but this is compensated by the equalization
electronics in the recorder and is not a problem. Short-term speed variations in quality recorders
are small, on the order of 0.1%, and the amplitude variations they cause are insignificant. Long-
term (average) speed errors may be larger, as much as 2 or 3%. In any case, because of amplifier

-gain uncertainty and variations in tape quality, to make absolute measurements of amplitude it is
necessary to periodically record a calibration tone of known level. '

To illustrate these concepts, let’s look at an example. Consider a pilot tone at frequency f,
that is recorded on a field tape. The phase of the pilot tone as generated from the station frequency
standard is given simply by

Assume that the tape recorder in the field was started at time £o = 0. At time ¢, the tape has moved
a distance z and is recording a pilot tone phase of ¢,(¢). Let’s assume that the tape is moving with
a velocity vrec at this point. When the tape is done, we take it to the laboratory and play it back.

Time in the laboratory will be called #'. The playback tape deck is started at time £j, = 0, and after -

running a time ' reaches the point = again. Let’s assume that the tape on the playback deck is
moving with velocity v, at this point. We measure the phase of the pilot tone, and find the value
¢p('). This will be the same value as was recorded at point z in the field, so ¢;,(¢') = 4,(¢). Now

the question is, what was the time in the field when this signal was being recorded. The answer, of -

course, is
_ () _ £
C2mf,  2nfy]

which is how we will reconstruct field time from the pilot tone phase. We will call the difference in

time ¢ — ' = [¢,(') /27 fp] — ' = tcrr, the time error. This is the difference between the tape time,

(2.2)

as indicated by the pilot tone, and time on a stopwatch which was started when we began playing

back the tape.

The frequency of the pilot tone Iy (t) reproduced from the tape may be different from what
was recorded unless the record and playback deck speeds are the same. The frequency on pla.yba.ck
is glven by

delt v . i
py= B ey, 23)

bt)=2mfyt. _ @y
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where
) Ypb - f;(t’)

Vree fp (2.4)

rt) =
is the relative date rate. Since the speeds of f.he two tape decks are generally not constant, the relative
data rate is a function of time. It shows at any given moment the ratio of playback frequency to
orlglnal frequency of all signals on the tape, not just the pilot tone. The data- rate r 1s usually fairly
close to 1.00. We will call the difference r(¥') — 1 = r,.., the rate error.
The pilot tone phase as measured in the laboratory is given from Eq. (2.3) by

n;ﬁ'p(t") = [) 2 fy(r)dr = ./o 2ar(r)fp dr : | : (2.5)

so we can write

0O o [ |
ten =g = /0 r(r) — 1dr = /0 S (2.6)

Thus the time error is the integral of the rate error, as stated above.

Ezample of Typical Tape Errors. Figure 2.4 shows the magnitude and phase of the pilot tone in
a typical recording. These plots were generated by turning off the pilot tone tracker in the analysis
program and plotiing the actual values observed. The top plot shows the time code amplitude
modulation. The pilot tone level is increased 10 dB for one second on the minute, for 40 ms on the
second, and also to give the Morse code station identification and time information. The station is
—————— or “RO” for Roberval, and the next three characters are -———— ———— ——--- or
“117” giving the day of year for April 27. Two-digit codes for the hour and minute will follow the
day number. ‘ '

The middle plot shows the relative phase of the 1 kHz pilot tone with respect to a reference
éign‘al_ at exactly 1 kHz. What is plotted is the time difference (qﬁpuo; /1 kHz) — ', where ¢pizor is
in units of revolutions, and #’ is time in the reference frame of the analysis laboratory. The phase
is plotted in units of time, 1000 microseconds full-scale. This is, of course; exactly one revolution
of phase at 1 kHz. Time units are used to emphasize that this plot shows the time error of the
recording. Note that the relative phase of the pilot tone is advancing with time with respect to the
1 kHz reference. Time on the tape as played back is running by faster than it was in the 'ﬁeld when
the tape was recorded {when the pilot tone was exactly 1 kHz). Either the field tape deck that
made this recording was running slow, or the one in the lab that played it back was running fast,
or both. The speed-up in time is seen to be about 10.5 ms in 12 seconds, giving an average rate
error of +0.088%. Looked at another way, the pilot tone is seen to gain 0.88 revolutions of phase
per second with respect to the 1 kiHz reference, so it was reproduced at a frequency of 1000.88 Hz.

The bottom trace shows the pilot tone phase to an expanded scale. The uniform phase advance
due to the mean rate error has been removed (by using a phase reference at 1000.85 Hz) and what
remains are some smaller phase variations about the mean. The structure of these remaining phase
errors is somewhat complicated, but there are two obvious regularities. There is a roughly sinusoidal
error component with a peak-to-peak amplitude of 85 ps at a frequency of 2 Hz. And there is a.
smaller but faster variation about 14 us p-p at a frequency of 20 Hz.

We have expressed these small fluctuations as time errors. We can differentiate and express
them as rate errors as well. We find that the 2 Hz fluctuation corresponds to a rate error of
. 85x107%.27 -2 = 0.107% p-p, and the 20 Hz one to a rate error of 14 x 1075 . 2720 = 0.176% p-p.
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Figure 2.4. Magnitude and phase of the 1 kHz pilot tone on a typical analog recording.
The top trace shows magnitude of the pilot tone, with 10 dB amplitude modulation due
to time ticks and station and time codes. The middle trace shows the phase relative to
a 1 kHz reference. There is an average rate error of +10.5 ms in 12 s, or 40.088%. The
bottom trace shows the phase with the average error removed. The residual errors are due

to the record deck idler pulley (2 Hz ripple) and capstan (20 Hz ripple). Analysis filter’
bandwidth is-40 Hz.

. Assuming that these two components are independent and make up the bﬁl_k of the short-term erroré,
the total peak-to-peak fluctuation about the mean rate error is the sum 0.107 +0.176 or 0.283% p-p-

Causes of Tape Timing Errors. The +0.088% average speea error may be caused by the record -

deck, the playback deck, or some combination of the two. Possible causes of static speed etror include
an undersize capstan drive shaft due to wear, and tape slippage due to improper tape tension or
~ improper capstan pinch roller pressure. Tape decks with synchronous capstan motors (all Ampex




TABLE 2.1

Rotational Sources of Tape Timing Fluctuations

_ Frequency of Fluctuations
Source _ Diameter vs. Tape Speed
. 3.75ips 7.5 ips 15 ips

3.75/17.5 synchronous capstan 0.118in | 10. Hz 20. He

7.5/15 synchronous capstan 0.235 in 10. Hz 20. Hz
AG-440C servo capstan . 0380in | 3.1 H= 6.3 Hz 125 Hz
small supply idler 1.2 in 0.99 Hz . 1.99 Hz 3.98 Hz
large supply idler _ 1.5 in 0.80 Hz 1.59 Hz 3.18 Hz
pinchroller 20 in 0.60 Hz 1.19 Hz 2.39 Hy
tape reel, empty 4.5 in 0.27 Hz 0.53 Hz 1.06 Hz
tape reel, full 95 in 0.13 Hz 0.25 Hz 0.50 Hz

350 series and the AG-440B model) are also affected by power-line ffequency variations, which can
be as much as 0.1% in North American power grids. Susceptible tape decks at sites with power from
less-stable local generators (such as at Antarctic stations) must be run from frequency-stabilized
supplies to avoid this problem. The AG-440C and ATR-100 decks with servo-controlled capstan
motors are immune to line-frequency problems.

The residual phase errors in the lower plot of Figure 2.4 are caused in this case by the record
deck. This tape was recorded at 7.5 ips on an Ampex tape deck using a synchronous 3.75/7.5 ips
capstan motor. Overall tape tension is controlled by the torque of the supply and takeup reel motors.
However, the actual motion of the tape is controlled by friction with the supply idler pulley (a free-
running shaft with a large flywheel) on one side of the heads and the capstan motor drive shaft on

‘the other. The supply-idler on this deck has a diameter of 1.2 inches. At a tape speed of 7.5 ips it
rotates at 2 revolutions per second (rps). The capstan motor rotates at exactly 20 rps in its 7.5 ips
mode, and the capstan shaft has a nominal diameter of 0.118 inches. The 2 Hz and 20 Hz phase
ripples are caused by small eccentricities in the idler and capstan.

If the nominal tape speed is » and the diameter of a circular shaft over which the tape runs
is d, then the shaft rotates at a uniform rate of f rps where f = vfwd. If the shaft is circular
but its geometrical center is offset from its center of rotation by an amount ¢, then with each
rotation of the shaft the tape will at some time be advanced from its mean position vt by £, and
at another time retarded by —&. If the offset £ is small, then the displacement of the tape at the
shaft will be sinusoidal in time, with peak-to-peak amplitude 2¢. If the record/playback heads are
midway between the idler and capstan shafts, then a p-p displacement of 26 at one shaft will cause a
displacement over the head of about half that’ amount or £, since the ¢lastic tape is anchored at the
other end by the other shaft. This displacement at the tape head will cause a time error of £/v p-p.
Thus the 85 ps and 14 ps p-p pilot tone phase errors are caused by eccentricities of only 0.00064
and 0.00011 inches (16 and 2.7 pm), respectively, in the idler and capstan shafts.

Table 2.1 lists the various rotating parts of the analog tape decks that can cause tape phase
~ fluctuations. Because of its relatively small diameter, the 3.75/7.5 ips capstan motor is particularly
susceptible to damage in the field. Tape flutter with this capstan motor can be especially bad. Also,
mean rate errors are often 1% or more. The 0.088% error in Figure 2.4 is actually surprisingly small
for this capstan motor. The 7.5/15 ips and AG-440C capstan motors are much better than the-
3.75/7.5 ips type. ' ‘
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Damage to the pinchroller usually involves dimples or bumps on its surface. These cause sharp
phase irregularities rather than the sinusoidal variations due to off-center shafts.

Since the torque of the reel motors is constant while the tension exerted on the tape depends
on the distance from the center of the reel to the edge of the wrap, an off-center reel can cause phase
errors by causing variations in tape tension. The frequency of any effect depends on the amount of
tape on the reel. Minimum and maximum diameters and corresponding fluctuation frequencies are
listed. Noise due to a reel scraping some external object and tape stretch due to a bad wrap on a
reel also occur with these ﬂuctuatlon frequencies and may be important in some cases.

Inier—Channe! Jitter on Multz-Channel Recordings Due to Tape Skew. One final source of tape’
timing errors needs to be mentioned. This error, inter-channel jitter, is an error in timing that
occurs between two tracks of a multi-channel recording and is caused by azimuthal tape skew. Tape
azimuth is the angle which tape motion makes with respect to a line drawn through the head gaps.
If the head gaps are not exa.ct.ly perpendicular to the motion of the tape, then signals in one track
will cross their head gap shghtly before or after those in some other track, and signals recorded
simultaneously but on different tracks will not be played back at exactly the same time. If the error
in tape azimuth is constant then the delay from one track to another will be constant and may not
pose a problem. However, if the azimuth changes then the delay will change as well. '

I have found when trying to process 4-track recordings that there is typically a jitter between
channels of about 25 us peak-to-peak at a tape speed of 7.5 ips. This corresponds to a peak inter-
channel displacement of 0.000094 inches (2.4 pm). If the two channels are 1/8 inch apart across the
width of the tape, then this represents a peak shift of only 2.6 minutes of arc in the azimuth of the
tape about its average value. This sort of shift can occur over the 3-inch distance between the tape
guides on either side of the tape head if the clearance at each guide is only 0.001 inch. This error
probably cannot be reduced much.

_ A similar problem may be caused by distortion of the tape surface. Unless the tape is wrapped
very evenly on the reel (which does not happen when the tape deck fast-forward or rewind functions
are used), the tape will tend to roll sideways over inner layers. Since the tape is wound under a slight
tension, this may cause the tape to stretch differentially from edge to edge at different portions of
the wrap. When the tape is played back this stretching will cause azimuth errors.

Another potential source of inter-channel jitter is excessive head scatter. This is the displace-

ment of the different gaps in the head stack from their mean position on a line perpendicular to the

tape, either forward or backward in the direction of tape motion. This gives a delay between signals
on different tracks. For a constant tape speed the constant delay produced may not be a problem,
but if the tape speed varies the delay will also vary. However, unless the head scatter is more than a
few thousandths of an inch, the jitter caused by typical speed variations is unlikely to exceed 1 HS.

The problem with inter-channel timing jitter is that it makes it impossible to compare the
phases of signals recorded on different tracks of a given tape. A pilot tone recorded on one track

cannot be used to rectify timing errors on a different track. Though the average rate error can be-

corrected, the inter-channel jitter cannot. If phase measurements are to be made frommultl—channe]
recordmgs each channel must include its own pllot tone.

1.____..1'-;-)\
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2.4 Saropling and Digitizing

The conversion of an analog signal to digital form entails first sampling the signal, that is, measur-
ing its-wavefqrm at periodic intervals; and then digitizing or converting these samples into digital
numbers. In this system, signal sampling takes place at a rate of 25600 samples per second. The
sample-and-hold circuit on the A/D converter board in the computer is triggered by a 25.6 kHz pulse
train from the analog interface. At each pulse, the instantaneous input signal voltage is captured (a
capacitor is charged) and held temporarily (the charge switch is opened) while being converted into
a digital number by the A/D circuit. After the conversion, the A/D board stores the number in the
computer memory. When enough samples have been accumulated, the computer writes out a block
of samples to either the digital magnetic tape or the disk.

The process of sampling and digitizing is necessary in order to convert the analog signal from
the tape recorder into a form that can be processed by the computer. However, this conversion can
introduce various errors. Frequency aliasing, due to improper filtering before sampling, can cause
components at one frequency to appear somewhere else. Phase distortion in the anti-aliasing filter
can cause different phase shifts between different signal components if there is wow and flutter in
the tape recording. And sample-and-hold jitter and A/D converter quantization error can introduce
noise. We will consider each of these potential problems in turn. '

Sampling and Aliasing. The sampling theorem [e.g., Bracewell, 1965, Ch. 10] states that if a
signal is known to contain components only at frequencies below some maximum cutoff frequency
fe, then it is possible to precisely reconstruct the signal from evenly-spaced samples of it-taken
2f. times per second (the Nyquist rate). However, if the signal contains components at frequencies
above fe, then there is not enough information at 2f. samples/s to reconstruct the original signal. If
such a reconstruction is nevertheless attempted, what will happen is that higher frequencies {above
fe) in the original signal will appear as lower frequency components (below £.) in the reconstructed
signal. In fact, if the frequency is above f. but less than 2f,, say at f. + z, it will be reconstructed
at f. —z. This error in reconstruction is known as frequency aliasing. Thus, for a giveh sampling
rate it is necessary to ensure that the bandwidth of the input signal is limited to at most one-half
of that rate. )

With a sampling rate of 2f, = 25600 samples/s, it is theoretically possible to retain information
about all input signal components from zero frequency up to f, = 12.8 kHz. Since the analog
signal reproduced from the field recording typically contains cornponents above this frequency, it is
necessary to filter it before sampling. In the ideal case we would process the analog signal by feeding
it through a filter that passed components at frequencies below 12.8 kHz but rejected those at higher
frequencies. In practice, it is impossible to make a filter with an infinitely sharp cutoff. A real low-
pass filter is specified by a passband from 0 Hz to a maximum frequency fp, throughout which there
is 2 maximum permissable attenuation {passband ripple) Amq.; and a stopband from frequency f,
on up, where the attenuation is always at least some minimum value Apin. The region between
fp and f; is the transition region where the attenuation is unspecified, though it will generally be
between Amaz and Amin. The optimum low-pass filter is specified for a given sampling bandwidth
fe when f; — fo = fo — fp. When this is true, signals in the passband below f, will be passed, and
signals above f, aliased into the passband will be attenuated by at least An;,. However, the region -
from fp to f is subject to unknown attenuation, and to unknown amounts of aliasing from signals
in the region f. to f;. This optimum design minimizes the contaminated region f, < f < f.

In this system we use a 7th-order Cauer (elliptic) low-pass filter designed following Zverev [1967].
The filter used is a CC072045 design in his notation. It is flat (within 0.1 dB) from dc¢ to 10.6 kHz,
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but attenuates signals above 15.0 kHz by more than 70 dB. This ensures the fidelity of sampled data-

up to 10.6 kHz. However, signals from 10.6 to 12.8 kHz will be subject- unknown attenuation and
to aliasing by signals from 12.8 to 15.0 kHz. The analysis program automatically discards spectral
points in the contaminated band above 10.6 kHz. '

(The above discussion refers to the sampling of a single-channel signal reproduced at the same
tape speed as recorded. Playing back tapes at different speeds changes the effective bandwidth of the
sampled data, while the actual sampling rate in the laboratory remains the same. Also, multi-channe}
sampling involves interleaving samples from different inputs. In this case, different anti-aliasing filters
are used, with cutoffs of 5.3 or 2.65 kHz, for 2- or 4-channel sampling, respectively.)

Phase Distortion in the Anti-Aliasing Filter. In Eq. (2.2) above we showed how to find the
tape time ¢ given a measurement of the pilot tone phase ¢,. In fact, what we measure is not just
the phase ¢, but also phase shifts introduced by all of the various circuits throngh which the signal

passes on its way from the tape to being digitized. Most of these additional phase shifts are small -

and are of no concern. Some phase shifts are proportional to frequency and just introduce constant
time delays, again of no concern. However, the phase shift introduced by the anti-aliasing low-pass
filter is neither small nor linear with frequency and may be a source of error.

Let us call the phase shift of the filter 4(f). At a given frequency, this phase shift introduces
a phase delay tu(f) = 0(f)/2xf [Papoulis, 1962, Eq. (7-58)]. This is the steady-state delay of a
constant-frequency signal passing through the filter. If the delay were some constant value for all
signals it would pose no problem. Even if the delay were different for different signal components,
but still constant for each, it would not be a concern. Ultimately we are interested in measuring
the relative phases of narrow-band signals as functions of time, and not in comparing the absolute
phases of different components, so a constant phase shift between one component and another at
a different frequency is not a problem. The problem occurs when the data rate changes and the
frequencies of all sign'a,l components change. If the phase delay at each frequency does not change
by exactly the same amount for a given data rate change, then we will be unable to use the phase of
the pilot tone to reconstruct the phase of some other signal since the other signal will have suffered
a different and unknown delay. Our task here is to estimate the differential phase delay between
components at two different frequencies for a given change in datd rate.

Consider a component at frequency f. If the data rate changes from r to v = » + ér then the
filter phase shift will change from 9(rf) to

0+ £) = 0((r + 5r))
de

m O(rf) + 6r- fg for small ér. | (2.7)

This will give a delay in time of

_Fér-fﬁ 6rd9
T of df 2 df

= br -ty (rf) e

where
| _ 1 de()

is the group delay. If the group delays are different at the pilot frequency f, and at some signal
frequency f,, then a rate change of ér will give a differential time delay

At= bty = 6t = 5rltpe(rfy) —te(rf)). | (2.10)

—
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‘The résponse of the anti-aliasing filter is determined by the locations of the poles and zeroes of
its transfer function, which are placed as follows (in units of Hz):

Poles at —4257.070 =ag ' :
—3397.053 £5766.480 = oy i1 . :
—1815.235 £79346.958 = oy +jus - ' .
~532.103 +710822.336 = o3 Ljug : '

Zeroes at +715261 = jrg

718040 - = Ljus
+730270 = Zjve

The group delay of the filter is given from the locations of its poles by [Zverev, 1967, Eq. (5.3.3)]:

&o o1 - oy F3 o
ter(f) = ( +fz+0%+(f_m)2+g§+(f+y1)2 -+ 2+(f+113)2) (211) . '

Note that the zeroes vs—1g are all on the jf axis in the stopband, and have no effect on the group

delay in the passband.

- TABLE 2.2

Anti-Aliasing Filter Group Delay vs. Frequency

f tyr f ter I tgr
0kHz 693 us .| 95kHz 1594 us 10.9kHz 365.5 ps
1 68.7 10 ©193.0 11 338.5
2 68.0 10.1 206.5 11.1 301.5
3 69.6 10.2 224.0 11.2° 262.4
4 74.6 10.3 -246.3 11.3 296.4
5 81.8 10.4 273.8 11.5 169.8
6 87.8 105 305.4 11.7 131.6
7 944 | 106 337.6 12 96.0
8 111.6 10.7 363.4 13 48.5
9 142.9 10.8 374.5 14 31.7

- Table 2.2 shows the filter group' delay ¢, as a function of frequency. The group delay has a
minimum value of 68 us around 2 kHz, and a maximum value of 375 us near 10.8 kHz. The highest

analyzed signal frequency is 10.6 kHz (higher-frequency components may be aliased and are thrown
out) where the group delay is 338 us. '

Let’s assume that the variation in data rate about the mean is §r = 0.3% peak-to-peak, a little
bit worse than that seen in Figure 2.4. Then the worst-case differential time delay, which will occur
between a signal at 2 kHz and one at 10.6 kHz, will be At = 0.003- (338 — 68), or 0.81 s p-p. This
is not zero, but it is not very great, either. For signals below 10 kHz the error will be at most half of
this, and even less at lower frequencies, since the filter group delay flattens out rapidly as we move
a.ﬁay from the edge of the passband. : _

Most of the interesting effects we will study involve phase shifts of hundreds of microseconds or
more, and distortion introduced by the anti-aliasing filter will be unnoticable. There may be some
cases, though, such as when looking for Trimpi event phase shifts (only a few microseconds in many
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-

cases) on VLF transmitter signals (which may be at the upper end of the filter passband where
distortion is worst) where the anti-aliasing filter together with wow and flutter will limit the effects

we can see,

Sample-and-Hold Jitter. When the filtered input signal is sampled, we must ensure that the
samples taken are evenly spaced in time. The sampling jitter, or “af)erture uncertainty,” is the
difference between the time when a sample is supposed to be taken (a multiple of 1/25600 second
in our case) and the time it actually is taken. The problem here is that a changing signal sampled
at the wrong time will have a different voltage than it had at the specified time. If the maximum
frequency of the sampled signal is f and its peak voltage V, then the maximum rate of change of
voltage with time is 27 fV. The maximum relative error is then 2 fVr/V = 2z fr, where 7 is the

jitter in seconds. _

The aperture uncertainty of the sample-and-hold unit in our system is specified as £5 ns. If the
maximum frequency of the sampled signal is 10.6 kHz, then the peak sampling error due to jitter
will be 2710.6 x 108 x5 x 10-% = 0.033%, or 70 dB below the peak sampled signal. Since only rarely
will we sample signals with such large high-frequency components, most. of the time the errors due
to sampling jitter are smaller than those due to quantizing, which are discussed next.

Quantizing Evror and Dynemic Range. Once signal samples have been taken, they are converted
into digital numbers (integers) by the analog-to-digital (A/D) converter. However, there is an error
of approximation called the guantizing error involved in this conversion. The error arises because
each sample of analog signal, which can take on a continuous range of values, must be represented
by a digital number, whichk can have only a finite number of values. The quantizing error limits the
smallest signal that can be converted, and thus determines the dynamic range of the signals that
can be represented digitally. If the quantizing error is statistically independent from one sample to
the next (as'is usually.r the case with real signals) then the effect of quantizing is to add a certain
amount of white noise to the sampled signal. _

The precision of an A/D converter is usually given as so many “bits.” A p-bit converter
approximates an input voltage as being one of @) = 2P equally-spaced levels. For instance, our
12-bit converter-assigns an input sample to one of @ = 4096 different integers from —2048 to +2047,
representing signals from —5 to +5 V in increments of 10 V/4096 = 2.44 mV. However, unless the
input sample falls right at one of the quantized levels it will not be represented exactly. Instead, the
input will be approximated as being at the nearest level, with some error e. If the input range of the
converter is —V to +V, then the quantizing interval is 2V/@ volts. The error e ranges uniformly
from —V/Q to 4+V/Q (that is, never more than half the interval), with probability density Q/2V.
The mean squared error is the expected value of e2 or V2/3Q?, and the rms error is then V/v/3Q.

We will define the dynamic range of the A/D converter as the ratio of the largest undistorted
sinewave which can be converted, to the rms error (noise) in the conversion. (Note that this is not
the common definition, which is usually something like the ratio of the peak convertible value to the
rms noise, a definition reminiscent of hi-fi amplifier ads.) The maximun sinewave signal which can
be digitized has a peak value of V, or an rms value of V/ v/2. The dynamic range of the converter
is thus \/3/—262 or \/3/_2‘-2”. '

 The dynamic range of a 12-bit converter is found to be 74 dB. This assumes, of course, that
the A/D converter has no other errors besides the quantizing error, such as non-linearity or missing
codes. The dynamic range of our A/D converter is not quite 74 dB because of these additional
errors, but it is still quite a bit greater than the broad-band dynamic range of the analog tape
recording (50-60 dB). Thus the quantizing noise of the A/D converter is not significant compared

SS——)
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to the inherent noise of the analog tape.

2.5 An‘alysis. Algorithms

Types of Algorithms. The algorithms T will discuss fall into three catagories. First are those
procedures used in most signal processing tasks. Some of these, such as the FFT algorithm, are
widely known, though not always optimally used. Others, such as windowing, are not known as
widely as they should be. The presentation of these algorithms is in the nature of 2 review. Anyone
. who sets out to build an analysis system must know this stuff. _

Second are those algorithms such as the tracking of the pilot tone and interpolation of the
output spectrum that deal with the correction of analog tape timing errors. These procedures have
been developed especially for this system to enable us to make signal phase measurements from .
analog field recordings. In the future we will have recorders without the wow and flutter of analog
tape decks and future analysis system designers won’t have to worry about these algorithms.

Third are those algorithms such as the calculation of relative phase and formatting for output
that have been developed to display the results of analysis. Some of these, such as the plotting of
J-t spectrograms, are merely the translation to the digital world of techniques that analog analysis
systems have used for a long time. Others, such as the gray-scale or width-modulated phase format,

are new. This is an area ripe for further invention.

As well as the spectrum analysis program itself, the digital analysis system has three other
programs that are used during data analysis. These are a program to digitize data and record the
samples on digital tape or in a disk file, a program to copy sampled daﬁa files, and a program to
generate synthetic data samples mathematically for testing various analysis procedures. The design
of these programs is straightforward and will not be described here.

Basics of Dz'gitall Spectrum Analysis. First I want to introduce some of the basic ideas of digital
signal processing to lay a foundation for the discussions of algorithimns in the following sections. This
is basic stuff and the knowledgeable reader can skip ahead. However, the presentation here is from
a slightly different viewpoint than usual. A common presentation of the order-N discrete Fourier
transform is as the Fourler series coeflicients of a bandlimited repetitive waveform. This 1s true,
of course, but it’s of little help when we're trying to understand signals which are not repetitive.
It is more appropriate, being familiar with analog spectrum analyzers, to view the DIT as an
approximation to the windowed spectrum or the output of a bank of filters. For additional details
about spectrum analysis and the windowed Fourier transform the reader is referred to Rabiner and
Gold [1975, Ch. 6}, Rabiner and Schafer [1978, Ch. 6], or Cadzow [1987, Sec. 3.9-3.14]. For practical
windows the reader must consult Harris {1978] and, especially, Nuttall [1981]. '

In the digital world we represent an analog waveform as a series of equally-spaced samples. How
can we represent and calculate the digital equivalent of its spectrum? Assume we have a signal z(2) -
and its Fourier transform X(f), given before as -

x(n= [ sweira (L)

-~ 00

We sample z(2) at increments of time T to generate the sequence of samples {z,}, where

zp = z(nT) forn=20,1,.... (2.12)
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We define the infinite-time discrete Fourier transform of this sequence to be

Xp(f) = z T, 2T _ o (2.13)
n--—oo . :
Now, if =(t) is baudlimited to the sampling cutoff f;equency fo = 1/2T, that is, if X (f) = 0 for
Il > fe then we can show [e.g., Rabiner and Gold, 1975, Sec. 2.12}: :
: 1
Xp(f) = ?X(f) for all |f| < 1/2T. (2.14)

We see a direct relationship between the spectrum of an analog waveform as given by its Fourier trans-
form and the corresponding discrete transform of its samples given by Eq. (2.13). The only difference

is that the discrete spectrum Xp(f) is periodic in f with period 1/T = 2f. (since exp(j2xm) = 1

for any integer m). That is, Xp(f+m/T) = Xp(f). We are only interested in Xp(f) at frequencies
|f].< fe- '

As we saw in Chapter 1, spectrum analyzing non-stationary signals involves calculating the
windowed spectrum S(tg, f), given by Eq. (1.2), at various times f5. We need to do the analogous
thing here. Given a weighting function w(t), we will sample it at times 2T to get a sequence {w,}.
We define the discrete windowed spectrum Sp, evaluated at time ¢g = mT and frequency f, to be-

e
Sp(mT, f) = Z Tapmitge 12T (2.15)

n=—co

Note again that the window is stationary in time, and the signal moves through it. We can also
express Sp by analogy to Eq. (1.3) as a convolution in the frequency domain as

: 1/2T ) ] . .
Sp(mT, f) = f_ o X TWp(f ~ v)dv = X(£)eI ™« Wp(f) (2.16)
where -
+co
Wp(f)= D wee 2T, N (2.17)

We see that Sp(mT, f) is almost the same as the windowed spectrum S(fg, f). There is a
slight difference, however, because the discrete window function Wp(f) is periodic in frequency
with period 1/T = 2f,. This causes frequency aliasing in those synthesized filters near the cutoff
frequency fc. For example, consider a window function W(f) that represents an equivalent lowpass

filter with bandwidth b. W(f) is zero outside the interval [—b,b]. We sample W(f) to get the .

weighting sequence {w,}. When we evaluate Eq. (2.17) we find that the corresponding discrete
window function Wp(f) is bandlimited to intervals ..., [-6—2f.,b—2f.], {-8,8], [-b+2f.,b+2f.],

, and so on. Now let’s look at the discrete wmdowed spectrum at some frequency f; within b of

the band edge f.. We find from Eq. (2.16) that Sp(mT, f1) involves X(f) not only at frequencies in
the interval [f; — bf, f] as in the continuous-signal case, but also at frequencies 2f, lower than this
inthe interval [—fe,—2f. + f1 + b]. It is as if components in this lower interval were aliased up to
the interval [f., fi + ] where the sampled signal should have no.power. Because the signal is real,
its spectrum 1s hermitian and these aliased components are just the conjugates of X(f) from the

i

[ —
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interval [f; — b, f.]. Tnstead of being symmetrical, the passband of a filter near the sampling cutoff
is folded back on the conjugate of itself about the frequency f.. _

In practice aliasing near f; is not usually a problem. Useful window functions are narrowband
compared to the input signal (else we’d only synthesize a few, very broad analysis filters); and we have
to throw away spectral points close io the 3ampling limit f. anyway because of the finite transition
bandwidth of the sampling lowpass filter as discussed in Sec. 2.4. However, a similar problem occurs
in both the continuous and discrete worlds for filters near zero frequency. The discrete windowed
spectrum Sp{mT, f) evaluated at a low frequency f; within the lowpass bandwidth b will depend
not just on signal components at positive frequencies {0, fi -+ 4] but also at negative frequencies
[f1 — b,0], the conjugates of those components at [0, — fi]. The analog circuit designer faces this
problem when trying to design a bandpass filter with arithmetic symmetry when the bandwidth is
a large percentage of (or even larger than) the center frequency. We will refer to these effects, at
both the high and low ends of the analyzed spectrum, as passband -aliasing.

Finally we are led to the primary tool of digital spectrum analysis, the order-N discrete Fourier
transform or DFT defined as [e.g., Rabiner and Gold, 1975, Sec. 2.21}: ‘

N-1
Xe= Y zpe ™ N fork=0,1,...,N—1. (2.18)

n=0

We can think of this as Sp (0, k/NT), the discrete windowed spectrum evaluated at time to = mT = 0
and discrete frequencies f = k/NT, using a uniform weighting sequence {w,} of length N, where

wn:{l, fn=01,...,N—1, (219)

0, otherwise,

In practice we will use more sophisticated weighting functions than Eq. {2.19), but we postpone their
discussion until Sec. 2.5.3. We have also left out any explicit segment time origin {p in Eq. (2.18).
At time mT we actually evaluate the DFT of the sequence {Z,4m} to find Xz = Sp(mT, k/NT).
When the DFT is calculated, each segment {z,} of N real data points generates a transform
sequence {X;} of complex spectral points at frequency multiples of fp = 1/NT. Note that X
is periodic with peﬁod N, that is, Xp4pn = Xi so we only need to calculate spectral points for
- 0 <k <N ~1. In fact, since {z,} is a real sequence, the transform points XN/.2+1,~- o, XN-1 are
just the conjugates of the points Xyy2.1,..., X1 and are not needed. (The spectral point Xz is
a special case and is independent of those below, but we don’t need it either.) If the transform size
N is édjustab!e we can change the segment length NT and spectral line spacing fp, and thus trade
off frequency resolution for time resolution as desired. In the present system, N must be a power of
2 from 64 to 2048, and we can generate spectra with from 32 to 1024 synthesized filters.
For example, using the maximum transform size N = 2048, at 25600 samples/second we will
. transform a segment 80 ms long to get a spectrum with 1024 pbints- spaced every 12.5 Hz from 0 to
almost 12.8 kHz. As mentioned above, the input anti-aliasing filter allows séme frequency aliasing
above 10.6 kHz. We w1ll throw away spectral points a.bove that frequency, and only use points
Xo, ..., Xags, which cover 0 to 10.6 kHz

Data. Analysis Procedure. Figure 2.5 shows schematically the various steps that are taken when
analyzing a signal. We start out with a long string of data samples representing up to 400 seconds of
a 10.6 kHlz bandwidth analog signal. The data analysis program runs in an endless loop, processing
a small windowed segment of data samples at éach pass and then moving ahead to the next segment
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Figure 2.5. Data analysis procedure. Successive overlapping segments of input samples
are transformed via the FFT. The pilot tone phase and frequency are measured and used
to calculate the actual data time and relative data rate. Spectral points are interpolated
in frequency to correct for rate error, and a reference phase is subtracted from each filter
output. The resulting magnitude and relative phase values are then plotted.
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- TABLE 2.3

Program Variables and Parameters

{sn}, where s, = s(nT), up. to 107 real samples of the input waveform s(t)

T = nominal time between data samples = 1/25600 s for 10.6 kHz data

N = number of data points in a data segment to be analyzed, 64, 128, ..., 2048
{zn}, a sequence of N samples from {s,}, the current segment of 5(£). to be analyzed
{Xx}, Nf2 complex points in the DFT spectrum of {z,}

{5k}, complex points in the windowed spectrum of {z,}

{Ui}, complex points in the interpolated spectrum of {z,}

{Vi}, complex points in the output spectrum of {z,}

{®:}, integral revolutions of accurnulated phase in the output spectrum

fp = 1/NT, frequency spacing of filters in the DFT and windowed spectra

fr = frequency spacing of filters in the interpolated and output spectra

f1o and fri, frequenty bounds of the interpolated and output spectra

Jscate = number of halving steps for overflow prevention in the FFT

tstep = nominal advance in data time between successive data segments

Jstep = actual number of samples advanced from the previous data segment to-the current one
f; = estimated time of the center sample (zyy/2) of the i-th data segment

t; = measured center time of the i-th data segment

Jp = pilot tone frequency as recorded

fpi = smoothed pilot tone as measured at the i-th data segment

i = fpif fp = smoothed relative data rate at the i-fk data segment

Gp = pilot tone gain

7, = pilot tone tracker smoothing time constant

oyt = output spectrum gain

Tawg = output spectrum averaging time constant

M,pan = magnitude plot range in dB (log magnitude plots only)

Pypan = phase plot range in revs or fraction of a rev

until the entire string is processed. At each pass the spectrum for that data segment may be plotted.
In the following sections we will discuss each of the processing steps in turn. Table 2.3 lists the more
important program variables that are mentioned in the discussion of the various analysis algorithms.
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2.5.1 Move Window toe Next Data Segment

The first step in each pass through the analysis program is to move the data window forward a time
tsiep to the next data segment to be analyzed. The usual procedure in moving-window analysis is
to advance the data window by the same, fixed number of sample points at each pass. This has two
disadvantages. First, this means we must always advance by a time which is an integral multiple

of the sample time T, and this limits the choice of spectrum output rates. We may want to make

plots to time scales unrelated to the sampling rate and will need to generate spectra at arbitrary
intervals. Second, if we are dealing with tape-recorded data and possible timing errors, we may not
know exacﬂy what the time scale is at any particular point, and it may change as we move through
the data.

What we really want to do is calculate output spectra at equal mcrements in data time. If
tstart i the time of the first data segment analyzed, then we want successive output spectra at
times £; = ¢,1ar¢ + #atep, for i = 0, 1, .... Since the data rate r may change, an increment of time
ts1ep Will not always represent the same number of samples. And it won’t necessarily represent an
integral number of samples in any case. What we will do is measure the data time and calculate
the instantaneous data rate as we go, and try to advance in even increments tstep. OF course, while
we can advance our clock ¢; by some arbitrary amount we are constrained to move the data window
forward only by integral numbers of samples. We will move it to the nearest sample. _

The purist will note that by advancing the window only by integral samples we can not generate
spectra at precisely uniform increments of time ¢; = £,,4r+ + tstep, even though that is how we shall
plot them. However, the error in time between the clock and .the data window need not be more
than half the distance between samples or 0.57T, which is about 20 s for 10.6 kHz data. This error
will not affect the plotied phases of analyzed signals since relative phases are calculated with respect
to the measured data time t;, and not the nominal time #,44,¢ + #t,1ep.

We proceed as follows on the i-ih pass:

1. We desire the time of the center of the data segment on the i-th pass to be £,e4re + iseep. This
represents an advance from the previous segment bj( a time.of #t,¢ep —t;_1, where £;_; is the time

. of the previous segment as determined from the pilot tone phase using Eq. (2.2). Each sample in
the data at this point represents an increment in data time of approximately 7;_1T. {We have
to use the data rate ;_, measured from the previous segment, since we have not yet calculated

7;.) Therefore, we will move our window ahead by js.p = (#st0p — ti—1)/(Fi—1T) + 0.5 points,

where j,icp is an integer, and the term 0.5 rounds Jstep to the nearest whole number.

" 2. 1f jstep < 0 then use jyyep = 0. Thisis an exéeptional case that may occur on the first few passes
only, but it i1s important not to try to step backward through the data, especially at the start.
On the initial pass we assumed a data time tp = f,¢4¢, but we may actually have measured a
time {o that was greater than f;iart 4 tstep by a small amount, depending on the initial phase
of the pilot tone and the size of ¢,4.p. This would cause us to move backward to get to time
[y = Lstart + 1 - T54¢p. This exceptional condition will disappear shortly.

3. If the index in {s,} of the first sample of the previous data segment {z,} was some mteger '

say a (i.e., o = 55, then assign a = a + Jstep and assign z, = sg4m, forn =10, 1, -1
to get the segment to be analyzed on this pass. Note that the integer a here is ﬁctlthLlS. The
entire sequence {s,} is not stored in memory as an array, and the actual assignment of 5,4, to
£, involves reading in data records from external files and so on.

4. Having moved ahead Jstep samples we estimate the current segment time as f; = #_, +

JstepTi—1T. The segment time will be refined when the pilot tone phase is measured, but it -

|
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is important for the pilot tone tracking routine that we have a good estimate in order to avoid
skipping whole cycles of pilot tome.

Each data segment contains N sampled data points zq,z4,...,zN-1, though we will think of the
segment as N + 1 points with the right end point omitted so that it is symmetrical about the sample
zny2. The data time of a segment and the phases of its signal componenfs will be calculated with
respect to this center point. If the sample time is 7' (say, 1/25600 second for 10.6 kHz data) then a
segment represents N7' seconds of input data. In this system the number N must be ‘a power of 2
from 64 to 2048, so the length of the data segment NT will be from 2.5 to 80 ms.

The data segment step time ¢,;., determines how fast we advance through the data. In this
system it can be set arbitrarily over the range 0.0INT < ty1ep < 10NT. The segment step time is
usually chosen to give some particular time scale to the output plot. It also controls the redundaﬁcy
and smoothness of the output plot. If 1,40, > NT, then some input data points will be skipped as
the analysis window is moved ahead, and we will obviously lose some signal information. However,
if £5¢¢p is small compared to NT', then we will transform many of the same data points over again '
and cannot expect that the output spectra will show much change from one segment to the next.
We will return to the choice of {,1ep vs. Spectrum redundancy when we talk about windows.

2.5.2 Fast Fourier Transform

After moving ahead in the input data to the next segment {r,} to be analyzed, we want to calcu-

late its discrete Fourier transform as given by Eq. (2.18). We need to calculate N/2 components

Xo,-.-,Xnf2-1, each of which involve the summation of N terms. Each term involves the product:
of a real number z, by a complex number exp(—j2rnk/N) = cos(2ank/N) — jsin{27nk/N). This

will take two actual multiplications, one for the real component and one for the imaginary one. We

are looking at making NV - N multiplications, as well as a like number of additions and table look-ups.

On the Eclipse S5/230, an integer multiplication is a time-consuming operation taking 7.2 ps. For.
N = 2048, N - N comes to 4.19 x 107 multiplications which will take over 30 seconds, not counting

the other operations. And this just to process 80 ms worth of data. Data analysis will be even

slower than with a- Sona-Graph. .

Fortunately there is a way out. The fest Fourier transform or FFT algorithm is a procedure to
calculate an order-N DFT in N -log, N operations. For N = 2048 this involves 2048 - 11 = 22528
multiplications, which will take only 162 ms. The algorithm, invented by Cooley and Tukey [1965],
involves factoring Eq. (2.18) using the fact that exp(j2xnk/N) is periodic in n - k£ with period N.
The reduction in the number of operations needed comes about because these various factors are
commen to different X;’s, and the calculation of the entire array {Xx} occurs in parallel. See
Cooley et al. [1967] for a brief history of this technique. The FFT is well covered in -the literature, -
for example by Gold and Rader [1969], Rabiner and Rader [1972], and Rabiner and Gold. [1975],
© and it is unnecessary to describe the algorithm itself in much detail here. However, there are a few
details regarding its implementation when using integer arithmetic and processing real data that do

need to be mentioned.

Overflow Detection and Handling in the FFT. The FFT algorithm takes an array of N complex
data points and transforms it in ldg2 N stages. At each stage the array is processed in N/2 elemental
steps, where data points are operated on in pairs and returned to the array where they remain until
the next stage. - At the end of the last stage the array which was originally complex data has now
become the complex transform of that data. (There is another step which involves reordering the
array points but it needn’t concern us here.) '
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The basic numerical operation that manipulates each pair of data points is called a butterfly.
The butterfly takes two complex values from the array at one stage, say X; and Xi, combines them
with a complex phase or twiddle factor of the form exp(j2rn/N), and generates two values X § and
X}, which are stored back in their respective places in the array. These new values will be combined
(with different partners} by butterfly operations inl the next stage of the algorithm, until the final
stage is reached and the transform is complete. There are two kinds of butterfly, decimation-in-time
and decimation-in-frequency, which are used in two slightly different varieties of the FF'F algorithm,
involving different factorings of Eq. (2.18). However, they are similar as far as arithmetic overflow
is concerned. The decimation-in-time butterfly is as follows: -

Xi - X + Xzejzij

. 2.20
X; = Xk — X;errn/N. ( )

If we represent the real and imaginary parts of the complex number X by R and I, then the actual
arithmetic operations in the butterfly are

* = Ry + Rycos(2nn/N) + Iisin{2an/N)
I, = I — Rysin(2nn/N) + L cos(2wn/N)
R = Ry — Ry cos(27rn/N)'— I sin{2xn/N)
Il = Iy + Risin(2mn/N) — Ijcos(2mn/N).

(2.21)

Depending on the phases of the various complex numbers involved, it is poséible for the magni-

tude of one or both of the X’s to double as they are transformed into X'’s. Since each datum will go
through log, N butterflies, its magnitude could conceivably double that many times, to 2°8 N = N
times its original size before the FFT is completed. In fact, this kind of behavior will (almost) occur
if the original waveform is a sinewave tone at a frequency, say fi,, corresponding to the center fre-
quency of one of the synthesized filters. At each stage in the FI'T the signal becomes concentrated
" in fewer and fewer elements of the array until at the end everything residés in the two array elements
corresponding to = fr,. This follows from the fact that the order-N DFT of 2, = A cos(2rmn/N)
(a signal at f,, = m/NT Hz) is AN/2 at spectral points Xy_, and Xy, and zero everywhere else.
However, equation {2.20) shows that even with random data the magnitudes of array elements will
tend to increase. ' '

The FFT routine in this system uses 16-bit integer arithmetic. All numbers in the signal/spec-
trum array are constrained to take on integral values between —32768 and +32767. Because of the
potential doubling in magnitude that can occur we may generate a value at some stage that is less
than —32768 or greater than 432767, and cannot be represented with only 16 bits. Such a value
is said to overflow. When this happens we have an error of unknown size that can propagate to
additional array points in each remaining stage of the FFT. To avoid arithmetic overflow we will
have to scale back data values before they become too large. .

On the other hand, to preserve the maximum dynamic range in our signal we want to keep array
values as large as possible so the relative contribution of roundoff noise will be small. The sines and

cosines in Eq. (2.21) are actually 16-bit integers of the form 32768 sin{-}, and the multiplication of an'
array component by a sine or cosine is actually the multiplication of two 16-bit integers followed by a

right shift of 15 bits {an implicit division by 32768). There is a potential error here as low-order bits
are discarded which we will minimize by rounding rather than just truncating the product. These
rounding errors tend to contribute a fixed amount of random noise to the spectrum at each stage.
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We have two constraints here. We need to scale intermediate results to prevent overflow; yet
keep them as large as possible to minimize processing noise. ‘Welch [1969] has a good discussion of
overflow and roundoff noise, and presents some scaling strategies. Rabiner and Gold [1975, Sec. 10.5]
also review these problems. The approach taken in this system is to scale intermediate results by
halving all array values on the last few stages of the FFT. We define an integer, jycaze, that specifies
how many times halving will be performed. Scalmg operates as foHows

1. The FFT routine accepts a data sequence {z,} i in one array, and returns the spectrum {Xk} in
a second array. The ongma.l array is not destroyed by the FFT call. Intermediate results are
scaled by halving on the final Fseate stages of the FFT. The FFT routine returns an overflow
flag which is set if an anthmetlc overflow occurred.

2. Ifan overflow occurred, Jm.:e is incremented and we go back to step 1 and call the FFT routine
again. There will be one more stage of halving this time. This process is repeated as long as
an overflow is detected.

3. If no overflow occurred, the spectrum is okay and program operation continues. Magnitude
data in this particular spectrum will later be multiplied by a factor 27+=« to correct for scaling
in the FFT before they are used.

4. Periodically (every 4096 samples) we decrement j,.q7. and try to use fewer haliring stages in
the FFT. This keeps one data segment with large spectral values from suppressing the dynamic -
range of everything that follows.

This scheme works fairly well. Processing noise with test signals is usually more than 75 dB below
peak magnitudes in the spectrum, which is sufficient for our work. However, this scaling algorithm is
probably not optimum. For instance, we require halving at all stages past the first where an overfliow

“occurs. This much scaling might not be needed. A better scheme from the standpoint of dynamic
range would be to require halving only in stages where an overflow is actually detected, perhaps
associating a bit set in a control word with halving at a particular stage of the FFT. The problem
with this is adapting the halving prescription to changing signal characteristics without performing
an excessive number of attempts on any given data sequence. (I have also tried halving in the first
Jscale Stages. Results were somewhat worse, as might be expected.)

Another approach is to require halving when an overflow occurs but to perform it in that stage
of the FFT without repeating the complete transform, perhaps by backing up and halving alt values
already processed in that stage as well as any remaining ones, or perhaps by saving the resilts of
the previous stage and just beginning the current stage over again but with halving. This is an
attractive approach but requires a fair amount of additional bookkeeping.

' A final solution is to use floating-point instead of fixed-point (integer) arithmetic. The dynamic _
range of floating-point numbers is much larger and overflow is not possible. This was not an attractive
approach on the Eclipse §/230 computer. Though the floating-point processor is quite fast, loading
values into its registers takes longer than with integers. And floating-point numbers take at least
twice as much memory storage as integers, something in short supply on this particular machine.
On a modern machine floating-point arithmetic might be a good choice. .

Calculating the FFT of Real Data. The FFT, as it is usually programmed, takes a sequence
{za} of N complex data points, where N is a power of 2, and generates a transform sequence { X3}
of N complex spectral points. Each complex datum z =a + jb is represented as 2 pair of numbers
(a,b), the real and imaginary parts of x. The sequence {z,} might actually be stored as an array
(ao,bo,al,b'l, ...,an—1,bn_1), where real and imaginary parts alternate, or perhaps as two arrays
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containing the a’s and &’s separately. Similarly, the sequence {Xx} might be returned as an array -

(Ao,Bo,Al,...). )

Since the waveform data we are dealing with are a sequence of real numbers, we can transform
them with a standard FFT routine only if we pass them as an array of complex numbers whose
imaginary parts are all zero, that is, as (zo,0,21,0,...,2x-1,0). The output of the routine will
be an array of N complex values Xp, for & = 0,1,...,N — 1. However, as we saw above, the
spectral points Xnyay1,...,Xn.1 are just the conjugates of Xny2-1,...,X1 and are not needed.
Thus we have passed an array half full of zeroes and received back an array the upper half of which
is redundant. There must be a more efficient way to process real data.

In fact there is. The following procedure, described by Cooley et al. [1970], cuts our work
almost exactly in half. Let us arrange the sequence {z,} as an array of close-packed real points,
(z0,Z1,...,2N_1), and pass it to the FFT routine whrch will interpret it as a sequence {zﬂ} of N/2

complex data. points. That is,
Zn = Tan + JTn41 for n =O,1,...,N/2— 1. (2.22)

The FFT routine will return as a transform an array of N/2 complex spectral points {Z;}. We can
retrieve the first N/2 points of the transform sequence {X;} as follows:

. 1 * . - " —127
-Xk :5 [Zk + ZN/Z-k —](Z]c — Zle_L.)e 32 k/N]

: | (2.23)
Xnjp-r = 5 [Z;; + Zaprer — 5215 — ZN,Q_,,)emfklN]

for k=0,1,...,N/4.
The actual operations performed after the FFT routine to extract the transform of the input

close-pa.cked real data are performed in-place on pairs of cornple'( elements in the returned array as

follows:
v = Ri+ Ri— (Ry — Ri)sin(2nk/N) + (I -+ ) cos(2nk/N)

IL="Iy =5 — (Rg— Ri)cos(2mk/N) — (It + I} sin(2xk/N)
Ri= Ri+ Ri+ (Re — Ri)sin(2wk/N) — (Ir -+ It) cos(2xk/N)
II=-1I —]I--I; — (Ry — Bi)cos(2wk/N) — (Ig + L) sin(2xk/N).
fork=1,2,...,Nfd—1and | = N/2 — k. We also have the special cases
Ry = 2(Ro+ )
=10
Rfr\r/z; = 2Ry

(2.24)

valet = —2ny4.

We could also calculate the spectral point X N,v'2 = 2(Rp — Iy), which is always real (like Xj).
However, it is not needed.

Note that the operations involving Xy,..., Xny4—; and Xnya41,..., Xvyo—y are very much like
a series of FFT butterflies. The extraction 'proce'ss is actually performed in two passes. On the
first pass the sums and differences of each k-t4 and -tk pair are calculated and replace the original
values, and on the second pass butterflies using these sums and differences are performed.

The operations shown here differ from Eq. {2.23) in that we have left out the factors 1/2. We

can have arithmetic overflow in these operations, so the extraction routine incorporates provisien -

for overflow detection and data halving just like the basic FI'T routine.
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TABLE 2.4
FFT Execution Time vs. Transform Size, for N Close-Packed Real Data Points

Number of Real Points N 64 128 256 - 512 1024 2048

FFT (N/2 Complex Points) 22ms 55ms 133ms 3lms 7ims 160 ms
Exiract Real Transform, add 0.7 1.7 32 7 12 27
Window Convolution, add _
1st Order 0 0 0 0 0 0
2nd Order 2.8 5.5 11 21 42 84
3rd Order 3.9 7.6 15 3 - 60 119
4tk Order 4.8 9.5 19 37 75 149

FFT Ezecution Time. While I don’t mean to go into great, detail, programmers may be inter-
ested in the following facts. The FFT routine, including extraction of the close-packed real data
transform, has been written in Eclipse 5/230 micro-code for maximum processing speed. Decimation-
in-tirne is used because its butterfly is faster given the Eclipse accumulator set and arithmetic-logic
unit architecture than is the deCImatlon-ln—frequency butterfly. Values of cos(f) and sin(f) needed
by the FF'T and the real-data transform extraction routine are precalculated and stored in an array
of alternating cosine/sine entries for 0° < # < 45°, in increments of 360/2048 degree. Function
values needed for angles in the range 45° < 6 < 180° are also read from this table with some simple
address and sign manipulation. Each of the 514 values in the table is a 16-bit integer from 0 to 32767
representing a cosine or sine value from § to 1.00000~. That is, the values stored are 32768 cos(8)
and 32768sin(#). The butterilies for angles = 0°, 90°, 45°, and 135° have been written separately
and do not refer to the cosine/sine array. The simplifications permitted at these particular angles
speeds things up quite a bit since these butterflies are used N/2, N/4, N/8, and N/8 times each,
respectively.

Table 2.4 shows the measured execution iimes needed to process real data sequences of various -
lengths N. We can see the increase in performance that results from using close-packed real data,
even though we have to follow the FFT by an additional step to extract the real-data transform.
For example, a 1024-point real sequence takes 71 + 12 or 83 ms to transform, whereas a 1024—point
complex sequence (even with all zero imaginary components) would take 160 ms, or Just about twice

Table 2.4 also includes the time necessary to convolve the spectrum sequence with a window
sequence, for various choices of window order. This process is discussed in detail in the next section.
The transformation of 2048 real data points (80 ms of 10.6 kHz data), including 3rd-order windowing,
takes 160 + 27 + 119 or 306 ms. Including all other operations, spectrum analysis runs at about
1/10th real-time speed for 10 kHz data. :
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2.5.3 Wmdomng/Welghtmg to Specify Filter Shape

The issue of windowing is one that is generally treated rather lightly in texts on signal processing.

When mentioned, it is often illustrated by windows that are of more historical than practical interest.
The reader is referred to Harris {1978] for information about a wide variety of different windows and
their effects on the amplitude response of DFT filters. Nuttall [1981] corrects some mistakes by
Harris and gives further details, particularly of windows that are easy to implement by convolution
in the frequency domain. No one seems to mention the effect of windows on the phase response of
the synthesized DF'T filters, probably because the subject has not previously been of much interest,
so I will present a few of my own observations.

Why the Synthesized DFT Filiers Need Improvement. The N/2 spectral points of the discrete
Fourier tramsform generated by the FFT procedure above can be thought of as the instantaneous
outputs of N/2 bandpass filters, with center frequencies spaced uniformly in frequency from 0 Hz
up to (almost) 1/2T Hz every fp = 1/NT Hz. However, the shapes of the filter passbands in the
- frequency domain are not particularly nice. To discriminate between signal components at different
frequencies we wish our filters to have flat tops in the passband, steep skirts in the transition regions
between the passband and the stopbands, and low transmission in the stopbands.

To see why the DFT filter responses are not so nice, let’s look at the response of a given filter
to a particular signal. Consider a signal z(t) defined as

z{t)= A cos[.qéo + 27 fo(t — to)]- ' " (2.25)

This signal is a single-frequency tone with peak amplitude A, frequency fs, and at time o has a

phase ¢o. We will set ¢, = NT/2, measure the signal at intervals of time T, and generate a sequence

{zn} of N samples as
zn = 2(nT) = Acos{go + 27 fo(n — N/2)T], forn=0,1,...,N — 1. (2.26)

This sequence represents a segment of N7 seconds of signal, centered about the point Tyy2 (with
the right end point omitted}. The phase of the signal at the center of the segment (at sample N/g)r
is ¢po. We assume 0 < fo < 1/2T so the signal is not under-sampled.

We will evaluate the DFT sequence {X} at a particular value of k. That is to say, we will
examine the spectrum at a particular frequency fi = kfp = k/NT, the center frequency of the k-th
synthesized filter. Let us define the signal frequency fy in terms of this filter frequency as

k+g

= (2.27)

fo=frtaefo=(k+9fp=

The offset ¢ is the difference in frequency, in units of the DFT filter spacing. fp, of the signal from
the center of the k-th filter. Appendix A shows that the spectrum point X} is given by

AN sin(mg) e miy [ —ieasw sin{mg/N) .i[—2¢e+2n:k}'N+’ﬂ'§/N] '
X = 2 N sin(a'.rq/l‘vr)eJ € sin[r(2k + q)/N]6 _ . (2.28)

The most important term is the leading one before the brackets [ ]. The bracketed terms are close .

to 1 in practice and give only small corrections to the phase and amplitude response of the filter.
In particular, the right-hand bracketed term can be thought of as the result of passband aliasing as
described above in Sec. 2.5. We will have more to say about these correction terms later.
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The amplitude response of the DFT filter has (approximately) the form

_sin(rg) |  (2.29)

I Xx] = Nsin(mg/N)

For N not too small, X; is approximately sin(g)/mg = sinc(g). The upper panel (“1st Order”)
of Fig. 2.6 shows this response in dB plotted against offset frequency in units of f. The central
peak of the filter has a 3-dB width of about 0.89fp Hz (0.89 bins) which is just fine, but there are
many significant sidelobes on either side of this peak. The first sidelobes at +1.43fp are down by
only 13.26 dB. These high sidelobes are undesirable since they prevent the filter from discriminating
sufficiently between a desired signal in its passband and one just outside. (This problem is sometimes
" called “spectral leakage.”)

" Improving the Filter Amplitude Response. As shown in Sec. 2.5, the DFT is effectively the
discrete windowed spectrum SD (0,k/NT) evaluated using the uniform weighting sequence given by
Eq. ('2 19) above as

1, ifn=0,1,...,N -1, '
Wn = {O, otherwise. (2.19)
The frequency response of a DFT filter-is determined by the window function Wp(f), given by

Eq. (2.17) as the transform of the Weighting sequence. For the uniform weighting sequence we find

—j2rfnd _ Sln(ﬂf/fﬂ) —inf(N=1}/Nfp
Wo(f) = Z wne™ = sin(xf/Nfp)" ’ e, (2:30)

n=—co

The connection with the amplitude response is obvious. The uniform weighting sequence in Eq. (2.19)
is merely the result of truncating the stream of input samples to get the data segment {z,} for
processing. If we could use some other window we could improve the amplitude response of the
DFT filters.

In this system we have provided several alternative wmdows that can be used. They are the
minimum-sidelobe windows given by Nutall [1981]. These windows all have weighting sequences of

the form
L—-1

W = Za; cos[2nl(n/N —1/2)] . forn=0,1,...,N —1, (2.31)
=0
and are zero elsewhere. L is a small integer and a particular window is referred to as the I-#h order .
window. These weighting sequences are sums of cosine functions of low order, each symmetrical
" about the point wyyz and performing a whole number (from 0 to L — 1) of cycles on the interval
[0,N]. The coefficients a; are positive real numbers and are normalized so

L-1 _
Sa=1. ' (2.32)
=0

Note that the 1st-order window is just the uniform weighting sequence of Eq. (2.19).

The reason for choosing this particular form of weighting sequence is that these windows lend
themnselves especially well to application by convolution in the frequency domain. This works as
follows. Assume that we have a weighting sequence {wy,}. The discrete windowed spectrum that
results from using this sequence with a given signal is '

N-1 .
Sk = Sp(0, L/NT) =y Zntne I TN, (2.33)
n=0
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It is easy to show [ef. Gold and Radef, 1969, Sec. 6.2] that we can get the same results bj( the

convelution
N-1

1
S = -ﬁ E XnWi_m : ' (234)
m=0 -
wilere
. 1 . } .
Wk = Z wne—jztﬂkl’N . (2‘35)

is the DFT of {w,}. That is, we can calculate a windowed spectrum element Sy by first using the
FFT to calculate {X}:} and then convolving those results with the window sequence {W;/N}. Note
* that this is a circular convolution. Wy is periodic with period N so W_, = Wix_3, W_o = Wi_y,

and so on.
The windows given by Eq. (2.31) are useful because each window sequence has the very simple
form
: - ag . o ifk=0,
=W _ ) bk =1,2,...,L
Ck = T = Ealkl(—l) 1 I l =L4 ..., L= 1, o (236)
0, © otherwise.

An order-L window sequence has only 2L — 1 non-zero elements.

We have two possible approaches to windowing. We can apply the wmdow in the time domain
by multiplying each sample z,, by the corresponding weighting sequence element w,. Both are real
numbers so this will take N multiplications. Or we can transform {z,} and then convolve each
complex spectrum point Xi with the short sequence {Cr_1, ..., Cy, Co, C1, ..., Cr_1}. Since each
C} is a real number, the convolution will take 2L multiplications per windowed spectrum point (we
‘add (Xj—1+ Xi41) first before multiplying by Ci), or N L multiplications for all N/2 points. I fewer
than N/L points are needed in the windowed spectrum, convolution will require fewer multiplications’
(and thus be faster) than weighting the entire data sequence before the FFT. If memory is in short
supply the convolution approach may be preferable because we don’t need to take up space storing

the array {w,}.

Windowing Algorithm. In this system we have chosen to do windowing by convolution, primarily

because of limitations on avzilable memory. With low-order windows the penalty in execution time:

is not serious. Windows of order 1, 2, 3, or 4 can be used, with 3 being the most common choice.
Processing proceeds as follows:" ' '

1. Before convolving we extend the bottom of the spectrum array with the elements X_3 = X3,
X_g = X3, and X_; = X since these may be needed for the first few products. (If we were
calculating the top few elements of the windowed spectrum we would have to extend the DFT
spectrurn at the top in a similar fashion.)

2. We perform the convolution as

Se = CoXe + CL(Xp—1+ X)) + -+ (i I(Xk L1+ XegrL— 1) - (2.37)

for k = 0, 1, ..., up to the highest spectral line to be used. Convolution with the window

sequence is carried out separately on the real and imaginary components of the spectrum since
the coefficients Cy are all real. The coefiicients for the various windows are shown in Table 2.5.

3. The normalization of Eq. (2.32) means that the sum of the absolute values of all the coefficients
in a given window sequence is exactly 1. This eliminates the possibility of arithmetic overflow
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TABLE 2.5

Properties of Analysis Windows

Window Order 1st 2nd 3rd 4th
Coeﬂiaents
Gy 1.00 0.53836 0.4243801 0.3635819

C; —-0.23082 —0.2486703 —0.24458875

o 0.03913965  0.06829975.

Cs —0.00532055
Highest Sidelobe —13dB —43 dB -72 dB —98 dB
3-dB Width 0.89 fp 1.30 fp 1.61 fp 1.86 fp
6-dB Width 1.20 fp 1L.81 fp 2.25 fp 2.62 fp
Processing Loss _ 0.00 dB 5.38dB 744dB 3.7 dB
Scalloping Loss -3.92dB 1.75dB  1.14dB '0785 dB
Overlap Correlation:

tstep = 0.126NT 87.5% 91.7% 87.2% © 83.0%

taep = 0.256 NT 75.0% 70.5% 57.4% 47.0%

ts1ep =05 NT 50:0% 23.1% 9.7% 4.9%

teep =0.75 NT" 25.0% 2.6% 0.3% 0.04%

with integer arithmetic. We actually use the floating-point unit for the convolution, but integer
results must still be stored back in the spectrum array.

4. After convolution we correct the phases of odd-numbered spectrum points by negating them:.
S}, = S, for k = 1,3,5,.... (2.38)

The reason for this is described below when we discuss the DFT phase response. The resulting
array {Si} we will call the windowed spectrum.

The choice between the various window orders involves a tradeoff between the amount of sidelobe
suppression on the one hand and passband broadening on the other, as shown in Table 2.5. The
width of the filter passband at the 3 and 6-dB points is given in units of the filter spacing fp, or
“bins.” The usual choice is the 3rd-order window, which suppresses sidelobes by 72 dB and gives
each synthesized filter a 3-dB width of 1.6fp. The processing loss in Table 2.5 is merely the value
of windowing coefficient Cy expressed in dB. This is the amount by which the magnitude of a signal
component exactly at the center frequency of a DFT filter is decreased by windowing. This decrease
is taken into account later when magnitude data are scaled for plotting and it is invisible. to the
user. The scalloping loss is the additional decrease in magnitude for a signal with frequency offset,

g = 1/2; that is, for a signal exactly midway between two DFT filters. This is the maximum error E

we might make in estimating the magnitude of an unknown signal if we just chose the output of
that filter which had the biggest response. Scalloping loss leads to what is known in the trade as the

“picket fence effect,” the apparent variation in analyzer gain with signal frequency [e.g., Bergland,
1969].

The left half of Fig. 2.6 shows the passband shape imparted to the DFT filters by the various
windows. These drawings were made by plotting the magnitude of a single filter output as a frequency
ramp was analyzed. (A ramp is a synthetic signal whose frequency increases linearly with time.)
We see that windowing has two effects. First, it suppresses the level of the sidelobes so only signal
components near the center frequency of a particular spectral filter can pass through it. Second,
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Figure 2.6. DFT filter passband shape and equivalent weighting sequences for different
window orders. On the left are plotted the amplitude response in dB of a given DFT filter
versus signal frequency in units of the filter spacing fp = 1/NT or “bins.” The fuszy tops
to the sidelobes in the 1st and 2nd-order windows are not caused by processing noise bug
show the filter amplitude response to varying signal phase. See the text for details. On the

_ right are plotted the equivalent weighting sequences in the time domain.

it widens the passband of the filter slightly, flattening the top and giving some overlap between
adjacent filters. :

There is another interesting feature to note here. The fuzzy tops on the sidelobes in the st
and 2nd-order windows are not caused by processing noise. (Processing noise can be seen in the
quantization of magnitudes to particular values at the bottom of the plots around —72 and —75 dB.)
The fuzz is a real effect caused by the changing phase of the analyzed signal. [t is the result of the
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bracketed correction terms in Eq. (2.28), whose sum depends not only on the frequency of the input
signal but (because aliased components are complex-conj ugated) on its phase as well. Since the input
signal is a ramp, its phase with respect to the analysis window changes with time, and so does the
magnitude of the correction terms in Eq. (2.28). We can think of the fuzz as the result of truncating
the input signal by the window. Unless thé signal frequency f is an exact multiple of fp = I/NT,
a segment of NT seconds of data will not contain an integral number of signal cycles and the power
in the segment will depend on the phase of the fractional cycle omitted. This fuzz is one of those
details not mentioned in signal-processing texts which can cause the tyro much puzzlement. '
The right half of Fig. 2.6 shows the shape of the equivalent weighting sequence in the time
domain. These plots were made by moving the data window slowly over an impulse and plotting
the magnitude of a single filter output versus time. We see that windowing changes the effective
weighting of different data points in the data segment, emphasizing points near the center of the
segment and reducing the effect of points near the segment ends. (Except for the 1st-order window,
of coﬁrse, which uses the uniform sequence.) All of the weighting sequences are discontinuous at
the points we and wy_;, dropping abruptly to zero cutside, though the effect is not visible on the
bottom two plots. This causes the ultimate attenuation of a DFT filter to fall at only 6 dB/octave
at frequencies far from the passband. Nuttall [1981] lists other windows whose weighting functions
are continuous and which have greater ultimate attenuation, but their nearby sidelobes are not as

low as the ones we have chosen here.

DFT Phase Response and the Effects of Windowing. Windowing not only givesa goo.d frequency
response to each of the synthesized filters but also improves their phase response, a fact not widely
known. Without additional windowing (i.¢., with a 1st-order or rectangular weighting function) the
phase of a spectrum point Xy, is a complicated function of the input signal phase, frequency, and the
filter number £, and equals the signal phase only if the input frequency falls exactly at the center
frequency of the synthesized filter. '

First of all, let’s repeat Eq. (2.28), the DFT response to a sign"al at frequency (k + ¢}fp with
segment-center phase ¢q:

AN _sin(mq) g —rk}[ naln 4 SOEUN) gk g
T e rere - . 2.2
X 2 Nsin(:rrq/N)e ¢ sin[w(2k + q)/N]e (2.28)
The phase (in radians) of X can be written as
= arg(Xe) = do+ |lgl|m ~ kr + ¢ ' (2.39)

where ¢ is the phase of the bracketed correction terms in Eq. (2.28).
' The notation [a], read “floor of a,” means the largest integer less than or equal to a. The
term [|g||7 accounts for the sign of the sin(rg)/ sin{mg/N) factor in Eq. (2.28); the sign of the filter
response in Fig. 2.6 alternates with each sidelobe. We will usually be concerned with signals in the
main lobe of the filter passband and this term will be zero. '

The term —k in Eq. (2.39) means that odd-numbered spectral lines have an additional phase
of 180 degrees which must be subtracted when making phase measurements. This arises because
we consider the data segment at time ¢; to be centered about the point Tny2, and measure phase
with respect to this point, whereas most FF'T implementations assume the segment origin to be the
left end point xg, as given implicitly in the DFT definition in Eq. (2.18). See Harris [1978] for a
discussion of this problem. We could redesign our FFT procedure but it is easy to correct the phases
of odd-numbered lines after windowing by negating both their real and imaginary components as

'
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shown in Eq. (2.38). We could also correct odd-line phases after the FF'T but before windowing, if
desired, in which case all of the windowing coeflicients C would have positive values. _

~ For small ¢ (signal frequency close to the filter center frequency) we can expand the bracketed
terms in Eq. (2.28) as a power series in 7¢/N, and we find that € has a maximum value enay given

by :
- + - ' '
- fmax = T [1 si-n(21rk/N)] ’ (2.40)

That is, the phase ¢g is measured with an error whose maximum value is a linear function of the
difference between the signal frequency and the spectral filter frequency. For example, if N = 64,
fp = 1/NT = 400 Hz (standard 10.6 kHz sampling), and the signal is at 1000 Hz {placing it between

the spectral lines' X7 at 800 Hz and X3 at 1200 Hz), then for X7 we find €., = 8.61°, or 24 /s at

1000 Hz. This is not an insignificant error. The problem for us is that this error is proportional to
the frequency offset from the center of the filter passband, which will change by different amounts
for signals at different frequencies as the rate error changes. This will cause phase errors during
analysis similar to those caused by phase distortion in the anti-aliasing filter as discussed in Sec. 2.4.

The error € is due to two causes. Part of it, with maximum value mq/N, arises because the
sequence g, ..., ZNy_1 is not symmetrical with respect to the point Tnyz- We are missing the right
end point zy. If we calculate the order (V + 1) DFT of the signal in Eq. (2.26) we find this error
term is missing. The rest of the error, v¢/N sin{2xkfN), is due to the aliased response of the filter
and is most important at frequencies close to either zero or f,, i.e., for & near 0 or N /2.

Convolving the data transform with the window function tends to cancel the errors between
adjacent spectral lines. In the time domain we can think of the equivalent weighting function as
diminishing the importance of samples near the ends of the segment and thus decreasing the errors
associated with end asymmetry. In the frequency domain windowing reduces the filter sidelobes
and thus the aliased responses in those filters close to the edges of the andlyzed bandwidth. As an
example of the decrease in phase error with windowing I find the following results for N = 256,
k = 30 (the 3 kHz filter with 10.6 kHz data), and —1 < ¢ < 1: With the Ist-order window e is
a linear function of offset ¢, with maximum value 1.8°. With the 2nd-order window ¢ is a cubic
function of ¢ with a maximum value of 0.10°. With the 3rd-order window e is a Hth-order function
of ¢ with maximum value roughly 0.02°. With the 4fk-order window ¢ is less than the processing
noise. While these particular windows have not been chosen because of their benefits to the DFT
filter phase response, their effects are more than satisfactory.

Window Overlap and Quiput Smoothness. The equivalent weighting function concentrates the

- effective data near the center of the segment, as shown in Fig. 2.6. Because of this, the correlation

between data segments is.less than their percentage overlap would suggest. This raises two questions.

How much information do we lose by windowing if we don’t overlap segments sufficiently, and how
does the interpretation of output plots depend on the amount of overlap? '

Rather surprisingly, no information is lost by windowing, at least in a formal sense, as long as
tstep < NT; that is, as long as we don’t skip over any samples as we hop from one data segment
to the next. We can always recover the input signal {2} from the discrete sampled spectrum {5}
given by Eq. (2.33) as follows. First, perform an inverse DFT on {Si}.to get the sequence {z,ur,}

as

N-—1
1 o _ : -
Zntin = 7 ;—0: SpetPEIN forn=0,1,...,N - 1. o (2.41)

Next, divide each element in {z,wn} by the corresponding value w, to recover the sequence {a:,,} -

|
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This works because ail the elements in the effective weighting sequences {wn} that we use are non-
zero. In fact, Bastiaans [1985] shows how an input signal can be recovered from a general sampling
of sliding-window spectra in the f-f plane, as long as the sampling is carried out on a rectangular
lattice whose cells, of size A f (in Hz) and Af (in seconds), have area Af-At = 1. If we are examining
a spectrogram, where only the magnituded of filter outputs are plotted, we have indeed lost much
of the signal information. The above method does not mean we can recover a windowed signal
from a spectrogram—we need phase information as well. In this discussion we have also neglected
processing noise, which causes an irreversible loss of information.

Even if no information is lost when windowed data segments just abut (i.e., when t,ep =
NTY), this doesn’t mean that output spectra will be. easy to interpret in this case. Weighting
does diminish the importance of samples near the ends of the data segment. If a signal transient
‘oceurs near a segment end we might well miss it looking at a spectrogram. A good measure of the
effect of segment overlap is the overlap correlation coefficient y(¢s¢ep), defined as the normalized -
autocorrelation function of the weighting function:

7 +oo ) 400
Y(torep) = ] w(t)w(t—tmp)dt/ f_ w(t)? dt (2.42)

—o0

where w(t) is the continuous-time version of the weighting sequence given by Eq. {2.31) and is zero
for ¢ outside the interval [0, NT']. This coeflicient is the amount of correlation we would expect to
see with a random signal between two windowed segments separated by a time £,4p. Selected values
of ¥({step) are listed in Table 2.5. With the usual choice of the 3rd-order window, segments that are
overlapped by 75% (fs1p = NT/4) are only partially correlated (y = 57.4%). Segments that are
overlapped by 50% are essentially uncorrelated (y = 9.7%) and can be regarded as indepéndent. To
be sure to show all signal transients on the spectrogram we will want to overlap data segments by
at least 50%. '

It is very difficult to mterpolate by eye between data points from segments which do not overlap
sufficiently. A spectrogram made from non-overlapping segments tends to look very harsh and noisy.
It is ‘much easier to interpret a spectrogram when the change from pixel to pixel in the plot is not
abrupt, in the frequency direction as well as in the time direction. The eye can then separate
the smoother underlying signal structure from the higher spatial frequency components due to
pixel boundaries. For magnitude and/or phase plots the problem becomes one of interpolating a
continuous curve between the discrete points on the plot. 1 ty.picaily find that magnitude-phase
'ploté made with ¢,;., < NT/4 appear reasonably smooth, whereas those with tstep >N T/2 seem
too sparse. This subjective finding is in accord with the overlap correlation y(Zsep)-
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2.5.4 Tracking the Pilot Tone .

The pilot tone tracker routine measures the pilot tone magnitude and phase in each transformed data
segment. The phase of the pilot tone is compared to a reference phase at frequency f,, the actual
pilot frequency when the tape was recorded. Any difference is used to correct the data segment
center time ;. This time is used when ca.lcu!ating'reference phases to correct the tape time error.
- The phase advance from one segment to the next gives the instantaneous pilot frequency fy¢, which
is then averaged to form fp.-, the smoothed pilot frequency. f,,,- will be higher or lower than f,
as the analog tape deck was running faster or slower than the deck used in recording the signal.
The ratio Jpil fp is the smoothed relative data rate #;. This ratio is used when correcting for data
frequency shifts (rate error) to generate the interpolated spectrum. The pilot tone magnitude is also
~ displayed at the edge of each data plot to show the occurrence of time ticks and station and time
code characters. This time mark trace shows the log magnitude of the pilot tone over a 20 dB range.

Measuring the Dala Time from Pilot Phase. The pi[ot tone tracker routine is called after each
data segment has been transformed by the FFT routine and convolved with the appropriate window
sequence. The sequence {S;} contains windowed spectral points in (real, imaginary) format. The
phases of odd-numbered filters have been corrected by Eq. (2.38) so all phases are measured with
respect to the center of the data window. The measurement of the pilot tone phase and calculation

of the actual data time from this are as follows:

1. First, interpolate between nearest elements of {Si} to find the s.pectral value .S',,- for the pilot
~ tone. The rationale for spectrum interpolation is discussed in Sec. 2.5.5. We calculate index j

and offset A as § = | fpi—1/fp] and A = (fpi-1/fp) — j. We then interpolate S, = (1 — A)S; +

ASj41- (|a] or “floor of a” is the largest integer less than orequal to a.) The resulting value S,

is the output of an interpolated filter centered on the frequency fp,-_l that the pilot tone had
in the previous segment. '

2. The magnitude |5, ]| is calculated, corrected for FFT gain (N}, halving, and window processing
loss, multiplied by the pilot tone gain factor G, (a parameter chosen by the operator), and
saved for use when plotting the time mark trace at the top of the chart. If the magnitude is
below a fixed threshold (10 dB below the smaliest magnitude plotted on the time mark trace)
we will exit from the tracker routine since presumably there is no pilot tone present. In this

case the estimated segment time #; becomes the actual time ¢;, and the pilot frequency and data

rate retain their previous values.

3. The phase of the pilot tone is calculated as ¢, = arctan(l, /R,) /27 where R, and I, are the real
- and imaginary parts of S;. The result is the phase in revolutions such that —1/2 < $p < 1/2.
4. We assume that the pilot tone phase was zero at the start of the analysis at time t,14r¢. The
expected phase (in revolutions) at the the present time is ¢p = fo{fi — tsiare). This is a large
. number representing all the cycles of pilbt tone that have occurred since time ¢4:07:. When we
measure ¢, we cannot know how many whole cycles have already gone by; all we measure is
that fractional part of a cycle in progress at the moment, referred to the segment center at
sample zy/2. When we compare ¢, with qfﬁp to find the time error we ignore any whole cycles
of phase. We calculate derr = dp — $p, the difference, and then A¢ = derr — [err + 0.5], the
difference ignoring whole cycles. Note that —1/2 < A¢ < 1/2. The actual data segment time

is now found by adding to the estimated time a correction due to the pilot tone pha,se error as .

tp=1; + Ad/ fp.

The maximum correction to the segment time is limited to :1/2 f, because we only measure the pilot
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tone phase to the nearest whole revolution. When tracking the pilot tone in noisy data it is important
that the segment step time ¢,y be fairly small compared to the segment length NT. Otherwise, the
tracker may skip a whole cycle of pilot tone with resulting timing errors. The allowable step time
{step depends on the relative levels of the spherics (the primary noise source) and the pilot tone, and
on the variability of the tape speed. I find with typical VLF data that ts1ep < NT gives satisfactory
tracking performance. '

Calculating the Instanianeous Pilot Frequency and Data Rate. Ha.ving measured the pilot phase
and corrected the data time we can take care of any time error and ensure the accuracy of signal
phases when we plot them. Next, we need to measure the rate error so we can correct for frequency
shifts and ensure that signal components are properly filtered. The pilot tone ffequency is measured
as the ratio of the advance in phase from the previous data segment over the advance in sample tlme
as follows

L. First we check the magnitude of the pilot tone as measured in the previous data segment at
ti—1. If below our threshold we will skip the rest of the routine and exit. Presumably the pllot
tone just came on and we have no reliable previous value of phase to work with.

2. The pilot tone has advanced fp{t; — ti_1) revolutions since the previous data segment. Time in
the laboratory has advanced by j,:epT" seconds. The pilot tone frequency during this interval
was thus foi = fo(ti — ti1)/JstepT- (I jszep is zero, which can happen if ts1cp 1s very small,
we will use the previous value fpi_; because we have analyzed the same segment twice and the
pilot frequency cannot have changed.)

7 3. The instantaneous pilot frequency fpi we have measured will be rather noisy, especially if Jstep
is small. We create a smoothed value by calculating a running average with time constant r,;
as foi = afpi-1 + (1 — @) foi where o = exp{—t;1ep/1)-

4. The smoothed relative data rate is then calculated as 7; = fp.- /fo

The tracker time constant 7, determines how fast the system can respond to a.change in data rate.
A time constant of 1 s is usually used. The choice of 1, involves a trade-ofl between a fast response
to tape speed transients and the stability of the tracking loop. If 7, is large the smoothed data rate
will change only slowly, and we may be unable to correct for rapid variations in signal frequency

caused by flutter. We saw this as ripple in the pilot tone frequency in Fig. 2.2. On the other hand,

if 7, is too small the tracking routine may lose lock on the pilot tone. This can occur when a noise
burst creates a momentarily anomalous value of ¢p- If 7; is allowed to change very quickly we may
find on the next pass that the pilot tone is outside the passband of the interpolated filter S;. What
happens at that point is a matter of chance.

‘When analyzing data, the coupler “DATA FREQ” display shows the relative data rate ;. This
can be monitored to check tracker performance. The value for zero tape speed error is 1.000. Analog
tapes may show rate errors up to £2% so the rate display will normally run from 0.980 to 1.020. If
the display shows a value below 0.980 or above 1.020 it probably indicates that the tracker has lost
lock on the pilot tone.
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2.5.5 Interpolation in Frequency to Correct Tape Speed Error

Correcting the Rate Error. When signals are analyzed, signal components are split up into a
number of equally-spaced frequency bands, the outputs of a fictitious set of filters. However, if the
analog tape deck used to piay back the signal when it is digitized is not running at exactly the
same speed as the one that originally recorded it, these filtered components wiil not be at the same
frequencies as in the original signal. If the playback deck is running a bit slower than the recording
deck, signals reproduced from the analog tape will be a bit lower in frequency than when they were

* recorded. When the spectrum is calculated we will find that signal components have shifted to lower

frequencies, and a given component may even be shifted outside of the passband of the expected
filter.

To overcome this problem we must shift the data points in frequency and generate a new
spectrum which has the signal components at their original frequencies. The analysis program uses -

linear interpolation between DFT spectral points to correct the spectrum, interpolating according to
the rate error measured from the pilot tone frequency shift. If we have two spectrum points S and
Si41 found to be at shifted frequencies fy and fi, but we really want a point at some frequency f,
between fo and fi, then we interpolate between S and Sgyy to find S = [(fi — fa)/(f1 — fo)l Sk +
[(fa — fo)/{fi — f0)]Sk+1. That is, S, is taken to be a distance between S and Sg41 in proportion
as f, is located between fy and fi.

Interpolation provides ancther benefit. It allows us to. generate a new spectrum with filters

placed at arbitrary frequencies. Filter spacing in the interpolated spectrum does not have to be
in increments of fp as in the DFT spectrum, but can be at some other frequency increment, the
interpolated filter spacing fr. We proceed as follows:

1. Assume we need spectral values at frequencies from fi, to fi;, spaced equally in increments of
fr. These three parameters are selected by the operator. They are related by fai = fio + Jfr
where J is an integer.

2. We interpolate between the windowed spectrum points {Si} to get the interpolated spectrum
{U;} as follows:

Ui = (1 - p)Sk + pSk41 | (243)
where
i=0,1,...,J,
f=fio+3ifi = flo, fio+ fr. o + 2f1,- ., fui,
k=|7f/fp],
p=7flfp ~ k.

Since the offset p is a real number, the interpolation can be carried out separately on the real
and imaginary parts of 5¢, as R} = (1 — p)Rs + pRi41 and so on.

Using an arbitrary frequency spacing between filters 1s convenient, particularly when phase meas-
surements are being made. The Siple transmitier often sends signals whose frequencies change in
10 Hz steps. With normal 10.6 kHz data (25.6 kS/s sampling) the minimum value of DFT filter
spacing fp is 12.5 Hz. By interpolating between these points we can generate a new spectrum with

filters placed in increments of f; = 10 Hz and more easily measure the relative phases of different .

transmitter signals. Note, however, that even though we can change the spacing between the filters

in the interpolated spectrum, we cannot change their bandwidth, which will remain about 1.6 fp for
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Figure 2.7. Amplitude response of an interpolated filter for various values of interpo-
lation offset p. Frequency across the passband is in units of the DFT filter spacing fp. The
3rd-order window was used. The curve for p = 0 is just the 3rd-order window passband

" response from Fig. 2.6. The curve for p = 1/2 (interpolation midway between two DFT
filters) shows the worst-case change in amplitude response. The curve for p = 3/4 would
be the same as that for p = 1/4 but with the opposite asymmetry. Sidelobes at —72 dB
are not shown. '

a 3rd-order window. Merely. placing filters closer together doesn’t make them narrower and improve
the frequency reselution.

The Effects of Spectral Interpolation. Linear intérpoia.ﬁion is a simple me'tlhod, but it is not

immediately clear that it is the best, or even a correct method to use. The test of interpolation is in
its effects on the a.m'plitude and phase response of the synthesized filters. The amplitude response
of an interpolated filter for various values of interpolation offset p is shown in Fig. 2.7.

If there is sufficient overlap between the passbands of adjacent filters in the windowed spec-
trum (z.e., if we are using a sufficiently high-order window') then the errors introduced by linear

interpolation can be made as small as desired. The worst-case errors introduced by interpolation
occur when synthesizing a new filter at a frequency midway between two DFT filters, and, with a
3rd-order window function, the change amounts to a 1.14 dB decrease. in passband center gain, a
negligible change in 3-dB bandwidth, and a slight broadening of the filter skirts. Interpolation has

almost no effect on the phase response of a fiiter.
" The decrease in center-frequency gain is unfortunate, but not too serious. Note that the value
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1.14 dB is the scalloping loss given in Table 2.4. This decrease is similar in many ways to the
picket fence effect encountered with conventional spectrum analyzers when trying to measure the

amplitude of a signal that falls between two analysis filters. The difference here is that the decrease

in gain depends not only on the signal frequency in comparison to the nearby filter frequencies, but
also on the interpolation offsets p for those filters, 'and thus on the rate error. If we make the pilot
tracker time constant 7, too small in an effort to try and correct for fast changes in data rate, we
run the risk of introducing spurious amplitude modulation into the plotted output because of the
variation in filter gain with interpolation offset. That is, with 7, too small, tape recorder flutter
becomes amplitude flutter. With the usual choice of 7, = 1 s, amplitude ripple is not a problem.
The benefits of interpolation and frequency correction outweigh the disadvantages in most cases.
'If tape speed errors are large, interpolation is absolutely necessary to ensure that the data are filtered

properly..

Interpelation Effects versus Window Order. Figure 2.8 illustrates the errors due to interpolation
for different choices of window. These plots were made by analyzing a synthetic signal containing
two constant-amplitude frequency ramps. One started at 1990 Hz and increased linearly with time
at 40 Hz/ s. The second one was exactly 4.5 times the frequency of the first, starting at 8955 Hz

and increasing at 180 Hz/s. The two ramps were phase-locked, with the phase of the uppei one

advancing precisely 4.5 times as fast as the lower one.

The signal was analyzed using the upper ramp as a phase-reference pilot tone. The tracker time
constant 7, was set to only 1 ms to allow the smoothed data rate 7; to quickly follow the increase
in signal frequency. The data segment size was N = 256, giving a filter spacing fp = 100 Hz.
The curves plotted are the output of an interpolated filter at 2000 Hz. Because the pilot tone was
rising in step with the 2000 Hz ramp, interpolation caused this filter to follow the ramp. (The
program, of course, thought that the data rate was changing and samples were becoming more and
more compressed, and tried to compensate for it. It assumed that the actual signal frequency was
constant at 2000 Hz.} The interpolated filter was always centered on the instantaneous frequency
of the ramp. What we see, then, 1s the change in amphtude and pha.se Tesponse with interpolation
offset. '

Near the beginning of each plot, when the input frequency was 2.0 kHz, we see the output of
the windowed filter Sop by itself. The interpolation offset p here is zero. A bit later, when the
input frequency was 2.05 kHz, the offset p is 0.5 and we are interpolating midway between S3¢ and
S»1. The gain of the interpolated output is a minimum now, lower than the original output by the
scalloping loss. By the middle of the plot the frequency has increased to 2.1 kHz and we again have
p = 0, but now we are looking at filter 521 This. process continues and we begin to interpolate
between Sp; and S22 and so on. '

The phase plots show the effects of interpolation on the phase response of the system. These
plots are only 0.01 rev (3.6° or 5 us at 2 kHz) full-scale, a much smaller scale than we will normally
use. The irregularities in phase are due phase errors in the windowed ﬁIters,- as described above in
reference to Eq. (2.39). Note that the phase errors shown here depend on the phases of both the

data filter at 2 kHz and the pilot tone filter at 9 kHz, since a phase error in measuring the pilot’

tone will appear as a time error, and thus as an error in relative phase at. 2 kHz. (The amplitude
plots do not depend on the amplitude of the pilot tone.) In particular, the 1st-order window shows
phase errors that repeat every 100 Hz in frequency rise (as we pass from S to Sap to Sa2) and
also 4.5 times as fast (as the pilo.t, tracker passes from Spg to Spy to ...t0 Syeg). Using higher-order
windows decreases the.phase errors of the windowed filters. By the time we get io the 3rd- and

[

ottt




0 dB—

-4 dB __|
0.01 rev—

0 dB -

-4 ¢8 _|
0.01 rev —

g —

63

0 dB —
% -1.75 dB
-4 dB __|
0.01 rev—
0.17°
1st Order 2nd QOrder
| | " |
2.0 2.1 2.2 kHz : 2.0 2.1 _ 2.2 kHz
W ’ dB—W
%_1.14 d8 ~0.85 a8
<4 dg |
0.01 rev
_ - 0.13° 0.13° '
3rd Order 4th Order
Il 1 " '| |
2.0 2 2.2 kHz 2.0 2.1 2.2 kHz

Figure 2.8. Magnitude and phase plots showing errors wversus window order when
tracking a frequency ramp. The input signal was a constant-amplitude tone rising from
below 2 kHz to over 2.2 kHz at a rate of 40 Hz/s. The pilot tone at 9 kHz increased
proportionally in frequency.

4th-order windows the filter phase errors have fallen below the procesing noise, which is about (0.13°
peak-to-peak in this case. '
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2.5.6 Subtraction of Reference Phase to Correct Tape Time Error

Benefits of Relafive Phase Measurements. If phase information is being used, the phase of each
interpolated spectrél filter is converted into a relative phase by subtracting from it the phase (modulo
1 rev) of a reference oscillator which has been runping at the center frequency of that filter- for a
time equal to the data segment time. That is, if ¢(¢) is the phase of the output of the spectral filter
whose center frequency is fo, then the relative phase of the filtered signal is ¢r.1(¢) = ¢(t) — 2 fof,
‘the phase of the signal relative to a reference oscillator at frequency fo.

Using relative phase measurements does three things for us. First, it allows us to correct for the
time error. Until we have measured the pilot tone phase in the current data segment we won’t know
exactly what the data time is, and we won’t know what the absolute signal phase at the desired time
is either. Second, it makes it easier to interpret signal phase. A signal of mean frequency f, has
a phase which increases roughly 2# f, radians per second. We are often not interested in the mean
increase in phase with time but in variations about the mean. By subtracting the average increase
we can more easily see the variations. And third, using relative phase makes it easier to measure
instantaneous signal frequency. A signal at frequency fo passed by a filter at fy has a relative phase
_ that increases by (f; — fo) revolutions per second.” If we see a phase advance of one revolution in
one second, we know f, is one hertz above fo. This is much easier than actually counting fg cycles
over the course of a second. In fact, we don’t have to wait for whole cycles of phase difference but
can estimate the instantaneous frequency of a signal from the slope of its relative phase. Since we
can place our interpolated filters at arbitrary frequencies, we can measure signal components with
respect to arbitrary references, a great convenience. _ '

Calculating the Relative Phase. When the phase correction routine is called, {U:} contains
interpolated spectral values in rectangular or (real, imaginary) form for filters at frequencies from
Jio to fri in steps of fr. We could convert the interpolated spectrum array to polar or (magnitude,
phase) fofm_at this point, as it would make subtracting the reference phases a bif easier. However,
it would make spectrum averaging, described in the next section, very much harder, so we’ll keep
everything in-(real, imaginary) form. Phases in the interpolated spectrum {U;} are converted to
relative phases as follows: ' _

1. If we are neither plotting phase values nor going to do spectrum averaging, exit from the
routine. Phase information is not needed. Magnitude information is not altered by subtracting

a reference phase. ' )

2. For each interpolated filter in {U;} calculate a reference phase (m revolutions) as
8y = (t, - t.start)fk .
= (t; — tstare(fto + Efr). (2.44)
for £ =0, 1, ..., J. Only the fractional part of f; need be saved; whole revolutions are
discarded. In this program the resulting values of #; are stored-in an array as 16-bit integers

from 0 to 65535 representing angles from 0 to 360~ degrees, but there are many other ways to
a.pproa.ch this.

3. Subtract this reference phase from each line as.
UL = Upe™ 1%, ' (2.45)
The operatibn is actually carried out on the real dnd imaginary parts of Uy as.
| R}, = Ry cos(f) + Ii: sin(f),
I, = —Rysin{0) + I cos(fy).

LA —
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The values cos(f) and sin(#) are interpolated from the table of sines and cosines used for the
FFT, described at the end of Sec. 2.5.2. This is much faster than calculating them on the spot.

Necessary Precision Required. The subtraction of the reference phase from each spectral filter -
output is quite straigntforward. We should note, however, that to achieve the desired accuracy the
time variable t; (and the other variablesin Eq (2.44) if they are not exact values) must be represented
with considerable precision. We want to be able to measure signal phase with an accuracy of at
least 0.1 ps if not better. (This is a phase of 0.36° at 10 kHz, still bigger than the phase errors of
the synthesized filters.) This demands that we be able to specify the time of any data segment to
this accuracy. If we handle input signals up to 400 s in duration then we must specify time with a
precision of at least 1 part in 4 x 10°. In most computer systems this calls for extended-precision
arithmetic. In this system we use double-precision (8 byte) floating-point variables for #; and #,s4ye,
and use the floating-point unit in its double-precision mode for réference phase calculation. '

‘The need for extended precision can be relieved a little if we can restrict the arbitrary choice
of values for f,, fi,, and fr. If these three frequencies are all multiples of some common factor, say
v Hz, then it is clear that reference phases for all possible analyzed frequencies will repeat every
1/v seconds. For example, if fp, fio, and fr are all in whole units of hertz, then the ensemble of
reference phases will be in exactly the same state after a lapse of one second. In this case we need
only measure time in fractions of a second, and can ignore any whole seconds that have elapsed
when it comes to calculating reference phases. This reduces the needed precision in representing
time to 1 part in 107, which may be a single-precision quantity in some systems. Such a scheme will
also be necessary in any system which can analyze signals of unlimited duration to aveid the need
for unlimited precision in time variables. -

2.5.7 Normalizing, Averaging, and Whole-Revolution Phase Accurnulation

The analysis program performs the gain normalization, spectral averaging, and accumulation of
whole revolutions of phase in one large loop. In this loop the individual filter outputs represented in
the interpolated spectrum {U/4} are processed one-by-one to update the output spectrum {V%} and
the associated integral-revolution accumulated phase array {®;}. For simplicity, we will discuss the
steps involved as if they were performed separately.

Normalizing. The magnitudes of spectral components at this point are determined not only
by their strengths in the input waveform but by several other factors as well. First, different data
segments may have suffered different amounts of halving to prevent overflow in the FFT routine.
Second, the gain of the FFT is proportional to the transform size N, and so may vary from one
analysis run to another if different DFT filter spacings are used. (The gain is exactly N in this
implementation, N/2 for the DFT as in Eq. (2.28), and 2 from the real-data transform extraction in
Eq. (2.24).) Third, the window convolution introduces a loss (proportional to window coefficient Cl)
that depends on the order of the window used. If we are to compare different spectra we will have
to take all these factors into account. It is also convenient for the operator to be able to change the
overall processing gain to accomodate different input signals, attenuating or amplifying to provide
the desired density in the plotted spectrogram. The operator does this via the output gain factor
Gout- ' ‘

The task of normalizing is to account for all of these factors and produce an output spectrum
referred to the same constant full-scale level for use by the plotting routines. We proceed as follows:

1. Elements in the ihterpolated spectrum are each normalized as

St = GrormSe fork=0,1,...,/J, o -(2.46)
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where B
10000 - 2 reete G oy

Grorm = 18 Co

and where J = (fni — f1o)/fr is the index of the highest filter in {Si}. The factor 10000 is the
nominal full-scale level used by the plotting routines. The factor 2048 is the peak waveform value
digitized by the 12-bit A/D converter. This is used so a single-frequency signal at peak input
level with an output gain of 0 dB {G,u: = 1) will give a full-scale cutput. The multiplications
in Eq. (2.46) are performed separately on the real and imaginary components-of Sg since Gnorm

is a real number.

2. Both the real and imaginary components of Sp are limited to £32767 to prevent arithmetic
overflow. This is necessary since {Sr} is an array of 16-bit integers and the normalization
factor Gporm 1S very often greater than 1.

There is about 10 dB of headroom between the nominal full-scale level of 10000 and the clipping
level, which seems to be adequate. Note, however, that clipping real and imaginary components
independently creates phase distortion as well as amplitude distortion. Since both real and imaginary

components of clipped signals, such as spherics, tend to £32767, the phases of clipped signals tend

to 45°, 135°, 225°, or 315° (i.e., those angles whose tangents are £1).
A useful and not very difficult improvement would be to use some sort of proportional clipping,

clipping both real and imaginary components by the same factor when an overflow occurs in order -

to preserve the phase angle of the transient. I think this might have a significant effect on the phase
noise generated by spherics, especially when averaging.

Averaging. The results in each spectrum are usually processed and plotted independently; each
output represents the signals present in the data segment just analyzed and is independent of signals

in other data segments. However, spectrum averaging may be used to smooth the output plot by

combining the spectrum just generated with previous spectra. The real and imaginary values of each
point in the current interpolated spectrum {Uy} are weighted and added to the previously averaged
values in the output spectrum {3}, and the results are saved as the new output spectrum as follows:

1. If this is the first pass through the data (data time to), set all the elements in {V}} to zero so
the initial values for averaging are all zero.

2. If not averaging, the interpolated spectrum is just copied directly to the output spectrum as

V/=U fork=0,1,...,1J | (2.47a)

3. If averaging, the interpolated spectrum is weighted and combined with previcusly averaged

values as : _
Vi = etverlTovs (1 —eleer/Towa)U, fork=0,1,...,J. (2.47b)

This gives an exponentially-weighted running average, where the effect of a given datum decreases
as an exponential function of time with time constant 7,,,. Note that this is not the same as a
-block running average. The exponential running average depends-on values only in the past and not
on future values. The impulse response of a synthesized filter with averaging is not symrietrical in
time, unlike the response of the analysis filters up to this point.

Averaging is a useful technique when a smooth plot of otherwise noisy data is desired. However,
averaged results must be interpreted with caution. Since the average is one-sided in time, the effect
of averaging is to extend transient events forward in time, even though their amplitudes may be
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reduced. If the input signal contains impulsive noise, the original unaveraged output will show
large excursions in magnitude and phase for all data segments transformed that contain the impulse
but will show no effects for data segments before or after the event. Averaging tends to reduce the
immediate effects of the impulse, but it will also cause the effects to extend to times after the impulse
since the impulsive values decay only exponentially with time rather than being immediately cut off
as the data window is moved over the offending samples.

Averaging may also be valuable with certain types of phase—coherent signals where it is desired
to have many closely-spaced output lines with narrow passbands. Lines at frequencies offset from a
given signal frequency will have relative phases which increase or decrease with time, and averaging
will tend to null these out, thus effectively decreasing the width of the synthesized analysis filters.
However, the effects of transients are rather complicated, and this'technique should be used with
caution. It may be helpful to simulate the analyzed signals with a syntbetlc test signal to be sure
that the results are as expected.

Whole-Revolution Phase Accumulation. Phase information in the output spectrum is plotted
with a full-scale range of P,;qn revolutions. Pypan is either an integer n, or a fraction whose value
is the reciprocal of an integer as 1/n. That is, we plot phase as either n revolutions full-scale, or
one-nth revolution full-scale. The phase of a complex value in the output spectrum Vi = Ry + il
is given by ¢x = arg(Vk) = erctan(lx/R:), and can-have any value (in revolutions) such that
0 < ¢ < 1. When plotting phase to more than one revolution full-scale we have to keep track of
integral revolutions separately from the fractional-revolution phases in {V4}.

For example, imagine the relative phase of a si'g_na,l Just a bit above the center frequency of a
synthesized filter. Assume we are plotting phase two revolutions full-scale, FPipan = 2. At successive
intervals we might see outpuf spectrum phases ¢ of, say, 0.8, 0.9, 0.0, 0.1, ... revs. We want to
plot the phase as 0.8, 0.9, 1.0, 1.1, .... Where ¢, changes from 0.9 to 0.0 revs, we must recognize
that the actual signal phase has not decreased by 0.9 revs but rather has increased by only 0.1 rev
to 1.0. ‘

We keep track of whole revolutions of phase in the auxilliary array {®;}. Each element ®; is
an integer such that 0 < ®; < P,pan, representing any whole revolutions of phase of the output
filter Vi. That is, the total phase of Vi 15 @ + ®&. The phase accumulation algorithm is as follows:

1. If this is the first pass through the data (data time #p), set all the elements in {®;} to zero. All
phase plots start with zero accumulated phase.

2. If we are not plotting phase information, or if Pyys, < 1, exit. Phase accumulation is not
needed. :

3. Let the previous value of the output spectrum for the k-th filter be Vi = B + j I, with phase
¢ = arctan(l;/R;) such that 0 < ¢; < 1. Let the values just calculated by Eq.’s (2.47a) or
(2.47b) for the current segment be V{ = R}, + jI, with phase ¢}. We have two cases:

a. If ¢ < 1/2, we should decrement ®; whenever the new angle ¢4, is greater than ¢ + 1/2,.
thus making the change in total accumnulated angle less than 1/2 rev. Equivalently, we
should decrement ®; when - ' '

I >0, I,<0, and cot(d}) = RL/IL < cot{s) = Rs/I,

or when

Ry-Te> Ri I, (since I < 0), (2.48q)
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b. If ¢; > 1/2, we should increment ®; whenever the new angle ¢, is less than ¢g — 1/2, thus
making the change in total accumulated angle less than 1/2 rev. Equivalently, we should

increment ¢ when
Iy <0, IL>0, and cot(¢})= Ri/I, > cot(dx) = Re/Is,

or when o _ :
Rl - L <Ry I (since I; < 0). (2.485)

4. After decrementing or incrementing &, the new value is checked to be sure it is still in the
range 0 < ®; < Pypan. If not, an amount P,pan is added or subtracted as necessary.

2.5.8 Rectangular-to-Polar Conversion and Scaling for Plotting

- Finally, the points in the output spectrum are either graphed on the terminal, plétted on the plotter, -

* or written to an output file for later use. The program then returns to the first step (Sec. 2.5.1) above
and moves to the next segment of input data, continuing until the desired interval of signals has
been analyzed In this section I describe the final operations on the spectral data prior to graphing

or plottmg

Rectangular to Polar Conversion. First, the output spectrum {V;} is converted from rectangular
(real, imaginary) form to polar (magnitude, phase) form. If spectrum element Vi is given by Vi =
Ry + jIi = Are?*, then Ay = (R} + I?)Y/? is its magnitude, and ¢ = arctan(li/Rg) is its phase.
The following algorithm is adapted from procedures presented by Hart et al. [1978]:

1. Ry and [, the real and imaginary parts of Vi, are signed 16-bit integers ranging from —32767
to +-32767. Call the one with the larger absolute value u and the other one v. Calculate the
ratio # = v/u, and the product 2. Note that |z| < 1.

2. The magnitude Ay is given by A = u(1+2?)1/2. We calculate (1422)/2 by Newton’s method.
Let @ = 1 + 22/2. Find b = [a + (1 + z?)/a]/2. Find ¢ = [b+ (1 + z?)/b]/2. Then ¢ is a very

good approximation to (1 + z%)¥2, and we assign Ay = ue. The result is an unsigned 16-bit .

integer ranging from 0 to 46340 (= 32767 - 21/2).

3. Approximate ¢; as a power series as ¢y = (20846z7 —~ 60712° -+ 3044z* — 806z)/2. If u = I;
then assign ¢ = 21 — .- If u < 0 then assign ¢p = ¢p + 215, All operations are modulo
2!%. The resulting value of ¢ is a 16-bit unsigned integer ranging from 0 to 65535, representmg
angles from 0 to 1~ revolution (0 to 360~ degrees).

All of the operations above are performed with integer arithmetic. That is, z is represented by
32768z, and so on. The entire procedure requires only seven 16-bit by 16-bit integer multiplications,
and three 32-bit by 16-bit-integer divisions. The magnitude calculat_ion'ha.s a maximum error of
+2/—0.5 over the full range of magnitudes, with an error of only 4:0.5 for small A;. The phase
calculation has a maximum error of £2 (+0.011°), and an rms error of about 0.7, for all values
of ¢z. The errors in the rectangular-to-polar conversion are small compared to processing noise in
earlier steps like the FFT,

Scaltng. The resulting inagnitudes and phases are next scaled to the number of levels required
by the ohtput plot. Lines on the output plot are not continuous, of course, but are drawn by turning
on or off various numbers of the 1600 writing nibs that cross the paper as it is pulled through the
plotter. The 200 dot/inch resolution of the plotier is fine enough to make lines that look acceptably
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continuous, but they are ultimately discrete. The actual number of magnitude or phase levels that,
can be plotted depends on the format of the plot, and the pixel size or trace deflection specified.

Assume that A magnitude and phase levels are to be plotted. A is an integer typically from 10
to 500. The task in scaling is to map the magnitude and/or phase values into integers from 0 to A.
There are three different cases: :

1. Linear Magnitude. This is the simplest case. Here the darkness of the spectrogram or the
deflection of a trace is directly proportional to the magnitude of a spectral component. The
scaled magnitude is calculated as Ap = ArA /10000, where the divisor 10000 is the normalized
full-scale magnitude level (see Sec. 2.5.7 above). If Ax > A, then Ay = A is used. ‘

2. Logarithmic Magnitude. In this case magnitudes are to plotted over a range of M;pon deci-

 bels, where M;pan is between 1 and 80 dB. The scaled magnitude is calculated as Ay =
A +20A log( A, /10000)/Mypan, if Ax > 0, else A = 0. The operation is actually performed as
Ax = alog(Ag)+b, where a = 20A/M,p4n and b = A—alog(10000) are pre-calculated constants.
The resultihg value of Ag is then clipped to the range 0 to A. '

3. Phase. Phase is plotted Pypan revolutions full-scale, where P,,q, is either an integer n, or the
reciprocal of an integer as 1/n; in either case n is from 1 to 100. If Pypan > 1 then {®;}
contains any accumulated whole revolutions of phase, otherwise it is all zeroes. Phase is scaled
as follows: First, find ¥ = 2'5®; + ¢4, the total phase. Next, let ¢ = (¥/Pypan) (mod 216),
the phase P,p4n revolutions full-scale. Finally, find the scaled phase as Ay = $A/2'. In this
case Ag is an integer from 0 to A — 1. :

2.5.9 Plot Formats

Figure 2.9 shows examples of the four different types of output formats that can be used to plot
analyzed signals. All examples use the same input data, a synthetic signal containing a constant-
frequency tone at 4000 Hz, and a second tone specified by f = 4800 — 1000t + 250¢2, where f is
in hertz and { in seconds. This second tone has a parabolic frequency-time shape, and reaches a
minimum frequency of 3800 Hz after 2 seconds. Both tones have the same amplitude. Both tones
begin abruptly at 0 s, and cease abruptly at 4 s. However, even though all four plots present the
same signal, they show very different aspects of it. In this section we will examine some of the

~ characteristics of each format.

F-T Spectrogram Format. The top plot in Fig. 2.9 is an [~ spectrogram. The density of the plot
at'a given position is proportional to signal magnitude at the corresponding frequency and time.
. The plot is actually divided up into rectangular pixels, each & dots high and w dots wide. Every. A
dots in the vertical direction represents an increase in frequency of f; Hz, and every w dots in the -
horizontal direction is an increase in time of ¢,¢p seconds. Up to A = k- w different signal levels are
shown by turning on different numbers of dots in each pixel. Linear magnitude scaling is usually
used. , :

The f-t spectrogram is an effective format for showing the gross characteristics of signals. Its
biggest advantage is that it can give complete coverage of the f-f plane in the most compact form.
In the spectrogram in Fig. 2.9 the f-t plane is well oversampled since the interpolated filters (f; =
12.5 Hz) are spaced at about one-third their 3-dB width (1.6fp = 40 Hz), and their outputs are
sampled (t5¢ep = 11 ms) almost four times as often as minimally necessary (1/fp = 40 ms). We can
see some fairly small signal features, such as the transients at the beginning and end of the tones,
and the ripples when the tones cross, though what these features mean may not be entirely clear.
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Figure 2.9. Sample output formats. All plots show the same signal containing a
constant-frequency tone and a second tone with a parabolic dependence of frequency on
time. The plois are, from top to bottom, an. f-f spectrogram, an A-scan plot, a magnitude-
phase plot, and a gray-scale phase plot. Analysis parameters are as follows:

tstep . fD fI Mspcm Pspan
F-T 11lms 25 Hz 125Hz linear — pixel 5x4 nibs ,
A-scan 250ms 25Hz 25Hz 40dB — max deflection 90 nibs
Mag-Phase © 2.75ms 50 Hz 1:00Hz 20dB 1rev max deflection 89 nibs

Gray-scale Phase 275 ms 50 Hz 50Hz  linear 1rev max deflection 15 nibs
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The main shortcomings of an f-t spectrogram are the limited dynamic range that can be plotted,
and the lack of phase information. Even though there may be A dots available in a given pixel (20
in this case), it is unlikely that A different signal levels can be discerned in black-and-white. The
' problem here is that the difference between a density of, say, 0 and.1 dot per pixel is much greater to
the eye than the difference between A — 1 and A dots per pixel. As far as lack of phase information
goes, note that the two places where the tones cross over look different. ‘This is because the tones
meet each other with different phases in the two cases, something not visible in the spectrogram.
Also, we cannot tell the minimum frequency at the bottom of the parabola, at least closer-than’
about fp Hz, without phase information. '

A-Scan Formatl. The second plot in Fig. 2.9 is an example of the A-scan or amplitude-scan
format. In this format the magnitudes of successive filter outputs at a given time are plotted as
horizontal deflections of a vertical trace. Additional traces are plotted at intervals of £,;.p seconds. If
the synthesized filters are spaced closely enough, the traces will appear to be continuous in frequency,
representing the magnitude of the windowed spectrum at discrete intervals of time. The vertical
scale assigns h dots to each successive filter at increments of f Hz. The horizontal scale depends
both on the peak deflection A of each trace and the time f,ep between traces. Either linear or
logarithmic ma.gmtude scaling can be used. . ' '

The A-scan format overcomes the dynamic range limitation of the f¢ spectrogram and makes
it possible to measure the actual magnitude of a signal component. In particular, note that the
A-scan plot in Fig. 2.9 has captured the transients at the beginning and end of the tones. Signal
magnitudes are shown here with a range of 40 dB, much greater than in the spectrogram, and the
transients are seen to extend to much wider 'frequencies The capture of these transients also points
" up a ma._]or limitation of the A—scan ‘sparse coverage in time. To provide complete sampling along
the time axis requires an enormous “amount of plotting in the A-scan format. In Fig. 2.9 ¢,., was
250 ms, more than six times the data segment length. 84% of the input samples were skipped over.
If the windows that captured the end transients were moved as little as 20 ms, the transients would
not be seen. .

The effects of linear interpolation between DFT filters can be seen in the A-scan in Fig. 2.9.
Ten interpolated filters are plotted for each windowed filier. Note that the passband-like shapes are
actually made up of straight line segments. These are the lines along which the output filters were
mterpolated

The A-scan format used here shows signal spectra as a series of separate little graphs A similar
format which is more efficient in its use of paper is the overlapping-trace format where the horizontal
distance between successive traces is less than the deflection permitted on any given trace. A strong
signal component may produce a deflection that moves its trace beyond the baseline of one or more
_.previous traces. When this format is plotted with frequency across the paper and time increasing

downward it is called a “waterfall” display. Unfortunately, plotting an overlapping-trace display
_requires, at any given moment, saving a few previous spectra, and this takes more memory space
than we have available. It will be a desirable format in any future system.

Magnitude-Phase Format. The magnitude-phase format, the third plot in Fig. 2.9, shows the
magnitude and/or phase of a set of filter outputs as functions of time. The vertical scale in each .
trace shows A different values of magnitude or phase. Successive traces represent filters at successive
increments of fy Hz in frequency. In the horizontal direction we plot w dots for each increment Lotep
in time. If w and ¢,¢0p are small enough, each trace will appear to be continuous in time, representing
the actual output of a fictitious filter. Either linear or logarithmic magnitudes can be plotted, and
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to wow and flutter. Timing error correction is necessary if phase measurements are to be made. The
frequency of the reference tone is not important as long as it falls within the sampling bandwidth.
All recordings made by Stanford since 1973 include a pilot tone at either 1, 9, or 10 kHz. However,
- any contant-frequency signal in the data may be used. ¥ the signal is amplitude modulated with
time ticks, these may also be displayed. '

5. Analyze Dale with Various Filfer Bandwidths. The FFT algorithm is used during analysis to
calculate the discrete Fourier transform (DFT) of the sampled signal. The DFT represents the signal

. as passed through a bank of bandpass filters spaced in frequency at multiples of fp = 1/NT, the

DFT filter spacing. By varying the transform size N we can change the spacing of these synthesized
filters. N can be any power of 2 from 64 to 2048, so with 10.6 kHz sampled data (T' = 1/25600 8)
the DFT will synthesize filters spaced every 12.5, 25, 50, 100, 200, or 400 Hz. The bandwidth
of each filter is equal to the filter spacing fp multiplied by a factor that depends on the window
function used with the FFT. With a 3rd-order window (the usual choice) the factor is 1.6, ngmg
filter bandwidths of 20, 40, 80, 160, 320, or 640 Ha.

6. Interpolate Between DFT Spectral Points for Arbilrary Filler Spacing. Linear interpolation
between points in the DFT spectrum can be used to generate an output spectrum with filters spaced
at an arbitrary frequency increment fr. However, the bandwidth of these interpolated filters is still
approximately the bandwidth of the DFT filters. Interpolation is also used to correct for frequency
shifts due to tape speed errors.

7. Make Accurate Magnitude Measuremenis. The modulus of a given spectral filter output at
a given time is the magnitude of the signal component at the filtered frequency at that time. Signal
magnitudes can be displayed either linearly or logarithmically (over a 1 to 80 dB range) and can be
measured directly from the output plot. The relative magnitudes of signal components at different
frequencies are easily determined. If a signal of known level is measured (say, a receiver calibration
tone), then absolute measurements of signal intensities can also be made.

8. Measure Relative Signal Phase. The argument (angle) of a spectral filter output is the phase
of the signal component at that frequency and time. The phase of a constant-frequency component at
frequency f is, of course, just ft revolutions (or 27 ft radians) at time ¢, and increases f revolutions
every second. The analysis system calculates the phase at the output of each of the spectral filters,
subtracts an amount equal to fot (where fy is the center frequency of the particular filter), and can
display the results in a variety of formats. The resulting values are relative phase measurements,
representing the difference in phase between a sxgnal ‘component at frequency f and a reference
oscillator at the filter center frequency fo. These relative phases may be of interest in themselves, or
their slope may be measured from the output plot to find the frequency difference between the signal
and the reference and thus make precise instantaneous signal frequency measurements. However, to
generate meaningful phase plots, tape timing errors must be corrected, which means that a reference
pilot tone must be available in the data. 7 :

9. Average Spectra to Measure Weak Signals. The complex spectra may be averaged with time
to help bring weak coherent signals out of the background noise. If the signal is coherent (and exactly
at the center frequency of a spectral filter) its relative phase will be constant with time, whereas
noise in the filter bandwidth may be expected to have a random phase from oné moment to the next.
By averaging, the noise tends to disappear, and the signal-to-noise ratio improves directly with the
a.ver'a.ging time. When averaging is used, the complex output of each spectré.l line is combined with

previous values to form a running average with an exponential decay in time. The timne constant can
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be chosen depending on the strength of the desired signal and its coherence time. The magnitude
and/or phase of the resulting average may be plotted in a variety of ways. For best results, tape
timing errors must be corrected, which means that a pilot tone must be present in the data.

10. Produce Frequency-sze Specirograms. The analysis system can produce frequency-time
spectrograms similar to the film and paper records produced by analog spectrum analyzers. The sys-
tem plotter has sufficient resolution (200 dots/inch) to make gray-scale plots much like hthogra.phlc
half-tone prints. These plots are used to help locate interesting signal features.

11. Produce A-Scan Plots. An A-scan (amplitude-scan) plot shows signal magnitude versus
frequency at a given time (i.e., for a given data segment) as the deflection of a horizontal trace. As
the analysis proceeds, a separate trace is plotted for each step in time tstep. The resulting plots
can be used to measure signal magnitudes at different frequencies. Analog spectrum analyzers can
produce A-scan plots with difficulty, but the digital system does so with ease.

12. Produce Magnitude-Phase Plots. These are the most useful plots for the analysis of small-
scale signal structure. In a magnitude-phase plot the magnitude and/or phase of one or more spectral
filters is plotted as a function of time. Either linear or logarithmic magnitudes can be plotted, and
phase plots can be made from 0.01 to 100 revs full-scale. One filter output at a given frequency may
be shown to large scale, enabling accurate magnitude and phase measurements to be made from
the resulting plot, or the outputs of several filters may be plotted next to one another to show the

-relationship between different signal components.

13. Produce Gray-Scale Phase Plots. " In the gray-scale or width-modulated phase plot the
magnitude and phase of a spectral filter are combined and plotted together as a function of time.
Trace deflection is proportional to signal phase and trace widih to signal magnitude. A single filter
may be plotted to large scale, showing the correlation between signal behavior in magnitude and
phase, or the outputs of many filters may be plotted to a smaller scale, in which case the plot is

-similar to an f-f spectrogram but also showing the phase behavior of coherent signals.




76

2.7 What This System Cannot Do

L. Digitize Signals from 1/2-Inch Tapes, Quarter-Track Tapes, or FM Recordings. The analog
tape recorder used in the digital analysis system can only reproduce 1/4-inch half-track direct (AM)
recorded tapes. All other tapes must first be dubbed onto a 1/4-inch tape in this format. This
means, for instance, that NASA satellite tapes (1/2-inch FM) and many Palmer Station t.apes
(quarter-track) cannot be directly analyzed.

2. Translate Data When Sampling. All data are normally sampled at 25600 samples/second,
preserving signals from 0 to 10.6 kHz. While the effective data bandwidth with respect to recorded
signals may be varied by changing the playback speed, all sampled signals start at zero frequency.
The system has no provision to select a small passband from the recorded signal and translate it
down before sampling, as can be done with some of the analog analyzers.

3. Analyze Data with Arbitrary Filler Bandwidths. The transform size during analysis may
be changed from 64 to 2048 points by factors of 2. In practice, this means that each transformed
spectrum may contain 27, 54, 107, 213, 425, or 849 unaliased spectral lines evenly spaced from
0 Hz up to the sampled data bandwidth. For example, with 10.6 kHz data, a 2048-point transform
_provides 849 lines spaced every 12.5 Hz from 0 to 10.6 kHz. With a 3rd-order window, the actual
3-dB width of each equivalent spectral ﬁlter is 1.6 x 12.5 or 20 Hz. Interpolation may be used
to generate additional spectral lines (say every 1 Hz), which are often useful when making phase
measurements, but the bandwidths of these lines are still about 20 Hz. There is no way to analyze

10.6 kHz data with filter bandwidths less than 20 Hz. (Spectrum averaging can help in certain

cases.)

4. Correct Tape Wow and Flutter Without a Pilof Tone. A constant-frequency reference or
pilot tone is needed to make tape timing error corrections, necessary for phase plots or averaging.
During analysis, the phase of the pilot tone is measured and used to determine the actual data time

of each data segment. The data time determines the reference phase which is subtracted from each

spectral line phase to give the relative signal phase. Without tape timing error correction, the. phase
of a signal component will depend not only on the signal itself but also on the accumulated speed
errors of both the recording and playback decks at that moment. Tape speed errors are such as to
often completely mask any changes in signal phase that are to be measured. All Stanford recordings
made since 1973 have a pilot tone that can be used for this purpose {though some operators have
inserted the tone at a low level, which can cause problems). Pre-1973 data are in general not usable
for phase analysis.

5. Correct Wow and Flutter of Multi-Channel Recordings. Multi-channel data are digitized by
interleaving samples from the different channels. During analysis, the samples of the desired channel

~are extracted and processed while samples from other channels are discarded. Tape timing errors -

. can only be corrected on those channels that contain a constant-frequency pilot tone. The system
does not allow error corrections derived: for one channel to be applied to any other channel. Tape
slew across the heads (azimuth error) and head scatter (tape head gaps for different channels may
-not be exactly in line) mean that tape timing errors will differ slightly from one track to the next.
Even if the analysis program allowed us to measure a pilot tone on one track and apply the data
* times measured to samples from another track, we would find that the residual timing errors from
slew and scatter would render phase méasurements very noisy. See Sec 2.3 for a discussion of this
problem.
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6. Make Useful Phase Measurements of Changt’ng--ﬁ"requcncy Signals. Phase measurements can
only be easily interpreted for signals that are relatively constant in frequency, or whose phases
can be referred to a constant-frequency signal. For instance, when studying wave growth in the
magnetosphere we might look at the phase of a received signal amplified from or triggered by a
constant-frequency input pulse. By measuring the relative phase of the received signal we can
determine the instantaneous frequency of the amplified signal or the emission since we know the
frequency of the input wave. However, if the input signal is not constant in frequency, its changing
relative phase behavior will be added to that of the interaction and the resulting output phase plot
will be very complicated. This means that the phase behavior of transmitted frequency ramps and
other more complicated signals is very difficult to interpret. Calculating dispersion from the phase
behavior of ramps (or whistlers) is beyond the capabilities of the present systern.
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3. SIGNALS WITHOUT GROWTH

3.1 Identification of VLF Transmitter Modulations

In this section we will show how the relative phase of the signal from a VLF transmitter can be used
to determine its frequency and modulation. From these we may infer the purpose of the signal and,
occasionally, the state of development (or at least maintenence) of the transmitting equipment.

VLF Transmitters. The spectrum from 10 to 30 kHz is dominated by the sub-ionospheric
signals from various VLF transmitters. The two main uses of these transmitters are navigation
and communications. In addition, some stations also periodically send time signals, such as GBR,
Rugby, UK, at 16.0 kHz; and UTR3 and UQC3, Gorki and Khabarovsk, USSR, at frequencies from
20.5 to 25.5 kHz.* _

As VLF researchers we are not particularly interested in the message traffic these stations
transmit, but the signals themselves can be very useful as probes to study geophysical phenomena.
For instance, whistler-mode signals at 15.5.kHz from station NSS (Annapolis, MD) were heard at
Cape Horn in Novernber, 1956, supporting Storey’s explanation of the magnetospheric propagation
of whistlers which had been published only three years earlier [Helliwell and Gehrels, 1958]. The
triggering of emissions by a man-made signal was first observed on whistler-mode signals at 18.6 kFz
from NPG (NLK, Jim Creek, WA) received in Wellington, New Zealand [Helliwell et al., 1964].

The frequencies of many transmitters are controlled by very accurate frequency standards,
and the phases of received signals reflect this accuracy, at least after any message modulation has
been removed. Sub-ionospheric signals from these transmitters have been used for Imany years as
references against which the accuracy of local frequency standards can be measured. However, the
phase of the signal at the receiver also depends on conditions along the path of propagation, and
can change as ionospheric conditions change. Chilton et al. [1963] report phase advances of up to
30 s lasting some tens of minutes due to ionization in the D region caused by solar flares. These
signals are also subject to Trimpi events, the smaller phase and amplitude perturbations caused by
ionization from magnetospheric particle precipitation.

Figure 3.1 shows an f-7 spectrogram and a gray-scale phase plot of the spectrum from 10 to
22 kHz as recorded at Palmer Station, Antarctica, illustrating the types of sub-ionospheric signals
that can be seen at any VLF receiving site. Table 3.1 lists the frequencies and modulations of the
various signals in Fig. 3.1, and identifies their transmitters when known. The analog tape containing
‘these éignals was played back at about 48% of its recorded speed so the analyzable bandwidth of
the digitized signal would be 22.26 kHz instead of the standard 10.6 kHz (cf. Sec. 2.4, Ttem 2). The
spectrogram on the left shows the presence of at least a dozen signals. Those above the 10 kHz pilot
tone up o 14 kHz are pulses from various Omega navigation transmitters, those 15 kHz a,nd above
are from communications stations using various modulations. (The signal at 14001 Hz is believed
to be due to local interference at Palmer.}) However, while we can tell the rough frequency of each
signal from the spectrogram we cannot say very much about its modulation, except that some signals
seem to have wider bandwidths than others.

The gray-scale phase plot on the right of Fig. 3.1 tells us more about the signal frequencies and
modulations. Several signals are constant in frequency, and some even fall at the center frequencies

* The latter two stations may be part of a navigation system [Klawitter, 1983).
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Figure 3.1. Signals from various VLF navigation and communications transmitters.
On the left is a conventional f-i spectrogram, filter spacing f; = 50 Hz, BW = 84 Hz. On
the right is a gray-scale phase plot, fr = 100 Hz, BW = 168 Hz, Pspan = 1 rev. The phase
 characteristics of the signals reveal their exact frequencies and modulations.

of the analysis filters (spaced every 100 Hz) so their relative phases appear as straight lines. (The -

10 kHz pilot tone phase is constant as well; but this is only as expected since it is the reference
phase for everything shown). However, many of the signals are quite complicated, though their
phase structures still show underlying regularities. The rest of this section will be spent examining

all of these signals in more detail.

Omega. The frequency band from 10 to 15 kHz is used primarily for navigational purposes.
There are two VLF navigation systems in use, the western Omega system and the Soviet Union’s
Alpha system. The two systems use different transmitters, different frequencies, and different pulse

formats, but are similar in operation. The Omega system [Swanson, 1983] has eight VLF transmitters

at locations around the world to provide global signal coverage. By measuring the phase difference
between signals received from two transmitters a user can tell how much closer he is to one station
than to the other, placing himself on a hyperbolic line of position whose foci are the two transmitters.
By measuring phase differences from a third station he can calculate a second such line of position,
and fix his location with a typical accuracy of about one nautical mile. In practice, signals at a given
frequency are not transmitted simultaneously by the eight stations in the network, since it would be
impossible to separate them at the receiver. Instead, stations transmit at a given frequency one at
a time, and phase differences between pulses from different transmitters are measured with the aid

of a local frequency standard at the receiver. Also, phases at four different frequencies are measured .
in order to resolve ambiguities in position due to whole-cycle uncertainties in phase measurement.

[OT——
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TABLE 3.1
VLF Signals in Figure 3.1

Frequency, Hz Modulation Station
21350/21450 MSK, 200 baud - ' NSS, Annapolis, MD
19550/19600 FSK, 50 baud ‘Soviet Union ?
19000/19050 FSK, 50 baud Soviet Union ?
18575/18625 FSK, 50 baud NLK, Jim Creek, WA
17550/17850 MSK, 200 baud _ NAA, Cutler, ME

16400 - keyed CW, 16 baud JXZ, Oslo, Norway ?
15950/16000 - FSK, 50 baud GBR, Rugby, UK
15075/15125 FSK, 50 baud Soviet Union ?

14001 CWwW ‘ local interference

13600 " Omega 2 Argentina {2 Australia
13100 Omega £2 N. Dakota §2 N. Dakota
12300 Omega ' - £2 La Reunion
12000 ' Omega o Q Liberia
11800 Omega 2 Hawaii ,
113333 Omega Q Argentina
11050 Omega ¢ Liberia ! Hawaii

- at a single frequency. The transmission format is such that each of the eight stations sends a pulse
at each of the four navigation frequencies once every ten seconds, as well as four pulses at a unique
frequency peculiar to that station. :

From our perspective, the important characteristics of the Omega signals are that they are

constant-frequency pulses about 1 second long (the actual length varies among the eight segments
in each ten-second cycle) followed by a 200 ms dead time, and that the frequencies and phases of the _

signals-are accurately determined by a bank of cesium frequency standards at each station. Figure
3.1 shows s1gna.ls from six of the eight Omega transmitters. The only stations not seen are Omega
Japan at 12.8 kHz (left segment in Fig. 3.1), and Omega Norway at 12.1 kHz (both segments). Also,
neither Omega Australia (left segment) nor Omega Japan (right segment) can be seen at 10.2 kHz
because of the proximity of the much stronger pilot tone. The navigation frequencies are 10.2 {not
seen), 11.05, 11.333, and 13.6 kHz; the other frequencies are the unique frequencies assigned to
particular stations. ' '

Because of the phase stablhty of the transmitters, Omega signals can be used to detect Trimpi
events. Inan et al. {1985) report phase changes of up to 1 us on the Omega Argentina signal at
12.9 kHz as received at Palmer Station. The Omega Argentina signal is quite strong at Palmer, and
its phase is easy to measure. The disadvantage of using this signal is that, even at the 12.9 kHz
unique frequency, the duty cycle is less than 50% and one cannot obtain complete time coverage of
an event. _ . '

The Omega system has given us another benefit. The present VLF transmitter at Siple Station
1s a modified Omega transmitter that we obtained surplus when the original models were replaced
in the mid 1970’s. '

Communications Transmilters. Frequencies above 15 kHz are used primarily for communica-
tions. Figure 3.1 shows eight communications stations between 15 and 22 kHz. VLF signals have

been used in this way for decades, particularly by the world’s navies. The advantage of VLF for

communications is rehabh]lty, VLI signals are much less subject to the vagaries of signal propaga-
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tion that affect shortwave circuits. An additional advantage due to the long wavelengths at VLF

frequencies is that attenuation in water is low (about 3 dB/m at 10 kHz) and communication with
submarines is possible, at least to a depth of ten or twenty meters. The disadvantages of VLF sig-
nals are the need for high transmitter power to overcome atmospheric noise (station NAA radiafes
1 MW), large transmitting antennas, and the limited bandwidth available (usually about 100 Hz).
Most VLF communications ttansmltters are at fixed, land-based locations, but both the US Navy
and Air Force have transmitters on aircraft usmg long trailing-wire antennas.

In order to transfer information, the VLF signal from a transmitter must be modulated in some
way. There are two types of modulation commonly used, keyed CW (Continuous Wave), where

the transmitter is turned on and off, and FSK (Frequency Shift Keying) where transmitter power

is constant but the signal is shifted between two frequencies. Some US transmitters also use MSK
(Minimur Shift Keying), which is really just a particular type of FSK.

Keyed CW is the simplest form of modulation. However, since the transmitter is off roughly
half the time, average signal power is less than with FSK; and turning the transmitter on and off
repeatedly may stress it more than constant-power transmission. Keyed CW is usually used at low
bit rates, often to send Morse code messages intended for manual reception and decoding. Figure 3.1
shows a station at 16.4 kHz transmitting keyed CW at a speed of 16 baud (1 baud = 1 bit/s), or
19.2 words/minute. An hour earlier this station was heard sending “W33DG W33DG W33DG VVV
VVV VVV DE JXZ JXZ JXZ” repeatedly (i.e., “Calling W33DG, test test test, this is JXZ”). There
is a Norwegian Army HF radioteletype station JXZ in Oslo (Kolsaas), Norway [Ferreh1 1983}, and
our VLF station may be associated with it. I have no idea who W33DG is.

We used the Siple transmitter when it first started operation in 1973 to send a keyed CW message

in Morse code to Roberval over a whistler-mode path. Because of distortion in the magnetosphere -

(a problem not faced by sub-ionospheric users) the message had to be sent very slowly, at a rate of
one baud or only a little over one word per minute. Manual keying at this rate is very tedious.

Frequency Shift Keying. FSK is the modulation most commonly used for communications. In
this technique the message, which may be in Morse code but is more likely the output of a teletype
machine or some more complicated encoding device, is represented as a stream of bits, 1’s and
0’s, or marks and spaces as they are called. The message is sent by transmitting at one of two
- possible frequencies, the mark frequency fi or the space frequency fp, changing frequency according
to successive message bits. There are two parameters in FSK modulation, the difference between
the mark and space [requencies, or frequency shift f, = |fy — fo|; and the speed at which message
bits are transmitted, the keying rate or bit rate fi = 1/T, where T is the time taken to send an
individual bit. The ratio h = f,/ fris called the modulation indez or frequency deviation ratio.

What does an FSK signal look like? Let’s consider a string of message bits {u,}, a sequence

of 1’s and 0’s. Let the modulating waveform u(t) that controls the transmitter be a function whose
value, either 0 or 1, is the value of the message bit being sent at the given time {. That is, u(¢) = u,
during the interval nT < ¢ < (n + 1)T. We will assume that f, > fy (mark frequency > space
frequency), though this choice is arbitrary. G_iven'these déﬁnitions, the frequency of the signal will
be '

hHi=Ffo+f, ilu(t)=1
= fo+u(t) - fi, (3.1)

Ft) = {fo, if u(t) = 0,

[roS——
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and we can write the waveform of the transmitter as

s(t) = cos{21rfot f(r)dr + ¢]
= cos(27 fot + ¢(2) + ), (3.2)

where .
#(t) = 2nf, ]; w(r)dr O 33)

carries the message information, and where ¢; is some initial phase at time £ = 0. Note that the
sum ¢(t) + ¢o is the relative phase of the signal at the space frequency f; as we mlght measure it
during spectrum analysis.

Now, the integral of u(7) is just the sum of all the message bits already sent times the duration T
of each bit, plus a litile for the current bit in progress. If we are currently in the interval nT' < ¢ <
(n 4 1)T, sending bit u,, then we can write

n—1 at
TZu,—-}-/, uﬂdr}
i=0

nT

$(t) = 2nf,

= 2, TUp—1 + 27 fottn - (£ — nT)
= 2xhUn_1 + 27 fyup - (¢ — nT), (3.4)

where Un_, the sum of all previous message bits (i.e., the number of marks), is an integer, What
this says is that the relative phase at the space frequency at a given time depends on the modulation '
index A and all previous message bits, and is constant at the moment if we are sending a space
(un = 0}, or is increasing at f, revolutions/second if we are sending a mark (u, = I}. We can write
a similar expression for the relative phase at the mark frequency f;.-

Phase Coherent FSK and MSK. Now we can examine two particular types of FSK. These are the
modulations used by the majority of VLF communications stations. In the first typ-e the frequency
shift is exactly equal to the bit rate, so the modulation index & is exactly 1. In this case hl,_; is
always an integer, and the first term in Eq. (3.4) always represents some number of whole revolutions
and can be ignored. Every time we send a space the relative phase at the spacing frequency has the
same value (¢o); every time we send a mark, the relative phase increases by exactly one revolution.
We can make a similar statement about the relative phase at the mark frequency fi: every time

.we send a mark the relative phase at fi is constant; for every space it decreases by one revolution.
This special case is called phase cokerent FSK. (Actually, any integral value of A will give phase
coherence, but h = 1 is used to minimize the transmitted signal bandwidth.) -

In the second particular type of FSK the frequency shift is exactly half the bit rate, or A = 1/2.
In this case hU,_1 may be an integer, or it may be an integer plus one-half, and the first term
in Eq. (3.4) is always an integral number of half-revolutions. Now there are fwo possible values of
relative phase at the space frequency when we send a space. Which value occurs depends on the
previous message bits. If we send a mark the relative phase at f increases by one-half revolution.
Similarly, at the mark frequency f; there are two values of relative phase for marks, and each space
decreases the phase by one-half revolution. The case & = 1/2 is called minimum shifi keymg or
MSK {Doelz and Heald, 1961).

The gray-scale phase plot in Fig. 3.1 shows five coherent FSK 51gnals and two MSK signals. For
three of the FSK signals (15950/16000, 19000/19050, and 19550/19600 Hz) one of the transmitted
frequencies is at an analysis filter frequency and the relative phase is constant at that frequency
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Figure 3.2. Phase plots of three selected VLF transmitters showing details of their
modulation (BW = 336 Hz, Pyan = 1 rev). The upper plot is a presumed Soviet transmit-
ter sending FSK with 50 Hz shift and a keying rate of 50 baud. The average transmitter
frequency is 0.6 Hz lower than expected. The center plot is NLK sending FSK with 50 Hz
shift at 50 baud. The lower plot is NAA sending MSK at 200 baud; note there are two
possible phase values at each frequency. .

(though there may be a slow drift in the 19550/19600 Hz signal). The other two FSK signals 7
(15075/15125 and 18575/18625 Hz) straddle a filter and their phase coherence is harder to see. The |
two MSK signals are quite complicated and the scale of the gray-scale phase plot is too small to say

much about them.

Lt 3

Phase Plots of FSK and MSK Signals. With the aid of Figure 3.2 we can examine some of these
signals in more detail. This figure shows phase plots for two FSK signals (h = 1) and one MSK.
signal (A = 1/2). In each plot two analysis filters have been synthesized, one at the mark frequency i
and one at the space frequency of that particular signal. _ ' S

The simplest signal is shown in the center plot. This is station NLK sending 50 Hz-shift FSK
at 50 baud. The space frequency is 18575, and the mark frequency is 18625. (Or vice versa. We
cannot really tell mark from space without knowing how the miessage is encoded. The distinction is _

“immaterial here and we will assume that the mark frequency is the higher one. However, all of the
message information is displayed in the phase plot. If we knew the code we could read the message

from this plot.) Note that the signal is phase coherent at the space frequency. The relative phase
at 18575 is exactly the same for each space. Each mark sent lasts 7' = 20 ms and causes the phase
at 18575 to increase by exactly one revolution; n marks increase it by n revolutions. Behavior at
the mark frequency is similarly coherent-—stationary at a constant value for marks and decreasing
by one revolution for each space. . . ' |
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A phase-coherent FSK signal like this one is ideal for use in checking the accuracy of a local
frequency standard (by comparing long-term phase changes), or for monitoring propagation effects
due to flares or Trimpi’s (by looking for phase changes over time scales of minutes or seconds,
respectively). To extract phase information from the signal it is only necessary to filter it at either
the mark or the space frequency using a filter with a smta.bly narrow passband. An FSK signal can
be thought of as the sum of two keyed CW signals, one at the mark frequency sending the marks,
and a second one at the space frequency sending the inverse message. Fach of these stb-signals
can be thought of as an amplitude-modulated signal with half of its power in 1nf0rmat10n—carry1ng
sidebands and half in a constant-power carrier. Thus a coherent FSK signal actually broadcasts
one-quarter of its power as a. constant signal at the mark frequency, and another quarter at the
space frequency. These are the signals we can filter out for phase measurements.

Phase coherence is actually quite important when it comes to transmitting information, and
its convenience for.our uses is merely accidental. The importance of coherence stems from the
improvement in receiver signal-to-noise ratio that it allows. This works as follows: The simplest
way to demodulate an FSK signal is to have two bandpass filters, one at the space frequency and one
at the mark frequency, each followed by an envelope detector (i.e., a rectifier and a low-pass filter).
Whether a given bit is a mark or a space is decided in the receiver according to whether the output
of the mark filter envelope detector is bigger than that of the space filter detector, or wice versa.
This asynchronous detection scheme will work with any FSK signal, coherent or not. However, if
the signal is phase coherent we can use synchronous detection. Instead of an envelope detector, the
-outputs of the two filters are detected by mixing thém with m~phase reference signals at the mark
and space frequencies (elther from a local oscillator which is phase-locked to the received signal or
perhaps just narrow-band filtered signals from the CW sidebands as discussed above) and low-pass
filtering the results. This eliminates that half of the received noise which is in phase quadrature
with the mark and space sidebands, and improves the signal-to-noise ratio of the receiver by 3 dB
over the asynchronous case. :

The top plot in Fig. 3.2 shows an FSK signal at approximately 19550/19600 Hz. This is
presumed to be from a transmitter in the Soviet Union. Note the slow drift in the relative phase at
cach frequency. The phases of successive marks and spaces seem to be decreasing at the same rate,
about 0.6 revolution per second. A careful count of the keying rate shows it to be within 0.1 baud _
of 50.0 baud. Both: the mark and space phases change together with a differential drift less than
0.1 rev/s, so the transmitter frequency shift is within 0.1 Hz of 50.0 Hz. Thus the modulation index
h is equal to 1.000 as close as we can tell, consistent with phase coherent FSK. What is happening is
that the average frequencies of both the marks and spaces are 0.6 Hz below the expected frequencies;
that is, the transmitter is 0.6 Hz low. (Curiously, note that many of the individual pulses seem pretty
close to 19550 or 19600 Hz, as their slopes look flatter than the overall drift in phase.) Of course, there
is no reason why the transmitter should not be operating on purpose at 19549.4 and 19599.4 Hz, but
it does seem at variance with standard practice. The other presumed Soviet stations, at 15075/15125
and at 19000/19050 Hz, are within 0.01 Hz of the numbers given here, all exact multiples of 25 Hz,

It seems likely that this 0.6 Hz offset is not intentional but instead is due to a slight misadjust-
ment of the transmitter. But if it is not intentional, it says something puzzling about the nature of
the transmitting equipment. A frequency offset of 0.6 Hz at 19000 Hz represents a relative frequency
error of 3.2 x 10~°. This is roughly the error that might be expected from a well-designed LC os-
cillator. However, using an LC oscillator as the master oscillator for a VLF transmitter would be a -
very crude approach by today’s {or even yesterday*S) standards. The most likely master oscillator
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not recorded well unless fast tape speeds (15 ips) are used. Unless the level of the recorded
signal is high, phase and amplitude measurements will be noisy, especially if high time reso-
lution is desired. Because of their short wavelengths, signals at the upper end of the recorder
frequency range are subject to increased amplitude variations from tape skew, an effect which
adds additional noise. : :

3. Notch filters have been used at some field sites to eliminate intermodulation caused by partic-

ularly strong VLF stations. These stations would otherwise be excellent beacons for Trimpi

measurements, but notching them out destroys their usefulness. The notch filter attenuates
them, making them more difficult to measure, and the steep skirts of the notch change the
frequency modulation of stations sending message traffic into amplitude modulation.

4. Tape speed errors limit the minimum bandwidth of filters that can be used when making analog
amplitude measurements. A tape flutter of 0.2% becomes a frequency variation of 40 Hz on a
20 kHz signal. Unless the analysis filter is very flat across the signal bandwidth, tape Autter
will be translated into a corresponding amplitude modulation of the signal.

5. Typical Trimpi phase changes, around 1 ps, are about the same size as the noise in phase
measurements made with the present digital analysis system, as we will see below.

Figure 3.3 shows magnitude-phase plots of a signal from the Siple Station VLF iransmitter as -

received at South Pole Station. These data were used by Carpenter et al. [1985] to evaluate the
Siple transmitter as a potential tool for Trimpi studies. The top half of Fig. 3.3 shows magﬁitude
and phase data without complex spectral averaging. The bottom half shows the same data with
100 ms averaging. There are at least five major Trimpi events shown in Fig. 3.3. In this particular
case, f-i spectrograms show that each event is preceded (and caused) by a whistler.

Figure 3.3 certainly does demonstrate the usefulness of the Siple Station VLF transmitter as
a beacon for Trimpi studies. The events seen here show phase advances (decreases in phase path

length) of up to 15 us and amplitude dips of up to 3 dB. Each event develops uniformly during

an interval of 2 s, and decays more or less exponentially with a time constant of about 7 5. These
events are particularly large and well defined. Whether their size is due to the low frequency of the
transmitter {(at 3790 Hz less than one-fifth that of the typical VLF station), the relatively simple
mode structure of the sub-ionospheric path from Siple to South Pole, or just a lucky circumstance,
is unknown. '

Current Limitetions. However, Fig. 3.3 alsc points up the limitations of the current digital
analysis system for making Trimpl measurements from broadband field recordings. Remember, this

is especially good data. The amplitude and phase perturbations are large (3 dB vs. the usual 1 dB,

and 15 ps vs. I ps). This is a continuous and not a synoptic recording, so signals of long duration are
‘available. The transmitter frequency, 3970 Hz, is below the stopband frequency of any interference-

~ elimination filters in the receiver at South Pole Station (which is not bothered much by interference

anyway). This frequency is also well within the bandwidth of the tape recorder so fidelity is not a
problem. The signal is strong. The level of spherics and local interference is low so the signal-to-
noise ratio is good. The pilot tone is recorded at its proper level and quite clean. Even so, the noise

"in the unaveraged output is high. The magnitude trace shows a noise level of about 0.4 dB rms, and
the phase trace noise of about 1 us rms. ‘ '

Averaging, as shown in the bottom of Fig. 3.3, decreases the noise of the phase trace consid-
~ erably, to about 0.3 us rms. Spherics affect the phase randomly, and averaging smooths the phase

trace quite nicely. However, it does little for the magnitude trace. Spherics seem to-cause blocking

PR
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" Figure 3.3. Magnitude-phase plots of a 3790 Hz transmission from Siple as received
at South Pole showing Trimpt events (BW = 40 Hz, Pypan = 1/4 rev-= 66 ps). ‘Top half:
no spectral averaging. Bottom half: averaging time constant 75,4 = 100 ms. Whistler-
induced ¢lectron precipitation into the lower ionosphere causes the sudden amplitude and-
phase perturbations of at least five Trimpi events. Spectral averaging improves the phase
plot but not the magnitude plot. Bottom half after Carpenter et al. [1985].
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of the signal with the result that the magnitude trace decreases when a spheric occurs, and averag-
ing biases the trace toward these dips and leaves it still rather ‘noisy. The reason for the blocking

by spherics in this case is not entirely clear. The analog tape was played back and digitized at a
level somewhat lower than usual to eliminate any clipping during the sampling process. Even S0,
an f-f spectrogram shows some intermodulation from spherics on both the 9 kHz pilot tone and the
Siple signal, possibly indicating tape saturation. ‘

The record shown in Fig. 3.3 contains the best examples. of Trimpi events I have studied with
the digital analysis system, primarily because of a strong sub-ionospheric signal at a frequency well
within the bandwidth of the analog tape deck recorded at a site with low noise. Yet still the events
stand out only because they are so large. I have never had much success trying to measure Trimpi
phase changes on recorded signals above 10 kHz, mostly because of poor signal-to-noise ratio. For
instance, I have analyzed recordings of Omega Argentina and NAA (at 17.8 kHz) made at Palmer
Station in 1978. Noise in the phase plots is such that the minimum observable phase change is about
2 ps. This, of course, is bigger than the typical Trimpi event at Palmer. Even with strong recorded

signals, residual timing errors when correcting data for tape wow and flutter seem to be a few tenths
of a microsecond. Thus even in the best of cases the current digital analysis system can be only

marginally useful. I predict that the measurement of Trimpi events, particularly the measurement -

of phase, will continue to be an area of VLF research where special-purpose equipment in the field
outperforms general-purpose analysis equipment back in the laboratory.

3.3 Duct Motion from Slow Whistler-Mode Phase Changes

Linear Whistler-Mode Propagation. Signals often propagate on whistler-mode paths with little
apparent distortion. These signals have received little attention at Stanford compared to those
' showing amplitude growth, emission triggering, and other non-linear effects, examples of which we
‘will see in Chapter 4. I doubt that we even know what fraction of the time undistorted signals
can be heard. Yet these most basic of whistler-mode signals have their own allure and carry some
surprising information about the paths they traverse. '

Figure 3.4 shows signals from the Siple Station transmitter as received at Roberval during a
time of linear propagation. The signals include constant-frequency pulses and ramps with slopes of

+500, 1000, and +2000 Hz/s. Signals were transmitted from 2030 to 3030 Hz, but those below 7

about 2300 Hz are too weak to be seen. This is due mostly to a fall-off in transmitter power
and antenna efficiency at lower frequencies.” {These signals were from the older “Zeus” transmitter
whose power dropped rapidly with a decrease in frequency.) However, while these signals propagate
without distortion through the magnetosphere, there may still be some linear amplification due to

wave-particle interactions; our knowledge of the input field strength and our models of ionosphere- -

magnetosphere signal coupling are not accurate enough to rule this out. If linear amplification
is occurring, some of the fall-off below 2300 Hz may be due to decreased magnetospheric gain at
lowet frequencies. The local time at Roberval is just after dawn and sub-ionospheric propagation
1s good—seven of the eight Omega transmitters can be heard at 10.2 kHz. Local interference from
power lines includes odd- numbered harmonics of 60 Hz up as ‘high as 6540 Hz, the 109tk harmonic.
A high-pass filter was used at the receiver to attenuate power—lme interference below 1.5 kHz but
some is still present. The pilot tone is at 1 kHz.

Figure 3.5 shows magnitude-phase plots of some two-second constant-frequency pulses received

at this time, including the last pulse in Fig. 3.4. Judging by the plateaus on the rising edge of the
magnitude plots, there are at least three paths of propagation with different group delays. Each
pulse was sent when the clock read xxxx:x0 seconds, so pulse group delay can be read directly from

i

[

e —

oo

[IRSE—

P——




91

ROBERVAL ~ 3/17/77 1238 UT

- a3 At S

i

T ——
F dhnr
~
Aoy b e d

e
sy
e ok
W T I
e ey
T A A el
sy

TNt

Tadd
"y e

AT T e
= i,

R Tt

T

L o i

+

4
1238:50 1239:00
Figure 3.4. Spectrogram and gray-scale phase plot (f; = 10 Hz, BW = 20 Hz,
: Fipan = 1 rev) of signals from the Siple Station transmitter received at Roberval with
_ linear propagation. Constant-frequency pulses and frequency ramps are received without
; apparent distortion. Local power-line interference extends up to 6540 Hz. Seven of the

eight Omega stations are seen at 10.2 kHz.
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: Figure 3.5. Magnitude and phase plots (BW = 20 Hz) of 2-second pulses at 3030 Hz
from the Siple transmitter, including the last pulse from Fig. 3.4. Pulses show a Doppler
shift Af from —0.10 to —0.20 Hz mostly due to a gradual increase in the length of the
magnetospheric path. Changes in Af from pulse to pulse are due to changes in the electric
field E that causes path drift. Pulse at 1239:22 after Paschal and Helliwell [1984). . I
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the time scale. (The error in time between the clocks at Siple and Roberval was at most a few
milliseconds.) Paths show group delays of 2.05, 2.10, and 2.15 seconds. The strongest signal is the
last one to arrive; it dominates all the others.

_ ‘Before we discuss Doppler shifts and duct drift, let me mention two other features of the pulses i in
Fig. 3.5—ripples in magnitude and phase. First, the maggitude plots all show a ripple in amplitude
at a frequency near 11 Hz reaching about 2.5 dB p-p by the end of the pulse. As mentioned in

* Paschal and Helliwell [1984], this ripple is similar to (though smaller and more rapid than) the

pulsation phenomenon seen by Bell and Helliwell [1971] on whistler-mode signals from station NAA.
The pulsations cannot be caused by multipath beating since this would require one signal to be offset
by 11 Hz from the transmitted frequency, a value much larger than is ever seen with non-growing
signals. It is possible that all the signals seen in Fig.s 3.4 and 3.5 are linearly amplified by wave-
particle interactions, though we see no evidence of the temporal growth associated with non-linear
amplification (cf. Sec. 4.1). A possible cause of the amplitude ripple mlght be inherent oscillations
in the linear amplification mechanism.

Second, the phase plots in Fig. 3.5 also show ripple. There is a fairly steady ripple at 20 Hz
and a somewhat irregular ripple at a lower frequency. The 20 Hz ripple in not a natural feature
but an artifact of the analysis. It is caused by contamination of the 1 kHz pilot tone with a weak -
power-line signal at 1020 Hz (the 174k harmonic of 60 Hz.) Beating between the two signals causes
a fluctuating timing error when the pilot tone phase is measured to calculate the data time and the
reference phase at 3030 Hz. (This affects only the phase plots; it has no effect on the magmtude
plots.)

An interesting feature of the 11 Hz magnitude ripples is the type of sideband structure in the
frequency domain associated with them. That is, are there symmetrical sidebands both 11 Hz above
and below the transmitted frequency, or perhaps only an upper sideband, or some combination
of the two. To determine this we need to know the size (and timing) of any 11 Hz phase ripples
(see Sec. 4.4). Unfortunately, any 11 Hz phase ripple present is masked by the 20 Hz ripple from
the contaminated pilot tone, and not much can be said about the nature of the 11 Hz sidebands

from Fig. 3.5. This question might be answered directly by a narrow-band f-1 spectrogram made

with the standard analog spectrum analyzer, provided that there isn’t too much tape flutter. {(The
current digital analysis system does not have filters sufficiently narrow to resolve 11 Hz sidebands
in a spectrogram.) '

Doppler Frequency Shift and Changes in the Phase Path. Note that all of the pulses in Fig. 3.5
show a small decreasc in relative phase at a rate from —0.10 to —0.20 rev/s indicating that the
received frequency of the pulse was 0.10 to 0.20 Hz below the transmitted frequency of 3030 Hz.
This is not an error in the transmitting or recording equipment but a real effect, a Doppler shift in
frequency It indicates that the phase length of the path of propagation is gradually i increasing. In
the rest of thls section we will examine some of the possible causes of this effect.

For ducted propagation in the magnetosphere the refractive index p is given by [e.g., HeszeH,
1965, Ch. 3] :

,1_[1 _fN_]/%__fN__ | (3.5)
f(fu —F) 2 fy — iz’ )

where

e N V2
v = — [ ] = 8.98N/? [Hz-m3/2) o (3.6)

21 | egm,
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is the plasma frequency, which depends only on the local number density of electrons N, and where

Be

— 1nl0 .
Sams = 280 X 101°B [Ha/T] (3.7)

fiu =

is the electron gyrofrequency and depends only on the local magnetic field flux density B. In the
above, e and m, are the charge and mass of the electron, and € is the permittivity of free space.
For a 3 kHz wave at the top of a duct on a field line at L = 4, typical values are fi = 150 kHz and
Jo = 13.7 kHz, giving a refractive index g = 26.5. Note that the refractive index at the top of the
path is large and the approximation in Eq. (3.5) is quite accurate.:

The phase delay £, over a path S is given by

1 fn .
tpz s;;-ds- c./pdSN [g"wds (38)

where v, is the phase velocily of the wave and ¢ the velocity of light. For the sub-ionospheric part

of the path p is close to 1, and the small contribution to the phase delay from this part depends

only on the distance travelled. In the 1onosphere and magnetosphere y is generally large, and the
contribution to the phase delay here depends not only on the length of the path but on the amount

and distribution of plasma N and the strength of the magnetic flux densn:y B (the latter a known

function if we assume a dipole magnetic field). As it happens, the total phase delay is determined
primarily by conditions in the magnetosphere near the top of the path where the gyroftequency is
lowest and p is largest. :

Phase Path’ Changes from Duct Drift. McNeill {1967] studied whistler-mode signals from VLF
station NLK (Jim Creeck, WA) at 18.6 kHz as received in Wellington, N7, and found frequency shifts
of about 0.1 Hz, similar to those seen in Fig. 3.5. In this case signals were only received at night,
and.showed a positive frequency shift indicating a decrease in phase path length. McNeill [1967]
considered possible changes in the sub-ionospheric path, the path through the ionosphere from 70
to 1000 km altitude, and the magnetospheric path. He concluded that the effect must be’ occurrmg
predominately in the magnetosphere, presumably from motion of the duct..

Thomson [1976a] studied further the problem of signals from NLK heard in New Zealand. As he
points out, there are three factors that could affect the phase delay. First, the magnetic field B along
the path could change, affecting the gyrofrequency fy and thus the refractive index p. However, this

is not the case, at least in general, because it would require magnetic activity much higher than is .

. usually observed on the ground. Second, the electron density N could change, affecting the plasma
frequency fy and thus p. Finally, the path S could move, affecting the domain of integration of
Eq. (3.8). By comparing the change in phase delay with the change in group delay (signal travel
time, which has a different dependence on N and B) he was able to show that the slow decrease in
path length was due to a duct drifting inward to lower magnetic latitude while the total electron
content along the path (tube content) remained constant. This was true, at least, for nighttime
. paths during magnetically quiet conditions.

The inward motion of the whistler-mode duct described above is caused by azimuthal electric
fields in the magnetosphere which are mapped up from the ionosphere. These electric fields induce
E x B drift of the plasma in the duct. An east/west azimuthal electric field causes an outward/inward
duct motion. (Radial electric fields would cause a duct to drift in longitude, but this is much harder
to measure.) Park and Carpenter [1978] review the subject of drift and electric fields, particularly
fields revealed by whistler measurements. In this technique, the nose frequency of whistlers in a
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particular duct are monitored. The nose frequency is proportional to the gyroffequency fy at the
top of the path, and thus reveals B and the latitude of the duct. Changes in nose frequency over
time show the radial motion of the duct and from this is inferred the azimuthal electric field.

" Instead of whistlers, whistler-mode signals from VLF transmitters can be used to measure
magnetospheric clectric fields. Frequency shift can be measured directly from a phase plot such as

in Fig. 3.5, giving an instantaneous value of azimuthal electric field. Thomson [1976b] has used the

nighttime NLK data and measured westward azimuthal fields around 0.2 mV/mon pathsat L = 2.3,
similar to those found by other techniques. The Siple transmitter can be used in a similar fashion
for ducts at higher latitudes (L = 4), and on daytime paths as well. Besides giving instantaneous
measurements of electric field, man-made signals may be usable at times when, because of low
lightning activity, tliere are no whistlers.

However, the phase of a constant-frequency signal as in Fig. 3.5 cannot be used to monitor more
than one dominant path (at least if the paths have similar drifts), unlike whistlers where several

ducts can be monitored because of their different group delays. If multiple paths are to be watched

at once, a more comp!:cated scheme of signal modulation and. detection 1is needed. For instance,
Thomson [1981] describes a technique that uses cross-correlation and filtering of MSK-modulated
signals from NLK and which can measure both the group delays and Doppler shifts (not phase
delays) of whistler-mode components on multiple paths. Unfortunately, the technique averages data

© over 15-minute intervals and cannot see more rapid changes. The problem seems to be in getting
sufficient signal-to-noise ratio for components on individual paths and sufficient rejection of the _
strong sub-ionospheric signal. A similar technique should be possible with the Siple transmiiter. In.

fact, it might be casier in some respects since there is little (if any) sub-ionospheric signal to-reject
at the northern end of the path, and group delay correlations are simpler when we have complete
knowledge of the timing of the transmitted signal. Still, the achievable time resolution will be limited
by the strengths of individual path components and is unlikely in multipath cases to be as good as
that in the predommately smgle—path examples shown in Fig. 3.5 and below in Sec. 3.4.

Phase Path Changes from Plasma Fluz. The studies of Dopplér—shifted whistler-mode signals
mentioned above concentrated on measuring duct motion and the magnetospheric electric fields that
cause it. However, we see from Eq. (3.8) that a change in electron density N can also change the
length of the phase path through its effect on the plasma frequency fy. We might expect that N
will change with time, even in the absence of duct drift due to electric fields and the convective

" motions caused by magnetic storms, because of the flow of plasma between the ionosphere and

magnetosphere. During the day, solar irradiation ionizes plasma in the uppér atmosphere which then
diffuses up along magnetic field lines into the magnetosphere. During the night, plasma diffuses back
from the magnetosphere to sustain the the ionosphere which would otherwise be depleted through
the recombination of ions and electrons. We thus expect, in the .absence of other factors, that the
electron density NV at a given location in the magnetosphere will increase.during daylight hours and
decrease at night. The question is to estimate how much this will affect ‘the phase delay compared
to, say, duct drift. In the following discussion we will find that plasma fiux into the magnetosphere
might account for at most 0.043 Hz of the 0.10-0.20 Hz Doppler shift seen in Fig. 3.5.

It is convenient here to introduce the concept of tube content Nr, the total magnetospheric
electron content of a tube extending along the magnetic field from the top edge of the ionosphere
to the equatorial plane. The tube is conventionally taken to start at an altitude of 1000 km and to
have there a cross-section of I em®. Above 1000 km altitude the cross-section of the tube increases
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in inverse proportion fo the magnetic ﬂux. density, and so we can express the tube content as

equator B '
Ny = / =090 py s (3.9)

10600 km

where Bjyggo is the field at the 1000 km point.*

The importance of Nr is as follows. From Eq. (3.6) we know that the plasma. frequency fu is
proportional to N1/2. If the refractive index g is large so the approximation of Eq. (3.5) is valid,
then 4 is also proportional to N'/2. For a given path, we see from Eq. (3.8) that the phase delay ty

is proportional to f N1/2ds. Finally, if the relative density of electrons along the path retains the

same form (as a functlon of 3) as plasma diffuses between the ionosphere and magnetosphere, then

' we see that tp NT In particular, as Andrews et al. [1978] have noted, from this we can calculate
the rate of change of phase delay for a given plasma. flux as

dtp ip dNp

i O | (3.1‘0)'

dt = 2Np dt

In order to apply Eq. (3.10) to the pulses shown in Fig. 3.5 we need to know the total phase
delay ¢, at 3030 Hz. When we examine the relative phase in Fig. 3.5 we can see changes in tp, but
there is no direct way to measure its total value.f However, we can measure the signal travel time

or group delay t,. This is the time it takes a signal (a pulse, say) to travel from the transmitter to
g [ tg

the receiver, and, as mentioned above, is 2.15 s for the pulses in Fig. 3.5. In Appendix B it is shown

that the ratio tp/ty depends, to a close approximation, only on the ratio of the signal frequency to
the equatorial gyrofrequency fy., for the given path, and not on the path latitude or tube electron’

content. Thus, knowing the group delay ¢, and either the nose frequency ('which is about 0.37 fyeq)
or the path latitude (which also determines fi.,) we can find the total phase delay tp. In the case
of the signals in Fig. 3.5 we will assume the path to be at L = 4.2, typical of Siple signals, which
gives. freq = 11791 Hz. The signals at 3030 Hz are then at 0. 26fgeq, and from Appendix B we find
tp/ty = 1.69, giving a phase delay of ¢, = 1.69 x 2.15 = 3.63 s.

The tube content Ny can be estimated from the group delay at the nose frequency using the
~ techniques given by Park [1972). The nose frequency for a duct at L = 4.2 is 4363 Hz. Calculations
show that if the group delay at 3030 Hz is 2.15 s, then the group delay at the nose frequency (f,) is
2.06 s. From Park {1972] (ignoring corrections for ionospheric dispersion) we find the tube content
to be Np = 3.8 x 10*3 electrons/cm?.

Finally, we need an estimate of the rate of cha.nge of tube content dNy/dt. Park {1970], using
whistler group delays to monitor tube content over a period of several days in magnetically quiet
. conditions, determined that the ubward flux across the 1000-km level for paths in the range L = 3.5~
5 was about 3 x 10% electrons/cm?-s in the daytime (and about 1.5 x 108 electrons/cm?-s downward
at night). At the time of the pulses shown in Fig. 3.5 both ends of the path are in morning suniight.

* There is some confusion in the literature over the length of the tube. Andrews et al. [1978] and
Andrews [1980] consider the tube to extend from one hemisphere to the other, which gives a value
of Nr twice that in Eq. (3.9). T have adopted the convention used by Angerami [1966] and Park

[1972]. .
T We can imagine sending a signal whose frequency starts at zero and slowly increases until it

reaches the frequency of interest. The difference at that time in signal cycles sent from the trans- -

mitter and those counted at the receiver is the total phase delay (m revolutions) a$ that frequency.
Unfortuna.tely, this is not a practical method.
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However, the solar elevation angles are not especially large, 15.5° at Roberval (48.4° N, 72.3° W).
and 4.5° at Siple (75.9° S, 84.2° W), and the rate of photoionization (proportional to the sine of
the solar elevation) is probably less than its average daytime value. Still, we will estimate the flux
of plasma into the magnetosphere from each jonosphere as 3 x 10% electrons/cm?-s, realizing that
this probably overestimates the true state bf affairs and will give us an upper bound on the rate of
‘change of ;. .

Using the above values in Eq. (3.10), we estimate the rate of change of phase delay t, due to
the flow of plasma into the magnetosphere to be dt;/dt = (t;/2Nr)dNy/dt = 3.63 x 3 x 103/(2 x
3.8 x 10'3) = 1.43 x 10~° s/s. For a 3030 Hz signal this gives a frequency offset of —0.043 Hz. As
noted above, the actual plasma flow may be less and the Doppler shift it causes may be smaller.
However, even comparing the upper bound of —~0.043 Hz to the —0.10 to —0.20 Hz shifts seen in
Fig. 3.5, we must conclude that changes in electron density can account for onlj a small part of the
changes in phase delay that are actually observed. '

With knowledge only of the change in phase delay with time we cahnot_coﬁclusively separate

those changes due to duct motion from those due to plasma flux, though the latter are probably
of minor importance as we have just seen. If we have knowledge of the change in group delay
with time as well, then we might hope to separate the iwo because of their different effects on
t, and {,..* Andrews et al. [1978] and Andrews [1980} used the New Zealand NLK data to try
to measure the flux into the nighttime ionosphere, and found downward flows on the order of 1-
2% 1078 electrons/cm®-s. While the results are consistent with those of Park [1970] (who used the
whistler method), the uncertainties are nearly as large as the measured values, and the technique
is of marginal value. The errors they encountered were primarily errors in measuring changes in ¢,
when averaging over intervals of less than 90 minutes, and errors integrating Af to get changes in
t, over time intervals longer than 90 minutes. Using relative phase ¢ instead of Doppler shift A f, as
we did in Fig. 3.5 above, may alleviate the latter error (though the data processing would have to be
grea,fly streamlined, perhaps by measuring phase directly at the receiver). However, the problem of
accurately measuring changes in group delay remains. Andrews’ [1980] error in measuring changes
in t; was about £1.5 ms. For comparison, the error in estimating (relative) ¢, from Fig. 3.5 is 150

times better, about 10 ps (0.03 rev at 3030 Hz). This suggests that given a better signal we might.

be able to improve the measurement of ¢, as well. Perhaps some scheme can be invented that uses
the phase of a broad-band signal, say a series of frequency ramps spanning a range of 1 kHz, to

directly measure changes in t,.

* As mentioned in Appendix B, a change in tube content N affects the phase and group delays
in such a way that the ratio t; /¢, remains constant {(at least for paths inside the plasmapause, and
assuming the relative distribution of N along the path remains the same). A change in duct position
due to radial motion, on the other hand, changes the equatorial gyrofrequency fi.q and, as Fig. B.2
shows, changes the ratio ¢, /¢,. ' -
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3.4 Correlation of Phase Changes with Magnetic Micropulsations

In this section we will compare equatorial duct motion, as deduced from phase path measurements,
with variations in the magnetic field at the base of the duct. To do this we need to monitor the phase
of a whistler-mode signal for a relatively long time, for many minutes at least, instead of just catching
a glimpse here and there as from the short pulses in the previous section. The obvious approach is
to transmit a constant-frequency whistler-mode signal and measure its relative phase (and the local
magnetic field) at the other end of the path. Unfortﬁnate]y, a single-frequency signal is very likely

- to show amplitude growth caused by wave-particle interactions. The phase advance associated with
this growth (described in Section 4.1) will completely mask any smaller phase changes due to duct
motion. However, if we transmit two signals simultaneously about 20 to 30 Hz apart, then we find
that each will tend to suppress the growth of the other. The result in this case is often a stable
signal without growth-related phase advance, suitable for duct motion studies. We may still see
other effects of wave-particle interactions, such as sideband generation, but these do not appear to
affect the phases of the two transmitted components.

Two-Tone LICO! Formal. The spectrogram in the top half of F;ig..3.6 shows the start of a
LICO1 transmission from the Siple transmitter as received at Roberval. The LICO1 (LIne COupling,
version 1} format contains 10.5 minutes of two-tone transmission with 30 Hz separation, followed

by some 2.5 minutes of LICO-type format (10-second segments with single tones and tone-pairs-

with various separations}. The important section for us is that first 10.5 minutes. The iwo-tone
signal starts at 1606:03.1 (1 second late?) and continues for 10m29s until the LICO format begins at
1616:32.1. The two-tone signal fades in and out with a 10 to 30-second period, but it is always visible.
Though the signal is strong, it does not show any spectral broadening or trigger any emissions,
characteristics associated with particle-induced growth and phase instability. There are frequent
whistlers (somewhat éompressed in Fig. 3.6) with one-hop delay times from 2.1 s up (also weak
ones from 2.0-2.1 s) and nose frequencies near 3.5 to 4 kHz. Some of these are seen to generate
precursors (see Sec. 4.5.3) on the LICOL1 signal (for example, at 1607:34), but these cause only a
momentary perturbation. (The spectrogram in Fig. 3.6 also shows a weak 1.5 Hz pulsation; this
is an artifact of the analysis due to aliasing of the 30 Hz beat in the signal by the output plotting
time 516 = 0.1906 5.) We will assume that the Siple signal is propagating on the same path as the
first strong component of the nose whistlers. Using a nose frequency of f, = 4000 Hz and a nose
group delay of ¢, = 2.1 s, we find from Park [1972] a path L-value of L = 4.32 and a tube content
of Nr = 3.5 x 10'3 electrons/cm? (or equatorial density N, = 280 electrons/cm®, a typical value
_for magnetically quiet conditions). .

The gray-scale phase plot in the bottom half of Fig. 3.6 shows the phase behavior at the
beginning of the LICO1 signal. Both the 3950 and 3980 Hz components in the transmitted signal
show the slow phase changes characteristic of duct motion. The maximum Doppler frequency is
about £0.5 Hz. Both transmitted components show similar, though not identical, phase behavior.
Each signal shows periods of fading, sometimes with 1/2-rev jumps in phase. A good example is at
1607:37 on. the 3980 Hz component. The fading and phase jumps are probably caused By beating
between signals propagating in different ducts. Note that the amplitude nulls and phase jumps occur

at different times at the two frequencies. We will use this fact later on to remove the phase effects

of fading. There is a small blip in the phase of the 3980 Hz tone due to the whistler precursor at
1607:34, but its effect is only momentary. '

There are weak sidebands 30 Hz below and above the transmitted signals (at 3920 and 4010 Hz)
present through most of the 10m29s two-tone transmission. Weaker sidebands 60 Hz above and below
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ROBERVAL 9/2/83 1606 UT
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Figure 3.6. Spectrogram and gray-scale phase plot (ff = 10 Hz, BW = 20 Hz, P,pan =
1 rev) of a two-tone LICO1 transmission from Siple Station as recewed at Roberva.l The
LICO1 tones at 3950 and 3980 Hz begin at 1606:03 UT. The transmitted tones show phase

changes due to motion of the magnetospheric path. Also present are sidebands at 3920 and
4010 Hz, and loca.l power—lme interference near 3900 and 4020 Hz.
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(3890 and 4040 Hz) are sometimes also seen (though not in Fig. 3.6). The phases of the sidebands
track those of the main signals. Sidebands indicate that some non-linear process is occurring, and
are evidence of wave-particle interactions. There are also signals at 3900 and 4020 Hz. These are
power-line signals at the 65¢h and 67tk harmonics of 60 Hz picked up. locally at the receiver, and
will not interfere with the analysis. As expected, théir phase variations have no correlation with the
Siple signal phases. "

FBuvidence Against Parlicle-Induced Phase Effecls. Before we proceed, we must be sure that
the phase changes we see in Fig. 3.6 are due only to changes in the effective length of the path
of propagation (the effect under study) and are not corrupted by spurious effects due to wave-
particle interactions. What would such spurious effects look like? The most common evidence of
wave-particle interéctions, as we will see in Section 4.1, is the growth in amplitude of an input
signal accompanied by a simultaneous advarice in relative phase. Growth and phase advance almost
invariably occur together. Amplitude decline also seems to be associated with phase retardation,
but the evidence here is not as complete. (Examples of the latter are less common because growing
signals tend to terminate by generating emissions rather than by slowly dying away.)

Do we see any correlation between amplitude and phase in Fig. 3.6 that might indicate growth-
related phase effects? The answer is no. Chang"es in amplitude seem to occur independently of
changes in phase (except for the rapid phase changes due to fading that always occur at amplitude
nulls}. "We see amplitude growth when the relative phase is retarding, as at 1606:20 and 1606:40,
as well as when the relative phase is advancing, as at 1607:25. Those overall changes in phase
that occur simultaneously on both transmitted signal components seem to be unrelated to signal
amplitude and therefore are likely to be due only to changes in the path of propagation.

However, the phase variations of the two input signal components are not identical. While the

common large-scale phase changes may not be due to particle effects, the possibility remains that
the differences in behavior at the two frequencies are still due to wave-particle interactions. This

wouldn’t be as serious, but it might still color our interpretation of phase as a measure of path
length. To test this possibility I analyzed the record by plotting the amplitude and phase of the
3950 Hz component while tracking on the 3980 Hz one instead of the pilot tone (plot not shown).
Tracking on the upper signal removes those phase variations common to both components so the plot

- at 3950 Hz shows only the differential phase behavior. If there were any residual particle-induced -

phase effects we might expect this differential phase to be correlated with the difference in signal

amplitudes. In fact, what I found is as follows: The transmitted signals fade slowly, with a periad-

of § s or more, often independently on each frequency, sometimes with deep nulls. The differential
phase (i.e., #ags0 — ¢3930) shows changes around 1 rev, sometimes correlated with the difference in
amplitudes at the two transmitted frequencies (consistent with phase advance caused by the growth
- of one signal with respect to the other) but just as often not correlated or even anti-correlated. [
conclude that the differential ‘phase changes are not due to differential growth but most likely are
just the result of multipath interference.

Removing Fading' and Other Artifacts. The next step in the analysis is to extract the phase
information from the LICOL1 signal and put it in a form suitable for further processing. To do this,
the Eclipse spectrum analysis program was run in its “XOUT” mode. In this mode the normalized

and averaged spectral data {({V}} from Eq. (2.47)) are writtén to an output file as a series of 16-bit -

integers instead of being scaled and plotted. Two filters were synthesized, at 3950 and 3980 Hz, each
with a 3rd-order window response and a 3-dB bandwidth of 20 Hz. One output point (a complex
number in (z, y) format) was written for each frequency every 250 ms. (The data segment length was

P—— -

i

[

L

s it




101
NT =80 ms. A data step time ¢,1ep = 41.666 ms was actually used to overlap segments by almost
50% and ensure accurate tracking of the pilot tone. Only every sixth analyzed segment was output.)
No averaging was used. The magnitude A = (z? + y2)/? of each filter output at a given time is
the amplitude of the corresponding component, and the phase ¢ = arctan(y/z) is the relative phase
of that component, revolutions at the center frequency of the filter having already been subtracted.
At this point, the spectral data were transferred to a Hewlett-Packard Vectra computer for further
processing. - :

Figure 3.7 shows the relative phases, ¢3959 and $3980, of the LICO1 signal as filtered at 3950 and
3980 Hz, as well as the combined phase ¢, (labeled “Weighted Sum”) derived from them, calculated
as follows:

1. Let (z1,31) and (z2,y2) be the outputs of the filters at 3950 and 3980 Hz, respectively, at a
given time. Let A; = (zf + 4])'/? and ¢; = arctan(y;/z,)/27 be the magnitude and phase

(in revolutions) of the first filter, and similarly with Az and 3. Let ¢f and ¢} be the previous

phase values (250 ms eazlier). ' '

2. Calculate the finite differences d¢y = ¢; — ¢y and dgp = ¢y — $%, representing the advance
in relative phase (in revs) from the previous output sample for each filter. These differences
will normally be quite small, since the signal phase does not change much over an interval of
250 ms. We accomodate the movement of signal phase across the ends of the range of our arctan
function by incrementing or decrementing the difference d¢; by exactly one rev to keep it in the .
range —0.5 < d¢; < 0.5. That is, as ¢; increases 0.8, 0.9, 0.0, 0.1, we calculate d¢; as 0.1, 0.1,
0.1, and not 0.1, —0.9, 0.1.

3. Calculate the filter relative phases including whole revolutions by integrating the differences as:

$3950 = Pig50 + do1 -
#3980 = P390 + diba, (3.11)

where ¢4, and ¢hq5, are their previous values.

4. Calculate the combined phase ¢. as the advance of phase at each frequency weighted by the
amplitude of that component. That is, let

Ardé) + Aqgdps

o= ¢+ A (3.12)

where ¢ is its previous value.

The calculation of the relative phases ¢agso and g9 in Eq. (3.11) above is similar to the whole-
revolution phase accumulation during spectrum analysis described in Sec. 2.5.7, though in the present
case we will have some insignificant round-off errors whereas the algorithm in Sec. 2.5.7 was exact
(whole and fractional revolutions being processed separately). The results are a series of samples
every 250 ms running from an initial value of § in both cases to around —90 revs at the upper -
frequency and —100 revs at the lower at the end of the two-tone transmission. These results are
plotted modulo 20 revs in Fig. 3.7. o .

The ¢39s0 and ¢zes0 plots in F ig. 3.7 contain artifacts -o_f several kinds. Those marked “F” are
due to fading, and sometimes include a 1/2-rev jump in phase, at other times just a momentary
change. Fading jumps occur as the amplitude of a signal component goes through a null, and happen -
at different times at the two frequencies. Now we can see the utility of the combined phase ¢, given
by Eq. (3.12). Since fading jumps occur at amplitude nulls, the combined phase, which integrates
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Figure 3.7. Phase of the received LICO1 signal. The plots at 3950 and 3980 Hz are the
actual signal components (BW = 16 Hz, Pypapn = 20 rev). The plot “weighted sum” is the
combined phase ¢, corrected for fading, data breaks, and tracking errors. Data features: E
emissions; F fading; S spheric; T pilot tracker error; W whistler and/or whistler precursor;’
WWYV time signal break; break 20 s break in data.
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phase differentials weighted by amplitude, will tend to follow the phase of the stronger component
and not show the effects of fading. The combined phase ¢, should give us a clearer, less noiéy picture
of actual changes occurring in the magnetosphere. We can, for practical purposes, regard ¢, as the
relative phase of a single-frequency signal, at the mean frequency 3965 Hz, which has propagated
on a single whistler-mode path without distortion by wave-particle interactions.

The features marked “S” and “W” are phase jumps due to spherics and whistlers or whistler
precursors. To the extent that these are more detrimental to weaker signals their effects will also be
reduced in the combined phase. The effect of one spheric, at 1611:44.5, was removed by hand from
¢ by forcing the phase to remain constant for one sample (250 ms) at that time. Two pilot tone
tracker errors, labeled “T” at 1613:16.5 and 1615:46.5, were similarly explicitly reinoved.

"The features marked “WWV?” are eight-second breaks in the data during which the audio signal
from a shortwave receiver is recorded. There is no LICO1 signal on the tape during these intervals
and the phase behavior observed is spurious. There is also a mysterious 20-second interval of missing
data labeled “break.” The cause of this omission is unknown, but it may be due to an equipment
malfunction or an operator error that momentarily stopped the field tape recorder. Both WWYV
breaks and the missing data interval were removed from ¢, by holding its phase constant for the
appropriate time. This is a simple way to fill.in missing data, of course, but it can also introduce
artifacts. The reader may judge whether a straight line of some different slope, or perhaps a spline
curve, might have better bridged the gaps. '

Finally, the two features near the end marked “E” are emissions from the first two single-tone
segments of the following LICO transmission format. The 10-second segment between then was a
two-tone LICO segment, also at 3950/3980 Hz, and I desired to include it with the preceding data.
I ignored the first set of emissions since they didn’t seem too noisy, and terminated ¢, at the start
of the second set. The total sequence of phase samples ¢, runs from 1606:03 through 1616:52.5.

Magnetometer and Phase Data Compared. Figure 3.8 shows the H and D components of the
earth’s magnetic field as measured by the Bell Laboratories magnetometer at La Tuque, Quebec
(about 130 km south-southwest of Roberval), and the LICO1 combined phase ¢. from Fig. 3.7. H
is the horizontal component in the magnetic north-south direction and D is the component in the
east-west direction. The Z (vertical} component was not available at this time. The magnetometer
data are a series of samples taken ab two-second intervals. Values at quarter-second intervals were
interpolated to match the phase data by assuming that each magnetic field component was constant
during the {wo-second interval centered on the actual sample. The initial value of H in Fig. 3.8
(including the static part of the earth’s field) is 687.8 nT, and the initial value of D is 10.8 nT. The
timing error in the magnetometer data is not known but is unlikely to exceed a few seconds. Timing '
errors in the VLF phase data are at most a few milliseconds and can be ignored.

There are two different types of behavior seen in Fig. 3.8—slow drifting with a scale time of

~ many minutes, and smaller ripples with periods in the range of 20 to 40 seconds. All three signals

show somewhat similar long-term behavior. The magnetic field changes slowly, # increasing and D
decreasing, over a range of about 10 nT, and the VLF phase decreases (phase path becomes longer)
by about 100 rev (25.2 ms), until 1614 UT. At that time, H reverses its behavior and starts to
decrease, and D and ¢, stop decreasing and remain more or less constant. _

Long-term changes in magnetic field strength and VLF phase may or may not have much
connection with each other. We know there are some mechanisms which can cause a change in
phase path length without causing any change in the earth’s magnetic field. For instance, the
change in phase path may represent E x B drift of the duct due to magnetospheric electric fields
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Figure 3.8. La Tuque magnetometer components H and D (10nT = 107 full-scale),
and Roberval VLF phase ¢. (20 rev full-scale). All three signals show small fluctuations
with periods of 20-40 s on top of larger changes occurring over many minutes.

as described in Section 3.3, and need not imply any corresponding change in magnetic field. On
the other hand, the local time at both ends of the magnetospheric path is shortly before noon, and
both icnospheres are in sunlight {solar elevation only 5° at Siple). The lengthening of the phase
path (decrease in ¢.) may merely reflect increasing plasma density in the magnetosphere due to
diffusion up from the sunlit ionosphere, again not connected with magnetic field changes. From
Appendix B we find that a signal on a path at L = 432, at a frequency of 3965 Hz and with a
group delay of f; = 2.1 5, has a total phase delay of {, = 3.23 5. As noted above, the tube content
is Np-= 3.5 x 10'% electrons/cm?®. Using an upward flux dNp /dt = 3 x 10° electrons/cm?-s {Park’s
[1970] typical value) we find from Eq. (3.10) a Doppler shift of —0.055 Hz. This would account for
one-third of the —100 revs/11 min = —0.152 Hz average shift in Fig. 3.8. In any case, we need
more data than that given in Fig. 3.8 before drawing any conclusions about long-term correlations
between magnetic field and path length. R

The faster variations seen in Fig. 3.8 are oscillations with periods of 20 to 40 seconds and peak
values of one or two nT/revs.- The magnetic variations are classed as Pc 3 micropulsations.* Over

* Regular pulsations are classed according to their periods as follows [Jacobs et al., 1964]:

Pc1 0.2-5 seconds
Pc 2 510 seconds
Pc3 10-45 seconds

Pc 4 45-150 seconds
Pc b 150—600'sec0nds_
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Figure 3.9. La Tuque magnetometer components H and D, and Roberval VLF phase
$. from Fig. 3.8, high-pass filtered by subtracting a running average with a 32 s time
constant. Note the change in scale to 4 nT/8 rev full-scale. The long-period variations
have been filtered out and the Pc 3 micropulsations are more obvious.

the short period of the micropulsations, plasma flow between the ionosphere and the magnetosphere -
is negligible and phase variations on this time scale cannot be due to changes in tube content.
However, micropulsations seen on the ground correspond to changes in magnetic field extending up
into the magnetosphere. We would expect these to affect the phase delay.* Andrews [1977] has
studied this question and finds that phase length will be affected by radial motions of the duct near
the equator caused by micropulsations, but will be unaffected by azimuthal motions. An inward
displacement of a duct will give an increase in the north-south magnetic field at the base of the duct
and a decrease in phase path length, that is, an increase in relative phase. We thus expect to see a
direct correlation between the north component of field at the bottom of the duct and ¢,.

To eliminate the large, long-term variations that obscure theé micropulsation acﬁvity, all three
data sets were high-pass filtered. The filter used was simple but crude: a block average in a 32-
second interval centered at each sample point was subtracted from that sample. Since the block
average contains mostly low-frequency components, the remainder after subtraction has most of
those components removed. In fact, if the input sequence {r,} with sampling time 7" has a discrete

* This may not be quite as obvious as it seems. For VLT frequencies well below the gyrofre-
quency fy, the refractive index p in Eq. (3.5) is approximately fi /(ffr)!/?, which is proportional
to the ratio (N/B)!/2. This ratio remains constant since plasma remains trapped on field lines
during rapid changes in magnetic field. Changes in phase path are due to changes in duct position
_ rather than just changes in B.
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Fourier transform Xp(f) (Eq. (2.13)), then the filtered sequence {y,} calculated by

Q
1 Z .
I =T 041, o . (3-13)

has a spectrum given by

1 sm[wf(?Q + 17T ]

(2Q+ 1) sin{w fT') (3.14)

YD(f) = Xp(f) {

For (2Q +1)T = 32 s, we find that components with 10-minute periods or longer are attenuated by
46 dB or more, whereas components with periods of 40 s or less are attenuated by at most 2 dB.
(The filter has about 3 dB of passband ripple, not very important in this particular case.}

Figure 3.9 shows the filtered H, D, and ¢, signals. The long-period variations have been
eliminated, leaving only the Pc 3 micropulsations. The signals look fairly complicated, and contain
energy over at least an octave in frequency judging by the various periods involved. There may be
some correlation between the waveforms, particularly between D and &, but how much is not very
clear. The rms values of the signals (from 1606:19 to 1616:36.5) are H = 0.200 nT, D = 0.282 nT,
and ¢, = 0.837 rev (211 us). (Note that the duration of the phase signal has been shrunk by 16
seconds at each end from 1606:03-1616:52.5 in Fig. 3.8 to 1606:19-1616:36.5. Without extending

the original data set there is no way to filter it at the ends since averaging would involve nonexistent

data points.)

In order to better visualize the structure of the filtered signals, the filtered sampled waveforms

were transferred back to-the Eclipse system and f-f spectrograms were made. Figure 3.10 shows

_the results. Each spectrogram is heavily oversampled, of course. Data, segments are overlapped by

about 94%, and almost eight filters are synthesized for each DET filter. We are trylng to display all
possible information from a limited amount .of data.*

~ The remarkable result is that all three spectrograms show similar features. The features ex-
tending below 0.02 Hz down to zero frequency from 1614 to 1616 are remnants of the long-period
variations that have not béen completely filtered cut. These features are strongest in the H and
phase plots, though also present' in the D plot. As mentioned above, there may or may not neces-
sarily be a connection between magnetic field and path length behavior at these lowest frequencies,
though there does seem io be some snmllanty here.

More interesting are the Pc 3 signals above 0.025 Hz (penod < 40 s). Note the similarity ,

between those features in the first half of the phase plot and corresponding features in D and, to a
lesser extent, /. In particular, note that the phase features seem to precede those in D by 20 to 30
seconds. (This is most easily seen by tilting the page and viewing it from the bottom. Successive
rasters in the plot are spaced by tatep =8 8.) There Is a similar correlation between phase and H,
though it is not as strong. -

* Note that with the phase spectrogram we are in the mathematically exquisite position of cal-
culating the Fourier transform of the phase of the Fourier transform of a signal. If only there were
a coherent signal here so we could examine its relative phase. . . .
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Figure 3.11 shows plots of the cross-correlation® of the various filtered signals vs. lag time.
These were made in order to quantify the delay from VLF phase to magnetic field seen in Fig. 3.10.
When the cross-correlations were made, care was taken to use the full length of the sequence of phase
samples (N = 2471) and to lag over the longer sequences of H and D. To facilitate comparison, the
H vs. D plot was made using 2471 samples of I} covering the same time interval as ¢,, even though
more magnetometer data were available. :

Figure 3.11 shows rather little correlation between H and D I found this a bit surprising.
However, hodograms of H vs. D (of both unfiltered and filtered data) show no preferential polar-
ization; indeed, they look quite random. There is some correlation (0.43) between H and ¢., with
phase preceding magnetic field by 18 seconds. There is a stronger correlation (—0.55) between D
and ¢, again with phase leading by 18 s. {The negative sign in —0.55 is not a lack of correlation,
of course. It means that an facrease in 'ch is correlated with a decrease in D, or ¢, is correlated
with —D) There is also a correlation almost as large in the opposite sense (0.52) between +D and
¢ with phase leading by 30 s. I want to emphasize here that the best evidence for the existence
of a correlation between magnetic field and VLF phase is in the spectrograms of Fig. 3.10. The
correlation plots merely quantify this.

Discussion. The spectrograms of the high-pass filtered data in Fig. 3.10 show similar spectral
features in both the magnetic micropulsations and the VLF phase data. The cross-correlation plots
in Fig. 3.11 show that phase changes precede magnetic field changes by 18-30 5. The VLF phase is
most sensitive to conditions (electron density and'magnetic field strength) at the top of the whistler-
mode path where the wave spends most of its time. The magnetometer data, of course, measures
conditions at ground level at one end of the path. At the time of the events studied here the
magnetospheric path was on the dayside of the earth, approaching local noon. ' '

" A simple interpretation is that a disturbance of some kind (possibly a solar wind disturbance
travelling inwards from the magnetopause) reaches the equatorial region of the Siple-Roberval
whistler mode path; there it affects the propagation of the LICO!1 signal from Siple, and then

* Given a sequence of N samples {z,} of one signal, sampled at times nT, and a (somewhat
longer) sequence of samples {y } of a second signal, the correlation coefficient of y vs. z at some lag
T=kTis

N—1
| Z(ﬂ?n — E)(Yn4x — ¥)
=0
) =3 oy 17 (3.15)
DEEED T
n=0 n=0 :
whex_‘e # is the mean of the NN samples of zg,...,2zy_1 and 7, which depends on the lag &, is the
mean of y,...,Yk+N—1. The means do not have to be calculated separately. Since E(zn -z =

(3 z2) — Nz?, the correlation coefficient is easier to calculate as

N-1
z InYntk — Z In Z Yntk

' ()= —m nzl _ :__0 _ 16
p [I:Z:o 22 - %(g x,,) ] ! [NZ Wk — (,2, yﬂ+k) ] 7

since this can be implemented in a program as a single loop.
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Figure 3.11. Cross-correlation plots of the filtered magnetometer and VLF phase data
in Fig. 3.9. In each plot, the first variable leads the second for negative offset times, and
lags it for positive times. There is little correlation between H and D. Both H and [ show
some correlation with VLF phase. The correlation between D and phase is bipolar, —0.56
with phase leading magnetic field by 18 seconds and +0.52 with phase leading by 30 s.
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or about 12 8. Given a one-hop travel time for the micropulsation of 2 x 256 = 50 s, the average
disturbance occupies only about one-quarter of the length of the field line.

Other Studies of VLF Phase and Micropulsations. Rietveld et al. [1978] report correlations
between whistler-mode signals and micropulsations similar to those I have just described. They
used signals at 6.6 kHz from a transportable VLF transmitter in Alaska as received in Dunedin,
New Zealand (L = 2.7). Signals were transmitted in a variety of single-tone formats [Dowden et
al, 1978]. The Doppler frequency shift Af of the signals was measured with the “phasogram”

technique during two different events (intervals of 14 and 10 minutes duration), and correlated with

Pc 4 micropulsations (with 94 and 60 s periods, respectively). The whistler-mode signals in these
two events travelled in ducts at I = 3.77 and 2.85, respectively. Micropulsations were measured in

Dunedin with a horizontal loop as dZ/dt._

There are two main differences between the approach of Rietveld et al. [1978] and the one I
have followed here. First, signals they received showed non-linear amplification (i.e., growth with
phase advance) just before the first interval they studied, though not during the interval. Two-tone
transmission was not used—its growth-suppression effect had not yet been discovered. Second, the
transmission formats, consisting in some cases of pulses, did not allow them to use the relative phase
of the signal as such; instead the instantaneous frequency of the signal was estimated by measuring
the slope of the phase vs. time plot. Note that the two quantities they studied, Af and dZ/dt,
are essentially the derivatives of the two we used above, ¢, and either H or D. Their frequency
“measurements A f tend to be noisier than our phase measurements ¢., and their measurements do
not give complete coverage in time during their {wo events. On the other hand, using instantaneous
frequency instead of phase and dZ/dt instead of H or D, they were not troubled by the need to filter
out long-term signal variations. Despite these differences, both our approaches are comparable.

Reitveld, et al. [1978] plot cross-correlations of Doppler shift A f and dZ/dt vs. lag time for their
two events (fheir Fig. 3). For the first event, they measure a time delay of 24 s with A f lagging
dZ/dt (correlation p = 0.4), quite close to one-quarter of the 94 s period of the micropulsation. For
the second event, they find a time delay, again with A f lagging dZ/df, of 10 s (p = 0.95), just a
bit small to be a quarter-period of the 60 s micropulsation. They claim that these measurements
show Af and dZ/dt to be in phase quadrature. They interpret their data as being consistent with
a lowest-order resonant oscillation of a field line—a standing wave with an antinode (and maximum
radial motion) near the equator. Resonant field-line osciilations are the standard model for Pc 2-Pc 5

micropulsations [Jacobs, 1970, Ch. 5].

There is one other study of the relationship between micropulsations and VLF phase path length
of which I am aware. Andrews [1977] studied the correlation between micropulsations in the Pc 4-
Pc 5 range (having periods. from 2.5 to 6 min) and the Doppler shift Af of whistler-mode signals
from NLK (Jim Creek, WA) at 18.6 kHz as received in Wellington, NZ. The whistler-mode ducts
were at relatively low latitudes (I = 2.4-2.6) compared to the Siple-Roberval case above. Whistler-
mode signals were seen only at night. Doppler shift was measured with a spectrographic recelver
containing a bank of filters spaced every 0.05 Hz centered at 18.6 kHz. The receiver was made for
long-term studies of duct behavior, and had barely enough time resolution to resolve piisations with
periods as short as 2.5 min. _ ' :

Andrews’ [1977) development the theory of the effect of resonant micropulsations on the whistler-
mode phase path (mentioned earlier) seems complete. His experimental data support the idea that
phase path changes are due to radial motion of the duct in the equatorial region. Unfortunately, the
time resolution of his measurements was not sufficient to determine if there was any delay between

R
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- changes in the VLF phase path and changes in the magnetic field.

Conclusions. All the studies mentioned above support the idea that magnetic micropulsations
affect VLF propagation in whistler-mode ducts. The radial motion induced by the micropulsation
changes the length of the phase path of the VLF signal. Inward displacement of a duct is associated -
with an outward meridional micropulsation field b; north of the displacement and an inward b, south
of it, and with a shortening of the phase path or an increase in relative phase. Because of rotation
of the plane of polarization caused by the ionosphere, b, above the ionosphere becomes —D at the
ground in the northern hemisphere; thus we see a correlation between VLF relative phase ¢, and

.—D. This correlation has a bipolar shape for short, non-echoing disturbances. The Siple-Roberval -
" measurements also show a time delay between phase changes occuring near the equator and magnetic
field changes at the base of the duct consistent with the propagation of an Alfvén wave from the
equator down the field line to the ground. The length of the average duct displacement event in the
Siple-Roberval case seems to be only a small portion of the total length of the field line, and is thus
different from the resonant field-line micropulsations studied previously. '

The advantages of the continuous two-tone LICO1 signal as used in the Siple-Roberval exper-
iment are several. First, a two-tone signal tends fo suppress the temporal growﬁh and associated
phase shift that can otherwise mask path-related phase changes, and -allows phase errors due to mul-
tipath fading to be corrected. Second, a continuous transmission allows the phase of the received
signal to be measured and used directly. Phase may be a less-noisy measure of path conditions
than its time derivative, the Doppler shift Af. Third, compated to Navy transmitters, the lower
frequency of the Siple transmitter allows propagation on higher-latitude paths where micropulsation
activity may be more interesting, and on daytime as well as nighttime paths. Finally, if accurate
data timing is available, delays between changes in the VLF phase path and changes in the magnetic
field can be measured and it may be possible to study the shape of transient field-line disturbances.
The percentage of time when a two-tone transmission from Siple can be received in usable form in
the northern hemisphere is not known and should be the subject of further research.
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4, SIGNALS WITH GROWTH

4.1 Phase Behavior During Growth

Characteristics of Growth. In Section 3.3 we saw examples of whistler-mode signals that prop-
agated from source to receiver essentially unaltered except for Doppler frequency shifts caused by
duct motion and plasma flux into the magnetosphere. With the exception of small distortions in
phase delay, the magnetospheric medium was linear—what went in at one end of a duct was what
came out at the other. This is not always the case. Whistler-mode signals are often greatly altered
in their journey through the magnetosphere. Pulses from a VLF transmitter at one end of a duct
may be found at the other end to have amplitudes, frequencies, and spectral structures which are not
only different from what went in but which change rapidly. A common behavior is temporal growth,
where the amplitude of a constant input signal is seen at the output to increase exponentially with .
time. Temporal growth is just one of a group of associated characteristics that are believed to be
caused by cyclotron interactions that take place near the top of the path between the whistler-mode
wave and energetic electrons trapped by the earth’s magnetic field. Other growth-related features
(summarized in Section 4.7) include an advancein relative phase, a slowing of growth as saturation
© is reached, magnitude and phase ripples and sidebands at saturation, a band-limited impulse or BLI

at the end of a pulse, and a friggered emission which continues after the end of the transmitted
signal.

Some of these features, such as emission triggering, are easy to pick out in spectrograms and

have been observed for a long time. Risers (rising-frequency emissions) triggered by man-made
signals were apparently first found in recordings of signals from N PG (NLK) made in Wellington,
.New Zealand, during the IGY [Helliwell et al., 1964}. Others, the phase features in particular, have
only been seen relatively recently [Dowden et al., 1978; Paschal and Helliwell, 1984]. In this and
the following sections we will examine some of these features especially those about which phase
analysis has something to say.

A Suiie of Growing Pulses. Figures 4.1 and 4.2 show f-{spectrograms and magnitude-phase plots
of four one-half second pulses sent from the Siple Station VLF transmitter as received at Roberval,
Quebec. “‘When transmitted, all pulses were at the same constant amplitude and a frequency of
exactly 4500 Hz. As received, the pulses show an increase in amplitude with time, an advance in
relative phase at an increasing rate, and other growth-related features. The pulses shown were part
of the transmission format “ULF75,” which consisted of alternating 0.5 s pulses at 4500 Hz and 0.5 s
segments of idler signal. The idler signal, 50 ms pulses alternating between 4100 and 4000 Hz, keeps
a constant load on the statlon generators without triggering emission activity in the magnetosphere
ULF75 was an unsuccessful attempt to create 1 Hz mzcropulsa.tlons

This particular record was selected because the behavior of individual pulses is quite typlcal
and because there seems to be little if any multipath propagation. Multipath propagation causes
confusion for two reasons. First, signals with different group delays propagating on different paths
may show widely differing levels of activity, yet be overlapped at the receiver. Second, differential
phase changes between different paths may create fading with amplitude and phase anomalies un-
related to the grovﬁrth process. The signals seen here propagated predominately on only one path,
and we can interpret them more easily because of this. The level of growth activity at this time
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Figure 4.1. Spectrograms and magnitude-phase plots (BW = 80 Hz) of half-second
pulses at 4500 Hz from the Siple Station VLF transmitfer showing growth and phase
advance. The first pulse shows growth at a rate of 21 dB/s with a phase increase of
0.25 rev during the last 100 ms. The pulse terminates in a brief falling emission. The
second pulse shows faster growth, a phase advance of 0.65 rev during the last 300 ms, and
a stronger emission. -

is low to moderate, and this makes the pulses easier to interpret as well since their behavior is a
little simpler. (In fact, low to moderate activity and predominately single-path propagation may be
correlated. There may be a threshold in amplitude below which temporal growth does not occur. At
times of low growth activity only one path may have conditions such thaf signals in it are above the
threshold, and we observe single-path propagation. At times of enhanced aciivity signals on many
paths may grow to saturation, and we see multipath propagation [Helliwell et al., 1980].) Often we
find that the level of growth activity changes over the course of tens of seconds, as it does in this
record. While there is a general continuity in behavior, the exact amounts of growth and phase
advance (é.nd other related features) change from pulse to pulse. This is not due to any change in
the transmitted signals but shows the inherent variability of the growth process. It is presumably
caused by changes in the distribution function of energetic electrons that may be available at any
given time to interact with the whistler-mode wave.

The group delay of the pulses in Fig.s 4.1 and 4.2 is {, = 2.18 5. From whistlers that occurred
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Figure 4.2. Two more half-second pulses like those shown in Fig. 4.1. The growth
rate continues to increase as magnetospheric conditions change. Pulses now begin to show
amplitude saturation as growth slows toward the end of the pulse. Amplitude ripples
Just before the end signal the formation of sidebands. . The second pulse seems to show
a small positive frequency offset (roughly 0.5 Hz) due to phase advance even during the
first 100 ms. Phase advance occurs at an increasing rate and totals 1.4 revs at the end of
each pulse. Both pulses show magnitude nulls and rapid phase advance as a termmation
emission begins above the transmitted frequency.

at this time we can identify the latitude and tube content of the path of the pulses. A group delay
of 2.18 s at 4500 Hz matches a whistler component in the record with a nose frequency fn of 3.9 kHz
~ and a nose delay ¢, of 2.1 5. From Park [1972] we find the path to be located at L = 4.36 with
tube content Ny = 3.4 x 102 electrons/cm? (equatorial electron density N, = 260 electrons/cm?),
typical of magnetically quiet conditions. The 4500 Hz puises are at a frequency of 0.43 fHeq on
this path. Whistlers are seen on higher-latitude paths up to about L = 5.0. There is a very weak
path near L = 4.2, but the L = 4.36 path is the one at the lowest latitude with strong whistler
components.

Growth activity gradually increases during the 5 minutes of the ULF75 transmission, and the
various growth-associated features begin to appear at different times. The 4500 Hz pulses are visible
from the start of the record at 1415 but are weak and show no growth until 1415:40. By 1416:10
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pulses grow about 7 or 8 dB (15 dB/s), but show no phase advance. By 1416:20 some pulses have
short falling emissions at termination. At 1416:33 {the first pulse in Fig. 4.1) the growth rate is
21 dB/s, accompanied by a phase advance of 0.25 rev. Note that the magnitude scale in Fig. 411is
logarithmic (in decibels); a straight line on this plot means that the magnitude changes exponentially
with time. Exponential growth is a very common feature, at least at the beginning of a pulse.

- However, while the growth rate (in dB/s) is more or less constant throughout the first 0.5 s
pulse in Fig. 4.1, the phase advance occurs only during the last quarter of it. An advance in relative

phase with time means that the received signal is at a higher frequency than the transmitted signal.

This, too, is a typical feature of growing pulses. In the first pulse in Fig. 4.1 the increase in frequency

or frequency offset Af reaches +1.6 Hz during the last 100 ms of the pulse. Note the a.dva.ntage..

- of phase analysis here. The phase plot shows a small but definite change in instantaneous signal
' frequency at the end of the pulse. This change would have to be much larger, or continue for a much
longer time, to be noticeable in the f-? spectrogram. ' _
At 1416:46 (the second pulse in Fig. 4.1) growth is 37 dB/s, with a phase advance of 0.65 rev
mostly during the last half of the pulse. At the end of the pulse there is a small transient. This is
an incipient band-limited-impulse or BLI [Helliwell, 1979b]. It is seen in the magnitude plot as a
momentary amaplitude fluctuation (a dip of 4 dB followed by a brief increase) at 1416:46.67 lasting
50 ms, and in the phase plot as an increase of 0.22 rev before a rapid drop. After the end of the
pulse a fairly strong falling emission or “faller” continues for about 150 ms. This is a self-excited
oscitlation which was initiated by the transmitted signal but which now continues for a brief time
after the input signal ends. Section 4.2 discusses termination emissions in more detail. '
At 1417:31 (the first pulse in Fig. 4.2) the growth rate is 43 dB/s with a total phase advance
of 1.4 rev. The phase advance now begins about 100 ms into the pulse and is roughly parabolic;
that is, the relative phase ¢ is proportional to t?.- This means that the frequency offset Af = d¢/dt

increases linearly with time. A parabolic phase advance is a common feature of growing pulses, but .

1s not as regular a feature as, say, the exponential growth in amplit_ude. Some pulses show only an
approximately linear phase increase with time. By the end of this puise its frequency is 4.6 Hz above
that of the transmitted signal.

The BLI is well developed in the first pulse in Fig. 4.2, starting with a brief 30-dB dip in

amplitude. After the BLI a strong faller begins. Note that the faller starts about 100 Hz above
the transmitted frequency. In fact, the phase plot shows a rather rapid change in instantaneous
frequency between the 4.6 Hz slope at the end of the pulse and the much faster increase at the
emission frequency. The faller wraps up about 2 revs in phase before falling back through 4500 .
The faller now continues to drop until, at 1417:31.92, it is seen in the f¢ specirogram to intersect
the third 50 ms-4100 Hz pulse of an idler signal with a brief increase in amplitude. This last effect
is called entrainment and is discussed in Section 4.5.2.

At 1419:13 (the second pulse in Fig. 4.2) the growth rate has reached 51 dB/s during the first
part of the pulse, but decreases toward the end of the pulse as saturation occurs. Total growth is

about 20 dB, only slightly more than in the previous pulse. Saturation is another very common -

feature of growing pulses, and usually happens after 20-35 dB of growth. As saturation occurs,
the magnitude develops 60 Hz ripples roughly 3 dB p-p. Associated with these are sidebands
60 Hz above and below the main signal (barely visible in the f-f spectrogram). These sidebands
are discussed in Section 4.4.2, The falling emission at the end of the pulse is now even stronger
than before. Unfortunately, any entrainment of the faller by idler pulses cannot be seen at this
time because of increased local interference. (The strong signals at 4100, 4220, and 4340 Hz in the
right-hand spectrogram of Fig. 4.9 are due to power line noise probably from rotating machinery.
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This variable-frequency interference is especially annoylng in this record, but is fortunately absent
from 1415:45-1418:01 and after 1419:39. It is deﬁmf.ely local in origin and is not a magnetospheric
signal.) )

"The total phase advance at the end of the second pulse in Fig. 4.2 remains about 1.4 rev, similar
to the previous case, but it now starts at the beginning of the pulse, and seems to have an initial
frequency offset of +0.5 Hz. The determination of the time of onset of phase advance in a growing
pulse is important for the theory of growth, but it is made difficult because the amplitude at the
beginning of a growing pulse is generally very low, and the plot of its phase is correspondingly
noisy. There are many pulses in this record, especially after 1418:30, which seem to have a positive
frequency offset even at the beginning of the pulse—i.e., within the first 20 or 30 ms. However, this
is a somewhat subjective judgment. _

Note that the offset frequency at the end of the pulse is still only about 4.6 Hz (or a little less),
the same as in the previous pulse. Even though the initial growth rate is higher, and the phase
advance staris earlier and at a faster rate, the final offset frequency is approximately the same. This
is a relatively common effect. Many growing pulses show a phase which increases parabolically at
the beginning but only linearly at the end (or until an emission is triggered). That is, the offset

frequency increases at the start, but then saturates at some maximum value, much as we usually -

see saturation in amplitude. However, some pulses, as in the next example, show a steady increase
in frequency offset without apparent limit until triggering takes place. The conditions under which
© a limit in frequency offset occurs are presently unknown, and remain questions for future study.

A Classic Pulse. Figure 4.3 shows f-f spectrograms and magnitude-phase plots of two one-
second pulses at 2000 Hz. The pulse on the left exhibits most of the features associated with
growth—everything except sidebands. It also illustrates some of the ambiguities of real data. We
will see how non-growing or weakly-growing pulses can be used to separate real growth features from
artifacts due to multipath.

The pulse in the left half of Fig. 4.3 shows ty'pical growth behavior. Growth in magnitude is
roughly exponential at 36 dB/s, though it seems faster during the first 100 ms or so. After about
600 ms the pulse develops ripples in magnitude, and a BLI occurs at about 700 ms. The BLI is
seen in the spectrogram as a short, impulsive blip of energy extending about 100 Hz above the
pulse, and as a short null in the magnitude and a brief skip in the phase plots. After the BLI a
rising emission is triggered which slowly drifts away from the input signal. The pulse shows an
initial positive frequency offset of +1.1 Uz, and the phase advances at an increasing rate with time.
Carlson [1987, Fig. 1.4] has analyzed the phase of this pulse and finds that, prior to the emission, the
offset frequency A f increases nearly linearly with time at a rate of 9 Hz/s (i.e., phase is proportional
to ¢*). The BLI and the triggered emission occur when the relative phase has wrapped up about
3 revolutions, even though we have not yet reached the end of the one-second input pulse. This
example is different from those in Fig.s 4.1 and 4.2 where an emission occurs only at the end of
the input pulse. The characteristics of such pre-termination emissions are discussed in Section 4.3.

After the BLI, as the emission starts to separate from the input signal, the phase advance increases -

at an even faster rate, and at 750 ms the pulse is seen to be 32 Hz above the input frequency and
rising,. _ _
However, the left-hand pulse in Fig. 4.3 also presents us with an ambiguity. After the emission
separates we cannot see any signal at the input frequency. So where does the pulse end? For that
matter,” where exactly does it begin? The bar under the plot shows the assumed position of the
pulse, but how was this determined? There is a weak blob of signal in the spectrogram just before
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Figure 4.3. Spectrograms and magnitude-phase plots (BW = 80 Hz) of two one-second

pulses at 2000 Hz. On the left is a pulse with temporal growth, increasing phase advance,

~ initial frequency offset, and a pre-termination emission. “T” marks a spurious phase jump

due to a pilot tone tracking error. On the right is a pulse two minutes later with little

growth, used to identify the group delay time (and hence the beginning) of the first pulse.

Bars below the plots show the duration of the transmitted signals. Pulse at left after
Paschal and Helliwell {1984].

the assumed beginning of the puise, and a corresponding plateau in the phase plot. Is this the real
beginning? These questions are of some consequence because reasuring a positive frequency offset
at the beginning of a pulse assumes that we have accurately identified the beginning.

To answer these questions we turn to the right-hand pulse in Fig. 4.3. This is a one-second
pulse at the same frequency, but it was transmitted two minutes later. Because magnetospheric
. conditions had changed, this pulse shows almost no growth. It shows a very weak termination faller
with a phase wrap-up of 0.17 rev, but is otherwise almost undistorted. We see that there is a second
path of propagation following the first. one by 150 ms and about 10 dB lower in amplitude than
the initial value. However, there does not appear to be any path with a signal preceeding the main
pulse, and we fix the group delay of the leading edge of the pulse at #, = 3.11 5. (We know from
the transmission schedule that these pulses were sent exactly 30 s after the m_inufé.) The bar under
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the right-hand plot is exactly one second long, and starts at 1339:33.11. Now we can return to the
previous pulse and identify its beginning. While growth activity can change radically from minute
to minute, the group delay of a given path changes very little in such a short time, and we can be
confident in assigning a delay of 3.11 s to the leading edge of the pulse at 1337:30 as well. The bar
below the left-hand plot is again exactly one second long and starts with this delay at 1337:33.11.
Also note that the magnitude at the beginning of the left-hand pulse is the same as.that of the
non-growing pulse (about +10 dB on the plot). Growing and non-growing signals typically start at
the same level, so this confirms our identification of the group delay of the pulses.

More Complicated Phase Behavior. The pulses we have seen so far show a relatively constant
growth in amplitude and a smooth parabolic (or linear in the limit) phase advance. Lest the reader
think that all growing pulses are so well-behaved, I present Figure 4.4. This is an unusual case of
phase behavior that proves (i.e., tests) the rule.

The one-second pulse at 4050 Hz in the left half of Fig. 4.4 advances rapidly in phase by 0.9 rev

in 240 ms, slows down and retards in phase by 0.2 rev over the next 120 ms, and then resumes the -

advance at a lower rate for the remainder of the pulse. This pulse has a very large initial frequency
offset of 4.5 Hz. During later growth and saturation the frequency offset is only about 0.6 Hz.
Saturation during the last third of the pulse is marked by strong magnitude and phase pulsations as
sidebands are formed. Phase advance continues during saturation, as we have seen previously. The
end of the pulse shows a brief BLI and a weak faller. The right-hand plots in Fig. 4.4 are gray-scale
phase plots of four additional one-second pulses recorded at this time. Two of the pulses are again
at 4050 Hz, and look very similar to the first one. The other two are at 3570 and 3810 Hz. The

amount of phase lag in the 3810 Hz pulse is a bit less (0.15 rev) than at 4050 Hz, and the 3570 Hz

pulse shows only a slowing of phase advance (0.1 rev over 120 ms) at that point, but their overall
behavior is still similar.

The magnitude of the first pulse in Fig. 4.4 parallels its phase advance. The pulse has a large
initial growth rate, 130 dB/s, which decreases as the initial phase advance slows down. During the
120 ms when the phase retards, the magnitude of the pulse decreases by 6 dB. When the phase
advance resumes, the magnitude increases again, but at a slower rate, 35 dB/s, until saturation
is reached and sidebands develop. The magnitude behavior of the additional pulses in Fig. 4.4 is
more variable than their phase behavior. Since magnitude plots are not shown, I will describe them
briefly. The next two pulses, at 3570 and 4050 Hz, also show a decrease in magnitude during the
interval of phase lag, though the decrease is smaller than with the first pulse, only about 3 dB. The
last two, at 3810 and 4050 Hz, do not show a magnitude decrease at this time. In fact, the 3810 Hz
pulse shows fairly steady growth throughout, up to saturation. We will see more of these pulses
when we discuss single-signal sidebands in Sec. 4.4.2. The pulse at 1351:30 was orlgmally shown in
Paschal and Helliwell [1984], and that at 1351:31 in Park [1981].

The pulses in Fig. 4.4 are unusual. Irregular magnitude behavior often occurs {see the first
pulse in Fig. 4.10, forrexample), but such an irregular phase advance is not often seen. In fact, the
phase decrease shown by these pulses is quite rare. Typical pulse behavior is more like that shown
by the pulses in Fig.s 4.1-4.3. A single pulse with unusual features can be dismissed as a freals,
a fortuitous coalescence of circumstances without any deeper meaning. In this case, however, the
behavior shown is repeated by every one of the eighteen constant-frequency pulses that were sent
over the course of a one-minute DIAGI (DIAGnostic, version 1) transmission. The problem is to
explain these odd features.

One possible explanation might be that this is caused by multipath propagation. Two signals,
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Figure 4.4. Left: spectrogram, magnitude-phase plot (BW = 80 Hz) and gray-scale
phase plot (BW = 80 Hz, P,y4n = 1 rev) of a one-second pulse showing unusually compli-
cated phase behavior during growth. Right: gray-scale plots of additional pulses showing
the repeatability of the behavior at different frequencies and times.

growing at different rates, might be sufficient. Suppose that one path has more rapid growth, but
stops carly as it reaches saturation in about 240 ms. Or perhaps this path is better coupled through
the ionosphere at the transmitter end so it starts with a higher input signal, and because of this
reaches saturation first. The second path, perhaps with an exit point closer to the receiver so it
will ultimately be heard stronger, or which couples better through the ionosphere at the receiving
end, begins to dominate after about 360 ms, the start of the interval of slower phase advance. The
phase decrease between the saturation of the first and the deminance of the second just depends on
the difference in phase (modulo 1 rev) between these two paths. That is,-at the beginning of the
pulse we see only the first, rapidly growing signal, at its particular phase. Later we see primarily the
second signal, at its phase, a fraction of a rev delayed with respect to the first. In between we see
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a decrease in phase equal to half the difference between the two (that is, we see their mean phase
when their magnitudes are equal). '

There are several objections to this explanation. The frequency ramp signals in the dia.gnoét.ic
format do not show any evidence of multipath propagation, at least any additional paths with group
delays differing by more than a few tens of milliseconds. Only single emissions are triggered at the
ends of the various pulses, again evidence against multipath. And even if the momentary phase
decrease were due to the addition of two different signals, it seems very unlikely that their relative
phases should remain constant within a fraction of a revolution over the course of a minute. That
is, any change in the relative phase delay between the two paths would change the amount of phase
decrease (or increase) when the second signal begins to dominate, whereas this decrease actually
remains fairly constant from pulse to pulse. .

Of course, the two paths could be nearly the same length and have nearly the same total phase
delay, so differential changes might be small.. Nearly identical lengths are also necessary to explain
why the phase difference is so similar for pulses at different frequencies. Since the difference is
~0.4-rev at 4050 Hz (that is, twice the drop of 0.2 rev seen in the sum), and +0.2 rev at 3570 Hz,
then (assuming values at intermediate frequencies are also in this range) the two paths must differ
in phase length by about At, = (0.4 4 0.2)/(4050 — 3570} = 1.25 ms. This corresponds, at L = 4,
to a difference in nose delay of At, = 0.732 ms, which gives a difference in path L-value of about
AL = 0.002, or a difference in latitude at the ends of the ducts of only 1 km. This is much less
than the estimated size of a duct at the earth’s surface, so the two ducts, while being at nearly the

"same L-value, must be separated in longitude. This is not implausible in itself, but it is difficuli to
explain why such similar paths should behave so differently in growth activity or trans-ionospheric
coupling, especially in having opposite coupling behavior at each end.

One final objection to multipath interference is that the magnitude dips do not correspond to
the observed phase differences. For the amplitude of the sum of two equal signals to be 6 dB less
than that of the first signal alone, as in the first pulse in Fig. 4.4, they must differ in phase by
0.42 rev, approximately the amount seen. However, given.the nearly identical phase behavior of the
three pulses at 4050 Hz, we would expect similar magnitude behavior. There is a dip in magnitude
of only 3 dB in the second pulse at 4050 Hz, and no-corresponding dip at all in the last puise.

Having ruled out multipath as a cause, we are left to conclude that the irregular growth and
phase advance shown in Fig. 4.4 is an intrinsic feature of the growth process. Perhaps it is caused
by slight motions of the interaction region about its nominal position near the equator (see following
discussion}, or by some more complicated feedback mechanism between different parts of an extended
interaction tegion. These pulses are also unusual in having such a high initial frequency offset, and
this may be a clue to their odd behavior. I think it will take an advanced model of wave-particle

interactions to explain this case.

Theories of Growth. Growing signals, especially triggered emissions, have been observed for a
long time, and theories to explain them were formulated as early as 1959 [Gallet and Helliwell, 1959].
For a review up to 1979 sce Matsumoto [1979). Carlson [1987, pp. 7-11] gives a brief review and
lists some more recent studies. These theories have all attempted to explain the overall frequency
characteristics of growing signals and emissions with varying degrees of success. Some have tried to
explain other growth-associated features such as saturation, pulsations, and sidebands, with much
less success. However, only those by Nunn [1974], Dowden et al. {1978], Helliwell and Inan [1982],
and, most recently, Carlson {1987] have attempted to-explain the phase characteristics of gfo‘wing
signals. This is undoubtedly because until recently there was very little experimental phase data for
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comparison. (One of the main purposes of this report is to bring more phase data to light.)

The most promising theories of growth have been based on the doppler-shifted cyclotron or
gyroresonance interaction, now generally accepted to be the correct model. In the cyclotron interac-
tion the transverse field of a ducted whistler-mode wave travelling in one direction affects energetic

electrons travelling in the other direction. Both the fields of the circularly-polarized wave and the .

electrons rotate about the earth’s magnetic field line in the same direction, but the wave frequency
is nearly always less than half the electron gyrofrequency. -However, if the electrons are moving
with respect to the wave, they see a local field whose speed of rotation depends both on the wave
frequency at a given place (the frequency of the signal} and on the number of additional cycles of
wave passed in a given interval due to the relative motion. If the electrons are travelling along a field
line in the opposite direction to the wave they may see a transverse field which appears stationary
to them, the condition of gyroresonance. Because of the inhomogeneity of the magnetosphere—both
gyrofrequency and wave phase velocity vary with latitude along a given field line—different electron
velocities are needed to resonate with a given wave at different positions. The inhomogeneity is
smallest, and thus the interval when a given electron may be in resonance with a wave is longest, at
the top of the path assuming constant-frequency waves; it is here in the equatorial region that the
strongest wave-particle interactions are presumed to take place.

The longitudinal (or Landau) tesonance has also been studied, though not as extensively [e.g.,
Tkalcevic, 1982]. In this interaction the longitudinal component of the wave field affects electrons
‘whose velocity parallel to the earth’s magnetic field matches the phase velocity of the wave. This
interaction seems to be much weaker than the cyclotron interaction for ducted waves, possibly be-
cause their longitudinal field components tend to be much smaller than their transverse components.
However, it is probably important for non-ducted waves, and may explam such things as whistler
precursors (see Section 4.5.3): Cerenkov radiation has also been proposed to explain some VLF phe-
nomena {e.g., Kimura, 1967], but seems unlikely to be very important for the present experiments.

However, agreeing on the proper wave-particle resonance does not mean we understand the
process of growth any more than knowing the viscosity of air and the adiabatic lapse rate* enables
one to predict the weather. Like the weather, actual wave-growth events are complex because of
the sheer numbers of wavelets and particles involved, the nonlinearities in their interactions, and
the heterogeneous conditions in the magnetosphere. Even worse, our knowledge of magnetospheric
conditions at any given time is much less than our knowledge of that sparsely-sampled global network

from which weather forcasts are made. Every author modelling growth has had to make various

simplifying assumptions to render the problem tractable, and no study has explained all of the
phenomena associated with growth in a completely satisfactory way. Here I will review the efforts of
Nunn [1974), Dowden et al. {1978], Helliwell and Inan [1982], and Carlson {1987] mentioned above,
“to see how close current theories come to explaining real events. The first three studies are discussed
in a bit more depth in Paschal and Helliwell [1984].

Nunn [1974] studies a transmitted pulse at f = fg.,/2. The interaction takes place near the
equator in an inhomogeheous medium. Nunn integrates the fields produced by three streams of
resonant particles at different pitch angles and finds the amplitude and phase of the total field as
the pulse passes through the interaction region. Strongly trapped particles play the dominant role
in this narrowband interaction. Nunn’s [1974] model successfully predicts the growth and general

* The adiabatic lapse rate is the change in temperature that occurs when a packet of air is moved
vertically in the atmosphere without gaining or losing heat to its surroundings. The actual lapse rate
~ 1s about 1.98°C/1000 ft, and is of interest to pilots and mountain climbers as well as weathermen.
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phase advance that is seen on a growing short pulse, but it also predicts an initial phase lag that is
not apparent in real data. This model cannot account for amplitude saturation, or pulsations and
sidebands.

Dowden et al. [1978] present observations, including relative phase plots made by the “phaso-
gram” technique (see Sec. 1.3), of VLF transmissions at 6.6 kHz from Alaska as received in New
Zealand. An interesting feature they observe is the “N event,” a sudden decrease in phase of the
cutput wave caused by beating between the amplified signal and the “embryo” emission, which tends.
to decrease the frequency of the output signal and keep the emission entrained by the input. I am
not sure if their N event really is an independent growth-related feature, or whether it may not be
Just an example of the phase ripples that are often seen, say, during sideband formation. However,
to explain N events Dowden et al. [1978] expand upon Nunn’s [1974] theory with a model containing
two interaction regions, one trapping particles resonant with the input wave and a second orne trap-
ping particles resonant with the developing emission. This improved theory is better at explaining
some of the wider-bandwidth characteristics of growing signals. Still, it cannot explain saturation,
and, because it is limited to trapped parﬁicles, may not be very realistic. '

Helliwell and Inan [1982] describe a model in which the distributed interaction is simulated
by two lumped elements: a buncher where the output wave field organizes the phases of enteting
celectrons, and a radiator where the electrons radiate and add to the input wave field. They derive
the magnitude and phase of the system loop gain by tracing the trajectories of a monochromatic
stream of electrons with a single pitch angle but various phases with respect to the wave. Untrapped
electrons are important here, and their model predicts saturation at large amplitudes. Helliwell and
Inan’s [1982] model shows the growth and phase advance that occurs during the initial part of a
growing pulse. However, they predict that a negative phase shift may occur as the amplitude reaches
saturation, an effect not seen in real data.

Carlson [1987] has produced the most comprehensive computer simulation of cyclotron-resonant
growth to date. He develops a steady-state model which uses a range of energetic electron velocities
b" (the component of velocity parallel to the carth’s magnetic field) and a full range of pitch angles
a. He also develops a transient model similar in some ways to the two-port Helliwell and Inan [1982]
model, but where the bunchmg and radiating processes are fully distributed in space. The transient
model uses a full range of pitch angles o but only a single value of parallel electron velocity v {a
function of & and position chosen to maximize growth} to keep computing time within bounds. Even
with this limitation, it still reproduces very well the growth, phase advance, saturation, and even
magnitude ripples during saturation that are seen in real data. The phase advance is parabolic,
implying a linear increase in offset frequency, as often occurs, at least initially. However, there is a
transient phase retardation at the very beginning of a pulse that is not seen in real data, and the
model cannot reproduce an initial frequency offset. These discrepancies may be due to the limited
range of vy used. Carlson [1987] suggests that future models with a wider vy range may be able to
sirmtlate features such as the BLI, emission triggermg, positive frequency jump at pulse termination,
and entrainment of emissions. '

All four studies succeed in a qualitative way in explaining the increasing magnitude and ad-
vancing phase of a growing pulse, though Nunn {1974] predicts an initial phase lag that is not seen.
Dowden et al. [1978] explain certain features of emission generation, such as the N event. Helliwell
and Inan [1982] explain saturation, though with apparently incorrect phase effects. Carlson [1987] is
the most successful of the four in simulating quantitatively both exponential growth and parabolic -
phase advance, as well as pulsations and saturation; but he also predicts an unobserved initial phase
lag. None of these studies can explain the initial frequency offset that sometimes appears at the
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beginning (or within 20-30 ms of the beginning) of a growing pulse.

Carlson’s [1987) transient model is the most compfehensize_ and accurate with respect to its
ability to reproduce the features of growing signals. It is also by far the most complex. I have a
personal preference for theories with simple, analytic (if not closed-form) solutions. However, the
trend to computer simulations is inevitable and probably necessary. The underlying processes are
nonlinear and extremely complex. Facing a similar problem, weathermen use increasingly complex
computer simulations with (though some may doubt it) gradually improving forecasting accuracy.

Summary. Whistler-mode signals often exhibit various growth-related features. Some of these
features have been observed for a long time in magnitude ‘plots and f-¢ spectrograms, such as an
exponential increase in magnitude (temporal growth) followed by saturation, and the triggering of
emissions. ‘

Analysis of the spectral phase of constant-frequency signals from the VLF transmitter at Siple
Station has now revealed several new growth-related features. The relative phase of a growing
pulse increases with time, indicating that the received signal is at a higher frequency than when
transmitted. When growth activity is weak, this phase advance may not begin until the magnitude
has already increased a bit, say by 10 dB. As activity picks up, phase advance begins earlier and
earlier. The advance in phase is often approximately parabolic with time (proportional to £?%),
especially at the beginning of a pulse, meaning that the frequency offset increases linearly with time.

However, often the advance is only linear (proportional to ¢} toward the end, evidence of a limiting

or maximum value of frequency offset. Occasionally more complicated behavior occurs, but more
than a momentary retardation in phase is never seen on a growing pulse. Received pulses usually

begin at the frequency of the transmitied signal, but some seem to be offset in frequency even from .

the start, or at least within 20-30 ms of the start of the transmitted pulse.
The accepted mechanism for ducted whistler-mode growth is cyclotron resonance between the
wave moving in one direction along a magnetic field line and energetic electrons moving in the other

direction. Models using this mechanism have been developed to explain the magnitude and gross .

frequency characteristics of growing signals. However, only a few studies have been made which
predict phase behavior. These particular studies have been successful in explaining phase advance
once growth is well underway, but some predict a phase retardation at the beginning of a pulse that

is not seen in the experimental data. No study has explainéd an initial frequency offset. While

the physical laws governing the interactions of waves and particles are well-known, whistler-mode
growth is a very complex problem for the same reason as weather forecasting: because of the sheer
number of individual interactions which must be studied. The most successful models of growth use

complex computer simulations.

B
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4.2 Phase Behavior at Pulse Terminatiox_;

In the previous section we saw examples of some phenomena associated with growing whistler-mode
signals. Here we will lock in more detail at what happens right at the end of 2 growing input pulise.
This is a subject that has been studied several times before. In particular, Stiles {1974] examined
triggered emissions using digital spectrum analysis, and was able to see features that had been
hidden (or at least unnoticed) in analog spectrograms. Now we will look at some of these same
features again, but with the benefit of phase analysis.

Emission Frequency and Phase Wrap-Up. Figures 4.5 and 4.6 show some variable-length pulses
at 5500 Hz from Siple. These are some of the first signals received from the Siple Station VLF
transmitter. This particular record has been presented many times before [Stiles, 1974; Helliwell
and Katsufrakis, 1974; Helliwell, 1974; Helliwell, 1975; Stiles and Helliwell, 1975; Stiles and Helliwell,
1977; Helliwell and Katsufrakis, 1978; Matsumoto, 1979; Helliwell, 1983b], and may hold a record
in this regard. Here it is once more. ‘

All of the pulses in Fig.s 4.5 and 4.6 show exponential growth at about 100 dB/s. They all start

from about the same level, and the peak amplitude reached depends on the length of the pulse. A

falling emission is generated at the end of every pulse. However, not only do the longer pulses reach
higher amplitudes due to prolonged growth, but they also trigger stronger emissions, and emissions
which last longer and descend to lower frequencies before fading away. The spectrograms show that
the 250-ms pulses each have a small BLI just before the emission. (The spectrograms also show the
presence of multipath propagation with a second weaker path preceeding the main signal by about
50 ms. This second path doesn’t affect. the interpretation.)

The phase plots show a phase advance during growth that increases with time. The rate of
relative phase advance (the frequency offset) alsc increases with time. It is difficult to measure the
instantaneous frequency offset as a function of time for most of these pulses because the phase plots
are just a bit too noisy. We can estimate the average frequency offset during each pulse, however, and
we find offsets of 2.0, 3.2, and 4.1 Hz for the 150-, 200-, and 250-ms pulses, respectively. While these
average frequency estimates are crude, they are consistent with an instantaneous frequency offset
during growth which is zero at the beginning of each pulse and increases at 32 Hz/s. (Af = 0+ 32t
gives 2.4, 3.2, and 4.0 Hz average frequencies.} So, while these pulses are shorter and grow faster
than those we saw in the previous section, they have the same kind of mé,gnitude and phase behavior.

When we look at the phase at the end of each pulse we discover a remarkable feature. All of
the fallers, even those on the 150-ms pulses which seem in the spectrogram to just drop off the end

~ of each pulse, start at 2 frequency above the input signal, even above that of the growing, phase-

advancing signal. In fact, judging by the phase plot, the 250-ms pulses in Fig. 4.6 seem to jump

-almost instantaneously between the offset growth frequency and some higher frequency where the

emission starts. The analysis step time in the magnitude-phase plots was 5., = 2 ms. The first
and second pulses in Fig. 4.6 seem to change frequency in about twice this time (i.e., twice the
interval between individual dots in the plot) or about 4 ms. {This is roughly the resolution time of
the BW = 80 Hz filter used.) '

The benefit of signal phase information here can be understood by comparing our results with
the earhier work of Stiles [1974, pp. 123432] He used spectrograms and A-scan plots (amplitude
vs. frequency at a given time) of station NAA at 14.7 kHz to determine how emissions separated
from the triggering signal. He decided that an emission began at the frequency of the input signal,
and then rose rapidly over some 30 ms to its own frequency which might be some 250 Hz higher.
However, as he mentioned, any model in which the emission begins within 50 Hz or so of the input -
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Figure 4.5. Spectrogram and magnitude-phase plot (BW = 80 Hz, t,;cp = 2 ms) of
variable-length pulses at 5300 Hz with termination fallers. Both 150-ms and 200-ms pulses
show the same growth rate, but the longer pulses show a larger average frequency offset
and a larger phase wrap-up at termination.

frequency would agree fairly well with the data, because this was the frequency resolution of the
analysis filters. With phase information we can resolve changes in instantaneous frequency with
a rapidity limited only by the signal-to-noise ratio of the data. We will use this technique in the
. examples which follow.

However, while the initial frequency of the emission is above that of the input signal, the slope

of the emission is always downwards in frequency with time. The phase plots show the beginning

of each emission as a small downward-concave arch at the end of each pulse. The instantaneous
frequency offset from the transmitted frequency is equal to the slope of this curve. Since the phase
is downward-concave, its second derivative d®¢/dt?, and thus the rate of change of frequency df /dt,

is negative. ‘ ‘ . _
The arch in the phase plot at the end of each pulse rises as long as the emission remains

[RO——

[




129

ROBERVAL 6/23/73 1148 uT
Hz

6000 -

5500 —

5000 —

40 df —

5 rev—— oo : S VL
N B 'U\-j

0.90 rev

1148|:13 | . | :If | 115
| I | 1 t | I | I I

250 ms

Figure 4.6. Variable-length pulses as in [ig. 4.5. 250-ms pulses show an even larger
average frequency offset and termination phase wrap-up.

above the input frequency, and reaches its peak value just as the emission falls back through this
frequency. This peak value is termed the phase wrap-up, and depends on both the initial frequency
of the emission and on how long it remains above the input frequency. (It is, of course, just the
integral of the offset frequency Af over the time it takes the cmission to fall through the input
frequency.} The wrap-ups for the 150-, 200-, and 250-ms pulses are seen to be about 0.31, 0.50, and
0.90 revs, respectively. So longer pulses, which grow more, reach larger amplitudes and frequency
offsets, and generate stronger emissions, also show bigger phase wrap-ups. It is not clear from the
figures whether this is because the emissions on longer pulses stari at higher frequencies or just take
* longer to fall back through the input frequency. It looks as if both factors are at work.

The 5500 Hz pulses in Fig.s 4.5 and 4.6 are at a fairly high frequency for signals from the Siple
transmitter. An interesting question is how high in frequency can Siple signals be and still show -
growth? Carpenter [1968] has shown experimentally that most ducted whistler-mode signals do
not, propagate at frequencies above half the equatorial gyrofrequency, presumably because signals
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above fir/2 leak out of the duct as predicted by ray theory. For the usual Siple-Roberval path at
L = 4.2, the equatorial half-gyrofrequency is fi.;/2 = 5.90 klz using a dipole field model. (It may
more realistically be about 5.0 kHz using Seely’s [1977] distorted model magnetosphere.) Are these
5500 Hz pulses close to fye, /27 There are some swishy whistlers in this record, but they are too
diffuse and ill-defined to be much help. However, some of the risers triggered by the longer pulses in
this transmission continue up to at least 6500 Hz, suggesting that the half-equatorial gyrdfrequency
is at least this high. We conclude that this particular transmitter signal was probably on a path at
L = 4.07 or lower, at a frequency of no more than about 5500/(2 x 6500) = 0.42 fg.,.

Speed of Transilion lo Emission Frequency. Figure 4.7 shows two segments of a NOSI (NOQise
SImulation) transmission, including the last second of CW (single frequency) signal at 2600 Hz. The
NOSI format was designed to simulate band-limited noise while running the transmitter at full power
{Helliwell et al., 1986b]. Instead of modulating the amplitude of the transmitter {with a decrease
in average power), the frequency was changed every 10 ms in a “random” manner by selecting the
next entry from a table of precalculated frequency offsets. The intent was to generate a wide-band
noisy signal to mimic mid-latitude hiss, and to study the response of the magnetospheric growth
mechanism to signals of constant power but varying bandwidths. The signal was transmitted in
five-second intervals at two frequencies. In each interval the bandwidth (peak frequency excursion
from the table} was reduced step by step, until during the last second a constant-frequency (zero-
bandwidth) tone was transmitted. Figure 4.7 shows the end of two intervals of transmission at
2600 Hz, including the one-second CW tone, followed a second later by the beginning of an interval
of transmission at 2200 Hz. The signal at 2200 Hz from 1406:19-:20 in the left-hand spectrogram at
top is a two-hop echo of a previous CW tone at that frequency. A weak whistler crosses the signal
in the right-hand spectrogram.

The interesting feature here is the behavior at the end of each CW pulse. The first pulse is
seen to trigger a riser that starts above the 2600 Hz input frequency, remains at about the same
frequency for a quarter of a second, and then drifts up and dissipates, lasting almost 1.5 s. The
~ second pulse generates a brief faller, which also starts above the input frequency. The expanded
spectrograms and magnitude-phase plots in the botiom of Fig. 4.7 show the behavior at termination
in more detail. The end of each pulse is marked by a brief, weak BLI-like transient (stronger in the
first pulse) followed by the emission. Note that the magnitude of the emission is almost the same
as that of the pulse before it. This is a common feature of emissions. After a period of growth
the tolal signal energy in the interaction region in the magnetosphere will be much larger than
the transmitted input signal contrdlling it. When the input signal disappears, this energy (now a
termination emission) does not vanish instantaneously.

However, the frequency of the emission is quite different from that just before the end of the
pulse. The phase plots show a rapid change from the offset frequency of the growing pulses (+1.9
and +2.8 Hz) to the frequency of the emissions (+56 and +71 Hz). The change in frequency is seen
to take place in a very short time. The change from 1.9 to 56 Hz in the first pulse takes about 50 ms.
The change from 2.8 to 71 Hz in the second pulse takes only about 10 ms. This latter change 15 very
fast (though still not instantaneous). ‘ '

I might add that our resolution in measuring the speed of frequency change here is not limited
by the 320 Hz bandwidth of the analysis filter. Tests with a synthetic signal show that the phase plot
" could reveal transition times as short as 1.25 ms. The DFT filter spacing is fp = 1/NT =200 Hz
* In this case. The overlap correlation for windows spaced by 0.25NT = 1.25 ms is only 57.4% from
Table 2.5.
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Figure 4.7. One-second CW pulses at 2600 Hz at the end of a NOSI transmission
showing the speed of change. in frequency at the beginning of a termination emission.
BW = 320 Hz in the magnitude-phase plots. In the first case the transition from the
~growing signal to the emission takes about 50 ms; in the second case less than 10 ms.
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Right at the point of transition between the end of the growing pulse and the beginning of
the emission, both pulses show a brief phase jump of about 0.2 rev that lasts about 10 ms. Tt

coincides with dips in the magnitude plot and (at least in the first pulse) a weak BLI-like event in

the spectrogram. One of the possibilities we must always consider in a case like this is the effect
of dispersion. Perhaps the change from end-of-pulse to emission is instantaneous at the interaction
region near the equator, but being at different frequencies these two signals are overlapped at the
ground, and the transient features are caused by beating between the two signals. The dispersion
of the whistler in the right spectrogram in Fig. 4.7 is —3 kHz/s at 2600 Hz. Since the whistler is a
~ two-hop signal, the dispersion for the half-hop path from equator to ground will be —12 kHz/s. The
68.2 Hz frequency jump at the end of the second pulse would cause the beginning of its emission
to overlap the pulse end by 68.2/12000 = 5.7 ms. During this time the two signals will differ by
68.2 x 0.0057 = 0.39 cycles, or undergo 39% of a beat. While this is significant, it does not seem
quite enough to explain the transients in Fig. 4.7. We may also be seeing the effects of multipath
propagation involving two very closly spaced paths
One final interesting point in Fig. 4.7 is the difference between the generation of a riser in
one case and a faller in the other. It is not known what factors determine whether a termination
emission will be one or the other. Generally speaking, the greater the level of growth activity and
‘the larger a signal is allowed to grow, the more likely it is to trigger a riser at termination. However,
in this case both pulses reached approximately the same amplitude at the end. The first pulse was
growing a bit faster just before the end; is recent growth rate the determining factor? On the other
hand, the second pulse had a larger frequency offset, and its emission began at a higher frequency,
characteristics we might normally associate with stronger emissions. Why the first should be a riser

and the second a faller is not clear.

Instanianeous Change from Pulse to Termination Emission. Finally, in Figure 4.8 we see the
ends of two half-second pulses in the ULF75 transmission described in Sec. 4.1. These two pulses
occurred at times between the first and second pulses shown in Fig. 4.2. The pulses in Fig. 4.8 are
plotted to the same expanded scale used in Fig. 4.7. Both pulses show a strong BLI, much stronger
than those in Fig. 4.7, followed by emissions that are only slightly above the input frequency. The
phase plots show the frequency offsets at the end of the growing pulses to be 3.5 and 3.2 Hz, and to
change almost instantanecusly to the 100 Hz offset of the BLI. The BLI’s last 10-20 ms, and then
the emissions begin. The first emission is about 20 Hz above the input frequency, and the second
one is only slightly above the input.

From the phase plots we can estimate the time of transition from the end of the pulse to the
BLI. The analysis step time here is 1,;ep = 0.56 ms, and the transitions take place within the space
of three or four dots on the plot, or in.about 2 ms. Because of the lower signal-to-noise ratio here
compared to the signals in Fig. 4.7 (though it is still quite good), a narrower analysis filter had to
be used, with a corresponding decrease in time resolution. In this case the filter bandwidth was
BW = 160 Hz, with a sequence length NT = 10 ms. The step time for 50% window correlation is
about one-quarter of this, or 2.5 ms (twice that of Fig. 4.7). This is effectively the time resolution
of the analysis. Even if the frequency change from pulse to BLI were instantaneous, it would still
appear to take about 2.5 ms in the phase plot. Thus, as far as we can ascertain, the transition in
this case 1s instantaneous. - _

Concurrent, with the start of the BLI is a sudden dip (or dips) in magnitude. Such a dip is seen
repeatedly throughout this particular record. Each dip lasts 15-30 ms. The dip.is only a few 4B for
the first fallers after 1416:20, but is typically 10-15 dB for later pulses, and sometimes over 25 dB.

[———
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Figure 4.8. Emission behavior at the end of two half-second pulses at 4500 Hz. BW =

160 Hz and %, = 0.56 ms in the magnitude-phase plots. Compared to the pulses in

~ Fig. 4.7, the change in frequency at the end of the pulse occurs instantaneously (in = 2 ms).
The falling emission after each pulse begins with a very strong BLL

The dips in Fig. 4.8 are roughly 20 dB. Is this caused by the triggering mechanism, or is it the

result of dispersion? In this case the 4.5 kHz signals are above the nose frequency, which is roughly

3.9 kHz. Dispersion here will delay the higher-frequency BLI with respect to the growing pulse,
and so separate them by the time they reach the ground. This might cause the magnitude to dip
between the pulse and the BLI. The two—hbp whistler dispersion at 4.5 kHz is about 47 kHz/s, 50
the half-hop dispersion will be +28 k_Hz/s.' With a frequency jump of 97 Hz this gives a separation
between the end of the pulse and the BLI of 97/28000 = 3.5 ms. This is small compared to the
duration of the magnitude dips, and we conclude that they are not due to dispersion but rmay be
inherent in triggering. (The pulses in Fig. 4.8 show three or four sharp dips at the BLL. This might
be caused by dispersion acting on signals on three or four paths with slightly different. group delays.
However, in this case the null at each dip, if all paths contribute equally, should only be about
2/3 = —3.5 dB. This is much less than the dips actually seen.)
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The observent reader will notice that the pulse-to-BLI transitions in Fig. 4.8 occur at 1418:09.700
and 1418:55.700, whereas in Sec. 4.1 we determined a group delay of ¢, = 2.18 s for these pulses.
So the beginnings of these pulses must have been received at 1418:09.180 and 1418:55.180; that is,
0.520 s before the putative ends. Indeed, these pulses are about 20 ms too long.

There are at least two possibilities here. One is that we have a case of multipath propagation
with two paths only 20 ms apart in time. If this is true, we must ask why the transition to the BLI
occurs so rapidly. Two signals, growing at approxxmately thé same rate, would make for a more
complicated tranmtlou, and, most importantly, one which would start 20 ms earlier at the end of
the first signal. This objection would be overcome if only the later path showed growth, as it would
dominate the earlier signal by the end of the pulse. This might be poséihle, though paths so close
together in group delay (and presumably physically close in the magnetosphere) often show similar
growth activity. However, any suggestion of multipath propagation must be examined in light of
Fig.s 4.1 and 4.2. While there are some magnitude irregularities at the beginning of the pulses
shown, oniy the one in the right-hand pulse in Fig. 4.2 might be as short as 20 ms duration. And
none of the pulses shows a step in phase after 20 ms as is typically seen when a second signal arrives.

Another possibility is that the transition to the BLI, though well defined, does not occur until
about 20 ms after the end of the input signal. That is, the growth process continues as if nothing
had happened for 20 ms, and then generates a BLI. This possibility seems a bit bizarre. All in all,
I have no explanation for the 20 ms stretching of these pulses.

© Summary. When a growing pulse is received, the signal is found to continue past the end of the
transmitted pulse, usually in a falling emission, though rising termination emissions are occasionally
seen”if growth is sufficiently developed. The faller (or riser} begins at a frequency above that of
the growing éignal, itself offset a few Hertz above the frequency of the input or transmitted pulse.
The faller is often, though perhaps not always, preceeded by a band-limited-impulse or BLI, a short
transient event whose energy is mostly above the input frequency. The BLI may be heralded by a
momentary (few millisecond) dip (or dips) in magnitude. Except for any transients, the magnitude
of the signal at the beginning of the faller is about the same as it was at the end of the pulse though
it may change rapidly from then on. :
Since the faller starts above the pulse frequency, the relative phase of the signal advances after
_ the end of the pulse until the faller has drifted back through the input frequency. The total advance
in phase at this point, the phase wrap-up, depends on both the offset frequency at the beginning
of the faller and the time it takes to drift back down. For short pulses which terminate before
saturation, the phase wrap-up is correlated with pulse length, being bigger for longer pulses. Both
the initial emission offset frequency and the time to drift back through the input frequency seem to
increase with pulse duration. Longer pulses also reach higher magnitudes and show larger frequency

offsets prior to termination, of course.

The change from the "frequency of the growing pulse to that of the BLI or emission may occur
very rapidly. In Fig. 4.8 the change from the 3 Hz offset of the pulse to the 100 Hz offset of the BLI -

occurs in less than the 2.5 ms resolution time of the analysis filter, and is effectively instantaneous.

The transients that mark the beginning of a BLI or emission, though brief, are too long to be

explained as the results of dispersion. They may be inherent in the triggering process. They may
also be due partly to contamination by multipath propagation, which is always hard to rule out.
The pulses in Fig. 4.8 seem about 20 ms too long, but the cause of this is not clear.
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4.3 Pre-Termination Emission Triggering

All of the pulses we have considered so far show a more-or-less continuous increase in relative phase
during growth. However, a steady-state signal cannot have a continuously advancing phase any more
than a model airplane with a rubber-band motor can have its propellor wound up without eventually
snapping. In the case of growing whistler-mode signals, snapping occurs after a phase advance of
two to three revolutions and results in the generation of a pre-termination emission. These emissions
are always risers; fallers are never generated in the middle of a growing signal.

Pre-termination Emissions and Regrowth. Figures 4.9 and 4.10 show four one-second pulses at
2790 and 3030 Hz from the DIAG1 (DIAGnostic, version 1) transmission format. This is a sequence
of constant-frequency pulses at various frequencies interspersed with rising and falling ramps with
several slopes. It is very useful for monitoring growth activity as a function of frequency and
checking for the presence of multipath propagation. The tail ends of some of the falling ramps (and
a riser triggered by one) can be seen just preceeding the constant-frequency pulses in the figures.
This particular record was selected because growth rates are high enough here (and pulse durations
long enough) to trigger pre-termination emissions, and yet activity is not so high that multiple
triggering on several paths at once will obscure the underlying processes. There is a bit of multipath
propagation at this time, with a weak pé.th preceeding the main one by about 100 ms, but these
signals are still fairly well-behaved. _

The two pulses in Fig. 4.9 show growth and phase advance, and each triggers a pre-termination
emission after about 400 ms. The growth rate for the first pulse at 2790 Hz is somewhat less than for
the second one at 3030 Hz. This is a frequency effect in this case and not due to changing activity
with time. Growth often is a fairly narrowband process. At this time, pulses below 2600 Hz showed
no growth at all.

The first emission is triggered in each case when the phase has advanced about 2 or 3 revs. The
exact point where the emission starts is hard to define in these pulses because there is not such a
sharp change in frequency as we saw before in the case of termination emissions. The phase plots
show that shortly after each emission starts it is about 44 Hz above the input signal. The emission
is a riser in each case, and slowly drifts away from the input. (A second, weaker emission is also
triggered at about the same time on the 3030 Hz pulse, another indication of multipath.) Once
the emission has drifted sufficiently far from the input signal, the pulse is seen to start growing all
over again with about the same growth rate as it had initially. A second riser is triggered after an
advance of about 2 revs near {or just at} the end of the puise. The second emission seems very much .
like the first one. )

After the first emission separates, the signal amplitude as shown in the magnitude plot is
reduced to approximately the same level as at the beginning of the pulse, though it may be slightly
higher. The level when growth restarts is difficult to determine here because the first emission is
about 25 dB stronger than the input signal, and takes some time to drift out of the passband of the
analysis filter, by which time the second growth period is already underway. Just when the emission
drifts out of range, there are some brief but deep nulls in the magnitude plot, presumably caused by
beating between the emission (on the skirts of the filter) and the regrowing signal. However, there
1s also evidence that in some cases of pre-termination triggering the input signal is suppressed below
its initial value immediately following the emission [Helliwell, 1983a, Fig. 3; or Helliwell et al., 1985,

~ Fig. 6]. The suppression typically lasts up to 100 ms. Suppression can be seen in the spectrograms

in Fig. 4.9 as a brief white space at the input frequency just before regrowth. {The spectrogram
filter bandwidth, 40 Hz, was smaller than that used in the magnitude-phase plots, 160 Hz, allowing
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Figure 4.9. One-second pulses at 2790 Hz (left) and 3030 Hz (right) showing the
triggering of pre-termination rising emissions. The magnitude-phase plots (BW = 160 Hz)
show that successive risers are similar, and begin when the growing signal has advanced in
phase about 2 revs. The gray-scale phase plots at the bottom (BW = 40 Hz, P,,n = 1 rev)
show that growth restarts at the initial phase after separation of the first riser. Spectrogram
BW = 40 Hz.

“us to see this effect.)

There is little doubt about the phase behavior of the signal. The gray-scale phase plots at the
bottom of Fig. 4.9, plotted with a range of Pypan = 1 rev, show that the regrowing signal starts with
the same phase it had during the first period of growth. That is, as far as phase is conéerned, once
the first emission has separated, cbnditiqns are reset and growth begins ab initio.

The pulses in Fig. 4.10 (both at 2790 Hz) are similar at the beginning to the previous ones.
Again there is growth with phase advance, and the triggering of a pre-termination riser. In the first
pulse the riser begins after a phase advance of 2 fevs, and makes a rapid change in frequency to an
offset about 44 Hz above the input frequency. In the second pulse the emission begins after a slightly
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Figure 4.10. Two one-second pulses at 2790 Hz as in Fig. 4.9. In the left-hand case,
the signal has not regrown sufficiently by the end of the pulse to do more than trigger a

short faller. In the right-hand case the first emission never completely separates from the
input signal and suppresses all subsequent growth. '
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confirms that regrowth starts at the initial phase.

The right-hand pulse in Fig. 4.10 shows even less regrowth. In this case the first emission never
separates far enough from the input signal to allow the input to regrow at all. It remains about
30 Hz above the input until almost the end of the pulse. The narrower filter (BW = 40 Hz) in the
gray-scale plot may show a bit of the input pulse reappearing during the last 100 ms.

Generalizations about Triggering. From the pulses in Fig.s 4.9 and 4.10 and others seen in the
record at this time we can generalize as follows. A pre-termination emission is triggered on a growing
pulse when the phase has advanced 2-3 revs. Such an emission is always a riser. It may start with

_a BLL ‘

When multiple emission triggering occurs before the end of a pulse, the first two events (and
sometimes later ones) are similar. The magnitude of the first riser may be slightly higher (say 2 dB)}
than that of the second one, but otheérwise they look alike. (Subsequent risers may be slower to
form and reach lower peak' magnitudes.) Phase behavior during the intervals of growth prior to
the first two emissions may be very similar. Of course, it is often hard to see what happens at the
beginning of the second growth period because of energy from the previous riser leaking through the
passband of the analysis filters. On gray-scale plots like those at the bottom of Fig.s 4.9 and 4.10
where the filter bandwidth is only 40 Hz, the phase traces during the first and second periods of
growth and their subsequent emissions often look identical. The conclusion is that once an emission
has separated from the driving signal by, say, 50 Hz or more, it leaves few aftereflects and a second
period of growth can start almost from scratch. Each subsequent period of growth starts at the
same phase and approx1ma.tely the same amplitude as at the beginning of the pulse.

In some cases of pre-termination triggering the input signal seems to be suppressed below 1ts
initial amplitude for a brief interval immediately after each emission. Only after this interval, lasting
up to 100 ms, does the signal again appear and begin to regrow. It is not known how common post-
triggering suppression is.| Pre-termination triggering usually occurs during active growth conditions,
when multipath propagation is also common. /It is possible that post-triggering suppression always
occurs, but is only seen when it is not masked by concurrent signals from other paths.

Behavior at the end of a pulse depends on the amount of growth that has occurred at that
point. First, if the pulse is in the process of regrowth (any previous pre-termination emission has
drifted sufficiently far away in frequency) but the phase advance is not more than about 1 rev, at
the end of the pulse we will see the generation of a faller with a phase wrap-up of a few revs at most.
Behavior in this case is identical to the termination fallers shown in Sec. 4.2.

Second, if the pulse has grown such that its phase advance is 2 revs. or more, at the end of the
pulse we will likely see a riser much like the pre-termination ones. In other words, if the emission has
started at the end of a pulse, or is just about to start, then the end doesn’t seem to have much effect.
If the emission is already underway when the end of the pulse is reached but has not yet drifted
outside the passba,nd of the analysis filter {or if post—trlggermg suppression occurs), the actual end

may not be observable.




139

4.4 Sideband Generation .

We have already seen several examples of sidebands, signal components that a.ppea.r spontaneously
at frequencies near the frequency of a transmitted signal. For instance, in Fig. 3.6 the LICO1 signal
~ with two tones 30 Hz apart was seen at the receiver to have additional components 30 Hz above
and below the transmitted pair. These sidebands are relatively constant with time, and show phase
changes from duct motion identical to the phase changes at the transmitted frequencies. That is,
the sidebands are phase coherent with the transmitfed signal.

. Sidebands may also occur on single-frequency input signals. In Fig. 4.4, a one-second growing
pulse was seen in the spectrogram to develop symmetrical sidebands for a brief time as saturation
is reached. These sidebands are transient, and appear about 60 Hz either side of the transmitted
signal, or “carrier.” Other growing pulses were seen to develop regularly-spaced ripples in amplitude
at saturation, for instance, the 50-70 Hz ripples in Fig.s 4.2 and 4.8. If we had used sufﬁcientiy
narrow analysis filters in the spectrograms, we would have found that these ripples corresponded to
sidebands. Temporal growth of the input components is not necessary for sideband generation. The
‘linearly-propagating pulses in Fig. 3.5, which showed no growth and no phase changes except those
due to duct drift, still develop amplitude rlpp]es, in this case at an 11 Hz rate,

Phase analysis is useful in two ways when studying sidebands. First, as we will see in the
first example, signal magnitude and phase behavior reveals the general nature of the mechanism
that causes sidebands, though without revealing all the details of the process. Second, relative
phase measurements allow us to determine the instantaneous frequency relationships between input
signals and sidebands. As we will see, multiple sidebands are often Ha.rmonica.lly related, and some

sidebands seem to occur at particular frequency offsets.

4.4.1 Sidebands Due to Two-Tone Transmissions

_As we saw in Section 4.1, the growth process in the magnetosphere distorts a whistler-mode sig-
nal, changing its amplitude and frequency in complicated ways. An amplifier which distorts a signal
waveform can cause intermodulation distortion, mixing signal components at different {requencies to
produce new components, including sidebands. With this in mind it isn’t surprising that magneto-

" spheric distortion might cause a two-tone input signal to develop sidebands. However, the distortion

produced by magnetospheric growth is not the same as distortion in an electronic amplifier. The

growth mechanism is too slow to distort the individual cycles of an input waveform. Tt is the enve-
lope of the whistler-mode signal (a complex-valued function of time) which shows growth and phase
advance. Thus magnetosphenc distortion is really envelope distortion.

Waveform distortion in an amplifier is usually instantaneous. The output voltage voy:{t) at

a given time depends only on the.input voltage vin(f) at that time and the amplifier gain g, as

Vout (1) = g-vin(t). Distortion occurs because the gain g is not constant, but is a function of the input

voltage, g{vin(t)). The gain function of magnetospheric growth is different in that it depends not only

on the present input signal, but on past conditions as well. Growth exhibits a kind of memory. This
is because cyclotr'on—resona.nt waves and particles are travelling in opposite directions through the

growth interaction region. An output signal can affect particles moving into the interaction region,
which will in turn affect output signals at some later time, a$ in the feedback model of Helliwell
and Inan [1982]. Magnetospheric gain is really some function g(th(t ~T),..., Vout(t); Vin (t)) that
depends not only on the present input but on previous cutput signals back to some tune T before

the present. The time T is the loop delay of Helliwell and Inan’s [1982] model, the time for a particle .

to transit the interaction region going one way plus the time for a wave to travel back going the

other way. It is probably in the range 50— 100 ms for typical Siple signals. (The magnetospheric gain
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Figure 4.12. Magmtude and phase plots of a synthetic two-tone signal to aid in in-
terpreting Fig. 4.13. Scale at top shows the relative magnitudes of the two components at
3010 and 3020 Hz, which was changed every 200 ms. Filter bandwidths (BW = 80 Hz) are
wide enough that all magnitude plots are identical. However, the phase plots can be used
to estimate the relative component magnitudes as explained in the text. Note the 1/2-rev
alternation in phase with each beat at the mean frequency.

100 ms

but since the average is one-sided in time it causes transient events to last longer than expected and
to be asymmetrical. For instance, the reader will notice that the group of spherics near 1324:27 lasts
longer in the gray—scale plot that it. does in the spectrogram. The pulses themselves are extended in

time and die away slowly because of averaging.

Before we examine the magnitude and phase structure of the pulses in Fig. 4.11 in detail, let’s
review what an undistorted two-tone signal should look like. Figure 4.12 shows magnitude and phase
plots of a synthetic two-tone signal containing components at 3010 and 3020 Hz, just like the first

two pulses in Fig. 4.11. Analysis filters have been synthesized at both of the input frequencies, and

at the mean frequency of 3015 Hz as well. The bandwidth of the filters is 80 Hz, so all filters will

pass both signal components and their magnitude traces are nearly identical. The phase traces are '
dlfferent however, because of the different frequencies of the phase references. The amplitudes of
the two components were changed every 200 ms, while keeping their sum constant, as labeled at the -

top of the figure.

—
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The waveform s{t) of a two-tone signal with components of equal amplitude A and frequencies
fa and f (say 3010 and 3020 Hz} can be expressed as

s{t) = Acos(2n faf) + Acos(2m f3t) = 9.4 cos (27rfb fa ) €08 (27:';1-%—'&%). (4.1)

In the right-hand expression we ha.ve written the sum of two independent tones as the product of

two signals: the carrier signal at the mean frequency, (f: + f3)/2 = 3015 Hz; and the modulation

signal at half the difference frequency, (fis — fa)/2 = 5 Hz. When we plot the magnitude at the

mean frequency we will see the envelope of the signal, the absolute value of the modulation. This

is the term [cos(2m(fs — fa)t/2)|, a rectified cosine wave with beats at a rate of fy — fo = 10 Hz.

When we plot the phase.at the mean frequency we will see a straight line (since the carrier is at this .
frequency) interrupted by half-rev steps as the modulation term changes sign with each beat. That

is, alternate beats in the waveform are out of phase. '

This is just what we see in Fig. 4.12. Midway through the signal, where the amplitudes at 3010
and 3020 Hz are equal (1.00/1.00), the magnitude at the mean frequency is a rectified sinewave
with beats every 100 ms. Indeed, all the magnitude traces look like rectified sinewaves at this point
because, as mentioned above, the analysis filters at 3010 and 8020 Hz are wide enough to pass the
entire signal with little attenuation. The phase at 3015 Hz is a squarewave with 1/2-rev steps. The
phase traces at 3010 and 3020 Hz are not squarewaves but sawtooths 1/2 rev peak-to-peak every
100 ms. These are merely the squarewave at 3015 Hz tilted by an additional 45 rev/s due to the
differences in reference frequency.

The situation when the amplitudes of the two tones in the signal are not equal is shown at the
beginning and end of the signal in Fig. 4.12. In this case, the nulls between beats do not go quite
to zero magnitude since there. is still a bit of the stronger tone left at the bottom of the mull. The
sawtooth phase of the stronger tone is a bit smoother now (reaching the limiting case of a straight
line when the weaker tone vanishes completely). The phase of the weaker tone is rougher and shows
whole-revolution lags or advances in phase between beats. Here is an interesting application of phase
information—determining the relative magnitudes of signal components. While the magnitude traces
are similar at all frequencies, the phase traces show which component is stronger.

Now we can look at the CB793 pulses in more detail. Figure 4.13 shows an enlarged spectrogram
and magnitude-phase plots of the second pulse in Fig. 4.11. Magnitude and phase are plotted at
the two transmitted frequencies, 3010 and 3020 Hz, and at the mean frequency, 3015 Hz, just as
in Fig. 4.12. Figure 4.14 shows similar information for the third pulse in Fig. 4.11, a pulse with
. components 20 Hz apart. Examining these two figures, and comparing them to the synthetic signals
in Fig. 4.12, we can make the following observations:

1. The received signal is periodic. At each null in" the envelope of the transmitted pulse (every
100 ms in Fig. 4.13, every 50 ms in Fig. 4.14) the magnitude of the received signal goes to
Zero, or close to it, and the process is reset. However, the output signal takes a little time, say
200-300 ms at the beginning of each pulse, to reach steady state. '

2. For the tones with 10 Hz separation, as the iﬂput magnitude increases after each null so does
the output magnitude. The output magnitude continues to increase after the input signal has
peaked, giving the output beats a sawtooth shape instead of the rectified sinewave shape of the
input. The beats with 20 Hz separation are not appreciably sawtooth shaped, though-they look
flatter on top than _rectiﬁed sinewaves. The 10 and 20 Hz pulses show ripples in magnitude
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4. The phase at the mean frequen.cy shows 1/2-rev changes from one beat to the next, as expected.

If the amplitudes of the upper and lower tones were equal we would expect the phase at the
mean frequency to be constant during each half-cycle interval. Since the lower component is

actually a bit larger, we expect the phase at the mean frequency to slowly decrease during each
interval, as at the beginning of Fig. 4:.12. In fact, the phase at the mean frequency increases
during each interval, a most important effect, but in line with the general phase advance seen
with growing signals. ' :

5. The rate of phase advance (instantaneous frequency offset) is not constant during each beat,
but peaks near the middle of the interval. For the 10 Hz pulses, the peak rate of phase advance
is about +8 Hz. The phase advance itself peaks about two-thirds of the way through each beat,
reaching about 0.2-0.4 rev with 10 Hz separation, and 0.15-0.20 rev with 20 Hz separation. After
the phase peak is reached, the phase rapidly retards as the next magnitude null approaches. In
most cases the phase retards 1/2 rev, as expected, to meet the phase inversion in the following
interval. However, in several instances in Fig.'4.13 the phase retards 1.5 revs. That is, the faller
generated at the end of one beat inserts an extra whole revolution of phase lag before the start
of the next beat.

We can think of the two-tone pulses above as a series of separate beats, each beat a short pulse
that grows, advances in phase, and triggers a terminal faller much like the short pulses in Fig. 4.5.
However, those pulses had constant input magnitudes (rectangular envelopes) whereas the two-tone
beat envelopes here are rectified sinewaves. Still, the behavior is quite similar in both cases.
Helliwell et al. [1986a] describe a sideband generation model based on this similarity. Each beat
in a two-tone signal is assumed to start an exponentially growing wave that reaches its maximum
magnitude at the null before the next beat. The signal is then suppressed as the next beat begins
_to grow. The phase is assumed to advance in a roughly parabolic manner during each beat. This
model describes many of the important features that are seen. It is not complete, however, for the

following reasons:

1. The phase during each beat does not advance monotonically, but shows the parabolic advance
followed by termination wrap-up and decrease typical of pulses with fallers, as seen in Sec-
tion 4.2. But before we can incorporate such details into the sideband generation model we
need to develop a good model of termination triggering.

2. The beats are not independent, since the process takes several beats to reach steady state. That
is, the output depends not just on the current beat but on those up to 200-300 ms in the past.

3. The emission triggered at the end of one beat continues for some time, in some cases through the
next beat and into the second one following. A complete model must account for the presence
of at least two signals at once, the current beat and the previous emission.

4. Finally, we must account for interactions between the growing beats and the fallers. In Fig. 4.11
the lower sidebands are seen to be phase-coherent more than 100 Hz below the input tones. It

is possible that this coherence is just due to the constancy of the fallers themselves—each faller .

moves at exactly the same rate just because the growth environment remains stable throughout
the pulse. However, since the amplitudes and durations of the fallers change during the pulse,
it seems more likely that they are coherent because they remain phase-locked to the input tones
in some manner. (Note that coherence is not always present. Sidebands in the first pulse show
some drift at 2970 Hz and below.) ' -

[——
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Two-Tone LICO Signals with Sidebands. Now we will look at a more typical case of two-tone .
signals with sidebands. Figure 4.15 shows gray-scale phase plots of parts of a LICO (LIne COupling)
transmission, 10 s segments with two signals separated by 30 Hz. This transmission is similar to the
LICO1 case shown in Fig. 3.6, except here the two-tone segments are only 10 s long, alternating with
single-tone segments. The LICO format also contains two-tone segments with 60, 120, and 240 Hz
separations, but the 30 Hz segments shown here are the most interesting.

The two transmitted signals at 4090 and 4120 Hz are fairly stable, with no evidence of temporal
growth or its associated phase advance. The interesting features here are the coherent sidebands
at 30 Hz spacings above and below the transmitted tones. All intervals show the first two upper
sidebands, most show the third, and the last interval at 1013:44 even has a weak fourth upper
sideband at 4240 Hz, 120 Hz above the upper input tone. All intervals show the first lower sideband

- and some show the second lower one, but véry weakly. There is also a weak signal at 4120 + 2 Hz.
This is a local power line harmonic and not a magnetospheric signal.

The relative amplitudes of the two input tones and the various sidebands change slowly with
time. As a general rule, the upper sidebands are stronger than lower. ones, and those closer to the
transmitted tones are stronger than those farther away. In fact, the first upper sideband at 4150 Hz
is sometimes stronger than one or both of the input tones. All components show phase changes at a
rate of about 0.1 Hz, presumably due to duct drift. All the sidebands remain phase coherent with
the input tones throughout each interval, showing nearly identical phase changes, though they are
sometimes a bit noisier. ‘

There may be small differential phase changes occurring, particularly with the higher-order
sidebands. For instance, during the fifth interval at 1013:24, the two input tones and most of the
sidebands show a phase advance of 1 rev. However, the third upper sideband at 4210 Hz advances
2 revs during this time. The second lower sideband at 4030 Hz seems to advance about 1.5 rev,
though 1t is a bit noisy. As another example, in the last interval at 1013:44 all components advance
roughly 1 rev except for the upper transmitted tone whose phase changes very little. We might
expect to see differential phase changes since the relative amplitudes of the different components are
changing, presumably because of changes in the sideband generation mechanism. However, the data
are not good enough to say whether this is the case, or whether the differential phase changes are
Just due to multipath fading or some other cause unrelated to sideband generation.

Figure 4.16 shows magnitude-phase plots of one-second intervals from the center of each of the
six LICO segments in Fig. 4.15. The output of only one analysis filter is plotted, centered at the

‘mean frequency of the transmission, 4105 Hz. The filter bandwidth is 160 Hz, so it passes most of
the sidebands in Fig. 4.15. For comparison, the response of the filter to a synthetic signal like the
LICO signal as transmitted is shown at the bottom of the figure.

The various intervals in Fig. 4.16 seem to look quite different. They are certainly more com-
plicated than the mean- frequency filter plots in Fig.s 4.13 and 4.14.. However, we can pick out the
following features:

1. Each signal is periodic, with a period of 1/15th second. Phase alternation between successive
~ beats in the input signal (two beats per period) is still occasionally evident, as in the third plot
starting at 1010:47. '

2. The rate of magnitudé ripples changes from one plot to another. In the first plot there are
60 major ripples per second, in the fifth plot about 30/3 and in the sixth plot there are 90/s.
Turning back to Fig. 4.15 we see that the number of major ripples per second just reflects the
frequency spacing of the dominant components in the spectrum, being 60 Hz in the first case
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Figure 4.15. Gra,y~sca.le phase plots {(BW = 20 Hz, Pspqn = 1 rev) of six ten-second
segments of two-tone signals with 30 Hz separation from a LICO transmission. The two
transmitted components at 4090 and 4120 Hz are indicated by arrows. Coherent sidebands
can be seen, at various times, at 30-Hz intervals from 4030 Hz up to 4240 Hz. The input
tones and generated sidebands show slow phase drifts due to duct motion, but all drift in
phase together. A local power line signal near 4020 Hz is unrelated to the whistler-mode
31gnals.
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Figure 4.16. Magnitude-phase plots (BW = 160 Hz, linear magnitude scale) of one-
second intervals from the six LICO segments in Fig. 4.15. Signals are analyzed at the mean
frequency, 4105 Hz. The bottom plot shows a synthetic two-tone input signal for reference.
The LICO signals show periodic behavior which changes slowly with time. The rate of
magnitude ripples depends on the frequency separation of the major components of the
signal at any given time, and the average slope of the relative phase depends on the mean
frequency of those components.




150

(lower input tone and first upper sideband), 30 Hz in the fifth interval (two input tones), and

90 Hz in the last case (four major components from first lower sideband to first upper sideband).

3. The average rate of phase change is different in different plots. For example, in the second

plot the phase often advances 2 revs every 1/‘ 15tk second (+30/s), in the third plot there is

little or not net advance, and in the fourth plot the phase lags 1 rev every period (—_15/3).
Again referring to Fig. 4.15, we see that the average rate of phase advance reflects the effective
frequency, the “center of mass” of the various components in the spectrum, with respect to
the analysis filter reference frequency. In the second plot this is about 30 Hz above the mean
frequency (two input tones and two upper sidebands), at the mean frequency in the third plot
(two input tones), and 15 Hz below the mean frequency in' the fourth plot (lower input tone).

These features are just. what one would expect to see, given the gray-scale plots in Fig.'_4.15. Fig- -

. ure 4.16 doesn’t really tell us much more than Fig. 4.15 did, except to confirm the phase-coherent
nature of the process. However, remembering the signals in Fig.s 4.13 and 4.14, it is important to
note what we don’t see in this case. We don’t see beats with sawtooth-shaped magnitudes charac-
teristic of individually growing pulses. And we don’t see the phase advance and wrap-up at each
beat characteristic of growing pulses with terminal fallers. {There appear to be instances of phase
wrap-up in some beats, but the signals are too complex in general to be sure of this.)

Summary. Two-tone signals with fallers like the CB793 pulses in Fig.s 4.11-4.14 are rare.
Two-tone signals with sidebands usually look much more like the LICO signals in Fig.s 4.15 and

4.16. However, the CB793 pulses are invaluable in trying to understand the mechanism of sideband |

~ generation. They can be viewed as an intermediate form, a “missing link” combining the features
both of growing pulses and of multi-tone signals with coherent sidebands. Because of their special
form, we are able to see how cyclotron-resonant growth can explain, at-least in a qualitatiire mannet,
the creation of sidebands. Fach beat in a two-tone signal can be seen as an independent pulse,
which gfows and advances in phase until growth is damped out by the following beat, as proposed
by Helliwell et al. [1986a]. Most two-tone signals with sidebands are a good deal more complex. Yet
the same mechanism must surely be responsible even in more complicated -cases.
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4.4.2 Spontaneous Sidebands on a Single Tone

The formation of sidebands around a two-tone signal as discussed in the previous section is straight-
forward. Sidebands form at frequencies offset from the two input tones by multiples of the input
tone spacing, and can be viewed as a kind of intermodulation distortion. Howéver, sidebands are
also seen to form around single-tone signals. The cause in this case is less clear.

Sidebands on a single tone were reviewed by Park [1981]. He summarized the characteristics of
these sidebands as follows [Park, 1981, p.'2289}: :

“I. Although sidebands generally tend to appear when the carrier is strong, there is
no simple relationship between the carrier amplitude and sideband frequency sepa.ratlon or

sideband amplitude.

2. Sideband separations from the carrier range from ~ 2 to 100 Hz, but at any given
time, sideband separations tend to remain constant even as the mdebands switch on and
off. No case has been observed where the sideband separation varies smoothly with the

carrier amplitude.
3. Sideband amplitude may be symmetrical or asymmetrical about the carrier. In the

asymmetrical case it is usually the upper sideband that is stronger.
4. Multiple sidebands are often observed, and their frequency separations from the
carrier may or may not be harmonically related
5. Sideband amplitude is usually 10 dB or more below the carrier amplitude, but
sometimes it can exceed the carrier amplitude and can also trigger emissions.”
From my own experience, this is an accurate summary of spontaneous sideband features. Park
[1981], of course, was not able to use signal phase information in his study. In the rest of this section
we will take a second look at some examples of spontaneous sidebands, and see how phase analysis
can help measure their instantaneous frequencies. Based on these observatlons we will add two more

characteristics to the list above.

: Symmetrical Sidebands on Growing Pulses. Figure 4.17 shows two one-second pulses from a
DIAGI1 transmission, as seen above in Fig. 4.4. The first pulse, at 3810 Hz, grows for about half
a second and then develops roughly symmetrical sidebands with energy both above and below the
carrier. Toward the end of the pulse the lower sideband disappears and a second upper sideband
appears at an intermediate frequency, between the carrier and the coriginal upper sideband. At the
‘end of the pulse there is little energy remaining at the carrier ffequ_ency and only a weak terminal
ernission is triggered.

The gray-scale phase plot of the first pulse shows that the mdebands mltlaHy appear about
+50 Hz from the carrier, then drift out to £60 Hz. The upper 60 Hz sideband continues until the
end of the pulse. Note that during its 400 ms existance this sideband shows a differential phase
change with respect to the carrier of no more than 0.1 rev. That is, its offset frequency from the
carrier is 60 & 0.25 Hz. The second upper sideband, which persists for 250 ms near the end of the
pulse, is seen to be exactly 30 Hz from the carrier—a subharmonic of the 60 Hz upper sideband.

The second pulse in Fig. 4.17, at" 4050 Hz, develops symmetricdl sidebands during the last
400 ms, but still has enough energy left to generate a BLI and trigger a ter_rriinai faller. The gray-
scale plot shows the sidebands to be about £41 Hz from the carrier. Note that the sidebands are

_'symmet;ric'al about the frequency of the growing output signal at 4050.6 Hz, and not that of the
input at 4050 Hz. There is also a hint of a sideband at —82 Hz for about 200 ms. _

~ The magnitude-phase plots at the bottom of the figure were made with a filter bandwidth of
160 Hz, wider than the 80 Hz bandwidth in Fig. 4.4, in order to include all sideband energy. Both
pulses show ripples in magnitude, at a 60 Hz rate in the first pulse, with an emphasis on alternate

- beats while the 430 Hz sideband is present; and at a roughly 40 Hz rate in-the second pulse. The
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Figure 4.17. Two one-second single-frequency pulses with sidebands. Spectrograms
(BW = 20 Hz) show symmetrical sidebands developing midway through each pulse. Gray- : '
scale phase plots (BW = 20 Hz, Pipan = 1 rev) show the sidebands to be at 30 and 60 Hz
in the first (3810 Hz) pulse, and at ~ 41 Hz in the second (4050 Hz) pulse. Magnitude-
phase plots (BW = 160 Hz) show marked magnitude pulsations and significant, though
less regular, phase pulsations. See also Fig. 4.4.

size of these ripples is significant, with dips as much as 20 dB below the peaks. There are also some Q_IJ
phase ripples, about 0.4 rev peak-to-peak, but they are not as regular as the magnitude ripples.
(The large phase jump in the middle of the second pulse is caused by the spheric, of course, and
. should be ignored.) If we saw magnitude ripples with constant relative phase, we would interpret the
sidebands as resulting from amplitude modulation of the carrier tone. Since there are phase ripples,
there must be a certain amount of phase modulation as well, though it may just reflect unequal
amplitudes of the upper and lower sidebands.

All the other pulses in this transmission behave similarly to those in Fig. 4.17. Pulses at
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3570 Hz show noisy sidebands, mostly about +40 Hz, but with significant signal energy closer to
the transmitted frequency. The 3810 Hz pulses have sidebands very close to +60 Hz with some
subharmonics. The 4050 Hz pulse sidebands are near +40 Hz, and better separated from the
transmitted signal than the other pulses. That is, there is less energy at frequencies between the
transmitted signal and the sidebands. Magnitude plots show than many pulses develop pronounced
ripples beginning halfway through the pulse. The ripples are mitially quite symmetrical, occur
at a 40-60 Hz rate, and show a peak-to-valley ratio of about 2:1. Often the ripples become more
irregular toward the end of the pulse. There are several cases where every other ripple is emphasized,
indicating signal energy at half the ripple frequency. Phase plots show ripples at the sideband
frequencies, but they are less regular than the magnitude ripples. In several pulses there are cases of
whole-revolution advances in phase as upper sidebands start to predominate. These advances may
be the same phenomenon as the N events of Dowden et al. (1978].

Mere Growing Pulses. Figure 4.18 shows spontaneous sidebands developing‘ on some ULF75
pulses.' The first pulse is one of that series of 0.5 s pulses at 4500 Hz that was introduced at the
beginning of the chapter. The second pulse is one of a few 1 s pulses at the end of this transmission.
The data record analyzed here was played back at twice normal speed so the effective sampling
rate was 12800 samples/s, half the usual rate. This allowed analysis filters to be used which had
bandwidths as small as 10 Hz. As a result, the ff spectrograms and gray-scale phase plots show
finer frequency details than can be seen in Fig. 4.17.

The spectrogram of the first pulse in Fig. 4.18 is typical of most 4500 Iz pulses in the record _
at this time. Many of these puises, especially from 1418 onward, develop more or less symmetrical
sidebands. The sidebands arise after growth has saturated, around 300 ms into each pulse. The
largest sidebands seem to be about 60 Hz above and below the main signal, or carrier. Sometimes
further sidebands appear during the last 100 ms, situated between the 60 Hz sidebands a.nd the
carrier. _

Gray-scale phase plots show that the major sidebands are indeed close to +60 Hz, as shown
by the first pulse in Fig. 4.18. While the phase of the carrier increases with time, the phases of the °
sidebands increase at very nea.ri'y the same rate. The difference between the phase advance of the
carrier and the sidebands is often less than 0.2 rev over the 200 ms duration of the sidebands. That
is, the sidebands are often offset from the carrier by 6041 Hz, even though the growing carrier may
be several hertz above the transmitted frequency. The upper 60 Hz sideband is usually somewhat
- stronger. The first pulse in Fig. 4.18 alsc shows inner sidebands at about 420 Hz, and a weak
sideband about 80 Hz below the carrier. Other pulses in this record have sidebands near 430 Haz.
All these additional sidebands appear later than the 60 Hz sidebands, and their phase coherence
- with the carrier is not as great.

The beginning of the second pulse in Figure 4.18 is obscured by a rising emission from a
preceeding one, but otherwise this pulse grows in a fashion almost identical to the first pulse in the
figure. By the middle of this one-second pulse we see sidebands very similar to those of the first
pulse. In fact, we suspect that if the first pulse had lasted longer than 0.5 s both might look much
the sameé. After the midway point, the sideband structure becomes much more comiplicated, with

. energy at seven or eight discrete frequencies. The upper sidebands are stronger than those below.
By the end of the puise most of the energy has been transferred to the main upper sideband, and
very little remains at the carrier. Only a weak terminal emission is triggered. The gray-scale plot
shows the initial sidebands in this case to be at £62 Hz. However, especially in the middle of the
pulse, there is significant signal energy about %25 Hz from the carrier. The remaining sidebands
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Figure 4.18. Single-frequency pulses at 4500 Hz with sidebands. Spectrograms (BW =
10 Hz) show complicated sideband structure developing after about 300 ms of growth.
Gray-scale phase plots (BW = 10 Hz, P,pan = 1 rev) show the strongest sidebands to
be at = £62 Hz, but also at ~ £25 Hz. Magnitude-phase plots (BW = 160 Hz) show
complicated magnitude and phase pulsations. Bars below the plots indicate the duration -
of the 0.5 s and 1.0 s transmitted signals. See also Fig.s 4.1, 4.2, and 4.8.

are less stable and their frequencies are hard to estimate. They may or may not be harmonically
refated. _

The magnitude-phase plots show sideband ripples developing as the pulses reach saturation.
Again, the magnitude ripples are large and fairly regular whereas the phase ripples are less significant
and noisier. However, there are significant low-frequency phase ripples that reach about 0.7 rev PP
in the middle of the second pulse when the strong +25 Hz sidebands appear. There are also some




155

very deep magnitude nulls at this time, and some whole-revolution jumps in phase.

60 Hz Sidebands on ¢ CW Signal. The preceding examples showed sidebands developing as
growing pulses. reached saturation. In the next example we will see sideband activity on a continu-
ous single-frequency signal. Figure 4.19 shows 37 seconds of a POLIN (POwer Line INterception)
continuous-wave transmission. The POLIN format consists of four minutes of single-tone signal,
starting at 4420 Hz and stepping up in frequency by 10 Hz once per minute. Figure 4.19 shows the
-end of the second minute and the beginning of the third minute of transmission. A spectrogram of
three minutes of this signal is given by Park [1981], and Paschal and Helliwell [1984] show a similar
‘gray-scale phase plot, made with a slightly wider analysis filter. ' _

During the first 108 s of the transmission the received signal is stable, without growth, and
shows a slow decrease in phase due to duct drift which varies from —0.05 to —0.4 Hz. This is the
condition at the beginning of Fig. 4.19. At 1332:48 the signal amplitude increases and the phase
advances. After a second or two, when the phase has advanced about 1 rev, growth stops and
~ sidebands appear 60 Hz above and below the carrier. They last about 1.5 s, disappear, and the
carrier phase retards. This cycle of growth and phase advance, sidebands appeariﬁg and fading

away, phase lag and amplitude decrease continues every few seconds for the rest of the transmission. -

The received signal steps from 4430 Hz up to 4440 Hz at 1333:02.4 (after a one-hop delay of
2.4 5). Fig. 4.19 shows that the 60 Hz sidebands also increase at this time, to remain +60 Hz from
the carrier. The upper 60 Hz sideband is stronger than the lower one. There is also sideband energy

closer to the carrler, from 20 to 40 Hz away, also stronger above than below. These closer sidebands

seem very noisy and show no phase-coherent structure.

Because of the irregular variation in the phase of the carrier in Fig. 4.19, it is difficult to estimate
the exact frequency of the coherent sidebands. To overcome this, a second gray-scale plot was made
tracking the carrier as a pilot tone in order to measure the phase of the sidebands with respect to it.
The phase of the sidebands relative to the carrier sometimes seems to be constant over periods of
several seconds, so the sidebands are at 60+0.1 Hz, at least in some cases. However, the amplitude
of the carrier is not always very high, and there are some tracking EITors. ‘Because of this, it is
difficult to compare the phases of sideband segments separated by more than a few seconds. Also,
in a few spots there is evidence of a drift in the relative phase of a sideband by as much as (.25 Hz.
So we can say that the coherent sidebands in Fig. 4.19 are offset from the carrier by a frequency
close to 60 Hz, certainly within 0.25 Hz of it. Whether the offset is exactly 60 Hz, possibly with

some smoall phase variations as sidebands come and go, or whether it may have some other value, or -

even change with time, is uncertain.
Figure 4.19 also shows signals induced in the receiving loop from local power lines. There is a

weak signal near 4260 Hz, which is the 71st harmonic of the 60 Hz power grid. The frequency of

this signal shows changes as large as 1 Hz. This is a relative change of 0.02%, typical of the stability
of the power system. There is another weak signal (barely visible) at 4140 Hz, the 69tk harmonic,
which is coherent with the previous one. Finally, there isa stronger signal near 4120 Hz. This signa’.l',
which varies in frequency by over 5 Hz, is not a 60 Hz harmonic but is probably caused by an electric
motor somewhere in the local power system. This type of interference is common at Roberval, but it
can be identified by its wide frequency variation, intermittent nature, and occasionally by frequency
ramps when the motor is first turned on. The point to notice here is that neither the Siple carrier
nor its 60 Hz sidebands have any obvious connection with either the local power line harmonics or
" the motor noise. -

Noisy Sidebands with Coherent Carrier. Not all single-frequency signals with sidebands show
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Figure 4.19. Spectrogram and gray-scale phase plot (BW = 16 Hz, Pypan = 1 rev) of
a CW signal starting at 4430 Hz. Note the growth -and phase advance starting at 1332:48,
and the subsequent bursts of coherent sidebands +60 Hz from the growing input signal.
At 1333:02 the input frequency in increased by 10 Hz, and the sidebands also increase by
that amount. After Park [1981] and Paschal and Helliwell {1984].

coherent components at 60 Hz offsets, of course, or at any other well-defined frequency. In Figure 4.20
we see an example of coherent single-tone carrier signals with noisy, incoherent sidebands. Thisis a
small segment of a CBST {Coherence Bandwidth STair) transmission {Helliwell, 1983a). The CBST
format contains two tones, both initially at the same frequency. One tone moves up in 10 Hz steps
once pet second until the frequency separation is 270 Hz, then it steps back down again. The second
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Figure 4.20. Portion of a two-tone CBST transmission showing noisy amplification
typical of more active conditions. The upper tone steps down by 10 Hz every second, the
lower one is constant in frequency at 4690 Hz. Discrete chorus elements rise from below to
over 4500 Hz. The center gray-scale phase plot (fr = 10 Hz, BW = 20 Hz, Pypsn = 1 rev)
shows coherent signals with mostly upper sideband noise. The magnitude-phase plot and
lower gray-scale phase plot {both BW = 80 Hz) show the noise at 4650 Hz.

tone remains constant in frequency. The CBST format was designed to investigate the interaction

of two single-frequency signals as their separation changes.

In Figure 4.20 we see the signal as the upper tone is starting to step down from its maximum
frequency. At the beginning of the plot, the upper tone is at 4960 Hz, and by the end of the plot has.
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Just reached 4920 Hz. The lower tone remains at 4690 Hz throughout. The spectrogram shows the
upper edge of a band of chorus, a sign of growth activity, that extends from 2200-4000 Hz with a
few discrete elements reaching up to the Siple signal. However, there are few risers triggered by the
CBST signal, normally another sign of growth act1v1ty Instead, most of the signal growth seems to
be channeled into the sidebands.

The gray-scale phase plot in the center of Fig. 4.20 was made with a filter spacing of f; = 10 Hz,
but without index dots separating the filter traces so the plot would be a bit more compact. We
see coherent signals at both input frequencies (viewing the figure edge-on helps), and can pick out
the frequency steps made by the upper tone. However, the sidebands just look like noise. There is
more sideband power above each input signal than below, but there are very few discrete sideband
elements. This is a common type of behavior. Much of the time sidebands on single-frequency signals
appear noisy and incoherent. Noisy sidebands become more common as growth activity increases.
When conditions are moderately active, a coherent carrier signal may still be seen among noisy
sidebands, as in Fig. 4.20. When conditions are very active, even the carrier may disappear into
noise. This increase in noisiness could be caused by increasing instability in the sideband generation
process, but it might also be due to increased multipath interference. : '

7 The magnitude-phase and gray-scale phase plots at. the bottom of Fig. 4.20 show the behavior
of the lower tone at 4690 Hz. The magnitude plot shows variations over times scales from 10 ms
to 1 5. The phase plot shows fluctuations around 0.4 rev peak-to-peak intefupt.ed by numerous
whole-revolution phase advances. The gray-scale plot at the bottom shows that some of these phase
jumps resemble the N events of Dowden. et al. [1978]. ,

The sideband noise we see in Fig. 4.20 occurs independently around each input tone. No
sidebands at harmonics or subharmonics of the frequency separation are seen. The CBST format
demonstrates that there is little if any interaction between two signals when - ‘they are separated
by more than, say, 100 Hz. However, harmonic sidebands do occur in CBST signals-with smaller
separations, just like the two-tone signals in Sec. 4.4.1 above. In this particular record, harmonic
two-tone sidebands occur with separations from 20 to 50 Hz, and occasionally at larger values.
One interesting feature is that both the carrier amplitudes and the level of incoherent sidebands

- are reduced when the input tones are close together {but more than 16-15 Hz a.part) especially at
separations of 20 and 30 Hz [Helliwell, 1983a].

Discussion. Park [1981] reviews various theories which have been proposed to account for
spontaneous sidebands. All are based on postulated instabilities inherent in the growth process.
The examples of sidebands above offer little information to help us choose between these various

- theories, except possibly (as Park [1981] also observes) to rule out some which predict that the
frequency offset of sidebands will depend on the carrier amplitude.

However, we have seen an effect which is not predicted by any theory-—the occurrence of side-
bands at offset frequencies very close to 60.0 Hz. Mea,suring signal frequencies from spectrograms,
Park [1981, Fig. 3] shows that many sidebands in the POLIN case above (Fig. 4.19) have offsets
clustered in the range 57-63 Hz. (Others are in the range 25-40 Hz.) Using phase analysis we found
those sidebands to actually be within +0.25 Hz, and probably £0.1 Hz, of 60.0 Hz. We also saw
sidebands near 60 Hz on growing pulses in Fig.s 4.17 and 4.18. There is no known natural process
which might account for this particular value, and the obvious inference is that these sidebands are
related in some way to the 60 Hz frequency of the power system.

There are several conceivable causes of 60 Hz sidebands. One is that they are due to background
signals in the magnetosphere “power line radiation” or PLR at harmonics of the 60 Hz power

7
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frequency, which are somehow amplified in the proximity of a Siple signal. However, the sidebands
in Fig. 4.19 cannot be PLR signals per se, because when the transmitter frequency steps up by
10 Hz, the sidebands also increase to remain 60 Hz away from it.

As a second possibility, Paschal and Helliwell [19084] suggested that “beats between amplified
power line harmonics could temporarily tfap longitudinally resonant electrons as in the Park and
Helliwell [1977] explanation of whistler precursors, causing a periodic density bunching of these
electrons. This bunching might then cause cyclotron-resonant waves to be modulated at the 60 Hz
beat frequency.” This theory has the advantage that it is only the difference in frequency between
power line harmonics that is important, and not the harmonic frequencies themselves. We will
discuss the evidence for and against PLR in Section 4.6.

A third possibility is that the 60 Hz sidebands were transmitted, at a low level, along with the
intended single-frequency signal. 60 Hz is, of course, the nominal frequency of the Siple Station
generators as well as the North American power grid. It is certain there will be 60 Hz sidebands
at some level on the Siple signal, and the question really is how far below the carrier they are.
The transmitter, “Zeus,” that was used in the POLIN transmission in Fig. 4.19 created its output
waveform as a series of half-sinewave pulses generated by switching currents through tuned circuits
with silicon controlled rectifiers (SCR’s) [Helliwell and Katsufrakis, 1978]. The analog output of a
frequency synthesizer was converted into control pulses for the SCR’s by the transmitter exciter.
Any 60 Hz hum at the input to the exciter would have been added to the synthesizer signal and
caused low-level 60 Hz phase modulation. It is likely that transmitted 60 Hz sidebands on Zeus
signals were at least 40 dB below the level of the carrier, and probably even lower. Unfortunately,
this transmitter is no longer in existence, and its sideband level cannot be measured.

The current transmitter, “Jupiter,” is a surplus Omega Navigation System unit and is just a
high-power class B audio amplifier. Its signal-generation equipment is more complex than Zeus’s,
and there are several places where low-level 60 Hz modulation might occur, as well as modulation
at 120 Hz from power-supply ripple. Attempts to measure the sideband level at its output have
been inconclusive, though some measurements suggest they may be as high as —30 dBe. Both
transmitters are also expected to have significant sidebands at 360 Hz, the ripple frequency of their
3-phase power supplies. ' _

If low-level transmitter modulation is the cause of sidebands, we must explain why they are
so strong in the received signal. Perhaps the sidebands grow independeﬂtly of the carrier—they
appear after carrier growth has saturated because it takes them longer to reach a noticeable level:
Or, perhaps low-level sidebands are strong enough to synchronize a spontaneous sideband oscillation
that would otherwise have appeared at a nearby frequency. Several transmissions have been made
with the Siple generators running at 58 Hz. If low-level transmitter modulation is important, we
would expect to see received sidebands near 58 Hz instead of 60 Hz. The results of this experiment
are not yet in. ' _

Transmitter modulation might explain another effect—the variability in frequency of some 60 Hz
sidebands. The frequency of the Siple diesel generators may fluctuate by as much 1.5 Hz depending
on their load, which can change in large steps during pulse ‘transmissions. On the other hand,
* sidebands might be locked to or initiated by a signal at exactly 60 Hz and still show phase {and
temporary frequency) fluctuations because of changes during the growth process. A study of relative
sideband phase vs. amplitude might clarify this.

Summary. From our observations of the phase behavior of spontaneous sidebands we can add
the following two features to Park’s {1981} list of sideband characteristics given above:
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6. When sidebands appear both above and below the carrier, they are often offset
by the same frequency and are phase-coherent. These symmetrical sidebands are not due
entirely to amplitude modulation of the carrier, but show some phase modulation as well
{(some of which may be due to dispersion). Sidebands at multiple frequencies are sometires

harmonically related and phase-coherent. :
7. Sidebands often appear offset from the carrier by frequencies very close to 60 Hz,
Sidebands at subharmonics of this frequency are also seen.

There are several conceivable causes of sidebands with 60 Hz offsets and their subharmonics. One
which cannot be ruled out yet is that these received sidebands are due to low—level 60 Hz modulation
at the transmitter.

4.5 Wave-Wave Interactions

In this section .we will lock at some of the effects of one whistler-mode wave on another. We
have already seen some examples of one effect—the generation of sidebands by two-tone signals in
Section 4.4.1. Now we will see examples of others: suppression, where one signal inhibits the growth
of another; entrainment, where one signal synchronizes the growth of another; and precursors, where
a whistler enhances the growth of a second signal.

4.5.1 Growth Suppression by Nearby Signals

Various forms of suppression of one whistler-mode signal by another have been observed for some

time. Helliwell and Katsufrakis [1974, Fig. 2] show an example where a whistler suppresses the -

growth of a pulse from the Siple Station transmitter. Raghuram et al. [1977a) discuss the “quiet
band” effect, where a Siple signal suppresses the amplitude of natural mid-latitude hiss in a band
up to 200 Hz wide just below the transmitted frequency. They propose that cyclotron resonance
with the Siple signal alters the velocnty distribution of interacting electrons, and this prevents the
hiss. Raghuram et al. [1977b] report the suppression of growth of Siple pulses by two-hop echoes of
previous pulses. In this case they think the effect is due to echomg emission components, above the
transmitted frequency, which reduce the coherence of the input signal and thus reduce its growth.

Mutual growth suppression between components in a multi-tone signal has also been observed.
Chang [1978] and Chang et al. [1980] report experiments using frequency-shift keying of the Zeus
single-tone transmitter at Siple to generate multiple components. They find that transmitted com-
ponents spaced 50 Hz or less show mutual suppression and energy coupling. This 50 Hz separation is
the coherence bandwidth, the range in frequency over which waves may resonate with a given energetic
electron in the interaction region. Two wave components separated by less than this frequency will
resonate with some of the same electrons, and can thus affect each other. Two components further
apart will interact mdependetly with separate populations of electrons. (The authors use a homo-
geneous interaction model with phase-trapped particles, and predict that the coherence bandwidih
will be proportional to the square-root of the wave intensity. Th1s 1s probably not an appropna.te
model for low-level signals.)

Helliwell [1983a] describes the results of the CBST two-tone transmission where the separation
between two equal-amplitude signals is varied in steps from 0 to 270 Hz (see Fig. 4.20). He finds two
types of suppression. Oune is the mutual suppression of growth and triggering of two components
when their separation is 20 or 30 Hz. The second is an asymmetrical suppression of a lower frequency
~ component by an upper component up to 100 Hz away. Helliwell [1983a, 1983b] also compares the

effects of two-tone signals with signals whose components are due to 100% amplitude modulation or
to frequency modulation with unity modulation index (frequency deviation = modula.txon frequency).

Signals with 0 and 5 Hz modulation show approximately the same level of growth. Maximum
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suppression occurs with 20 Hz modulation, and is about 25 dB with two-tone signals, slightly less-
for AM and FM. Components spaced 100 Hz or more show growth comparable to that of sirigle
fones.

Coherence Bandwidth from AM Sideband Phase Behavior. The studies above by Chang {1978]
Chang et al. {1980] and Helliwell [1983a, 1983b] determined the coherence bandwidth either from
the amplitude effects of growth suppression, or from changes in the rate of pre-termination emission
triggering. However, growth suppression also affects the phase behavior of signal components, and
we can estimate the coherence bandwidth of wave-particle interactions from this. In the following
example we will study signals with amplitude modulation.

We can write the waveform of an amplitude-modulated signal as

| 5(t) = A[l + mx(t)] cos(2x f,1), o (4.2)

where A cos(2x f.t) is the unmodulated carrier at frequéncy fey m < 1 is the modulation index, and
z(2) 1s the modulating waveform. We require that |z(2)] < 1. The case m = 1 is known as 100%
modulation. If the modulating signal is a tone at frequency fn, as z(f) = cos(2x fnt), and the
modulation is 100%, we can write

s(t) = [1 + cos(2m fnt)] cos(2m fot) .
= Acos(2nf,t) + %cos[?n’(fc = fm)t] + %cos[%r(fc + fm )t (4.3)

Comparing this to the two-tone signal in Eq. (4.1), we notice the following differences. The two-
tone signal had two equal-amplitude components. The 100% tone-modulated AM signal has three
components, one at the carrier frequency and two sidebands a distance Jin on either side. Each
sideband has half the amplitude'.of the carrier. The envelope in the two-tone case was a rectified
cosine wave with alternate beats out of phase. The envelope of the AM signal is [1 + cos(2mf,t)], a
raised cosine wave. Each such “beat” reaches zero amplitude smoothly at the bottom of the cosine,
and there is no phase reversal from one beat to the next. However, we can still think. of an AM
signal as a series of pulses, as in the case of the two-tone signals in Sec. 4.4.1, and we expect that
magnetospheric growth will have similar effects, such as creating additional sidebands.

Figure 4.21 shows a segment of a CB792 (Coherence Bandwidth, 1979, version 2) transmission,
a set of one-second pulses at 3270 Hz with 100% amplitude modulation at frequenéies of 0, 5, 10,
20, 50, and 100 Hz. The pulse with 0 Hz modulation (a CW pulse) shows growth and the triggering
of multiple pre-termination emissions. The gray-scale plot shows phase advance at the beginning
typical of a rapidly-growing pulse. Note the multipath propagation here. The spectrogram shows
a weak signal preceeding the main pulse by about 200 ms, and perhaps another weak one on a
path following the main pulse by 200 ms. The main pulse itself triggers emissions on at least three
closely-spaced paths. The one-hop group delay for the main pulse is 2.6 5. There are also two-hop
echoes. The weaker signal with rising emissions between the 10 and 20 Hz pulses is a two-hop echo
of the first, 0 Hz pulse, delayed by 5.2 s.

The pulse with 5 Hz modulation also shows growth, but not as much as the first pulse. Emissions
are triggered by the last four beats in the signal, though they don’t last as long as those triggered
by the first pulse. A strong impulse, a BLI, occurs at the end of the pulse. The 200 ms beat spacing.
must be large compared to the loop delay T of HeleeH and Inan [1982] since the beats behave
almost like independent pulses. :

The 10 and 20 Hz pulses are weaker, and show almost no growth or triggering (the emissions
are echoes). The 20 Hz pulse is the weakest. However, they do generate additional sidebands, as
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Figure 4.21. Amplitude-modulated one-second pulses whose behavior depends on side-
band spacing. Bars below the plot show modulation frequency and duration of transmitted
pulses. 0 and 5 Hz pulses show- growth. 10 and 20 Hz pulses develop sidebands instead.
50 Hz pulse has sidebands and some growth. 100 Hz components grow independently.
(Gray-scale phase plot BW = 20 Hz, P,y4, = 1 rev.)

we might have expected. The 10 Hz pulse shows coherent sidebands every 10 Hz from at least 3190
to 3310 Hz; that is, at least seven lower sidebands and three upper ones in addition to the three
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transmitted components. The 20 Hz pulse has one additional lower sideband and two upper omes.
In both pulses, sidebands further away take slightly longer (up to 100 ms) to appear.

- The 50 Hz pulse still shows fairly. stable phase behavior, though its phase is noisier than the
preceeding two pulses. It generates additional sidebands £100 Hz from the carrier, at 3170 and
3370 Hz, which take about 300 ms to develop. The upper transmitted component at 3320 Hz shows
a modest amount of growth, with a slight phase advance. There are noisy signals between the various
phase-coherent components. Noise during the first half of the pulse is an echo of the earlier 5 Hz
pulse. Noise toward the end appears as the carrier and upper component trigger several emissions.
This pulse shows a combmatlon of features—growth suppression and sidebands, but also termination
triggering.

The final pulse, with 100 Hz modulation, shows no coherent behavior. No additional sidebands-
are generated, and each of the three transmitted components shows growth and triggers emissions.
In the gray-scale plot, each component shows an advance in phase associated with its growth, but
the advance is different in each case. That is, not only do the three transmitted components grow
but phase information shows they grow independently of each other.

The independent phase behavior of the components in the 100 Hz pulse is an important obser-
vation. We might imagine, as their frequency separation increases, that different signal components
will interact with increasingly separate populations of energetic particles until a point is reached
where growth is no longer suppressed. Yet at this point there might still be enough overlap in pop-
ulations that growing components remain in phase. This may be what happens in the 50 Hz pulse,
where some growth is observed yet the phase behavior is largely coherent. At 100 Hz separation,
even component phases behave independently, and we can be sure that the particle populations
interacting with each component are almost entirely disjoint. Judging from the phase behavior, as
well as the amplitude and emission behavior, the coherence bandwidth.in this record is greater than

* 20 Hz but less than 100 Hz; it is probably about 50 Hz.

Effects of Relative Component Amplitude on Suppression. Figures 4.22-4.25 show four segments
of a CBVA (Coherence Bandwidth, Variable Amplitude) transmission from Siple. This was a trans-
mission with two tones separated by 20 Hz to provide maximum growth suppression. The objective
of the CBVA format was to determine the effect on growth and triggering of varying the amplitude of
one of the tones relative to the other. The CBVA format consists of a series of two-second two-tone
pulses. Sixteen different pulses result from combinations of the following: 1. either the amplitude
of the upper tone or the lower tone is varied, 2. the variation occurs during the first or the second
second of the pulse, and 3. the variation is either an infinite attenuation (the remaining tone by
it.sélf) or is an amplitude ramp from 20 dB at the réspective end of the pulse to full-power at the
middle. The diagrams at the bottom of Fig.s 4.22-4.25 show the various combinations. (The CBVA
format also includes two-tone pulses where one tone is a {requency ramp to vary the separation; but
these are of no interest here since the phase of frequency-\}arying signals is difficult to interpret.)
The pulses in Fig.s 4.23 and 4.25 appear in Helliwell et al. [1986a, Fig.s 2b, 6-8], which also shows
other CBVA pulses. ' :

We will consider four catagories of pulses in turn:

1. Pulses with a single tone preceding a two-tone interval, These are the first two-second pulses
in Fig.s 4.22 and 4.23. During the single-frequency interval at the beginning, each pulse shows
rapid growth and phase advance, and one or two triggering events. Whether the single-frequency
transmission is at 3770 (Fig. 4.22) or 3750 Hz (Fig. 4.23) makes no difference, of course. The
initial growth rate is 80-90 dB/s. Phase advance is limited to about 2 revs before triggering occurs.
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Figure 4.22. Spectiogram, gray-scale phase plot (BW = 20 Hz, P,,,, = 1 rev), and
magnitude plot (BW = 80 Hz) of a pair of pulses from a CBVA transmission. Diagram at
bottom shows amplitudes of the transmitted components at 3750 and 3770 Hz. The lower
tone at 3750 Hz is off during the first half of the first pulse; and the second half of the
second pulse.

Because of mulfip_ath, the triggering is a bit complicated. The main path seems to generate some
impulsive noise and stop, but some weaker paths trigger risers. About 700 ms into each pulse a
second interval of growth, phase advance, and triggering begins, a bit noisier than the first. This
initial behavior is what we expect of typical single-tone signals.

Soon (100 ms) after two-tone transmission begins in the middle of the pulse, the system settles
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Figure 4.23. Another CBVA pulse pair asin Fig. 4.22. Now, the upper tone at 3770 Hz
is off at the beginning of the first pulse and the end of the second pulse.

down into a state of phase coherence with multiple sidebands. The initial phase of the single-tone
signal at the beginning of the pulse is nearly the same as its phase during this two-tone interval,
as best as can be determined. There is a little slow phase drift due to duct motion, but it can be
ignored. The peak magnitude during the two-tone interval is about 10 dB less than the maximum
attained with only one tone.

Al the end of the pulse there is very little triggering, at least on the dominant path. Termination
triggering is suppressed by the two-tone signal. This may be because. triggering requires a phase
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Figure 4.24. A third CBVA bulse pair as in Fig. 4.22. The a,mpliﬁude of the 3750 Hz
tone is turned up slowly, at a rate of 20 dB/s, during the first second of the first pulse, and
turned down slowly at —20 dB/s at the end of the second pulse.

advance whereas the two-tone signal output remains in phase with the input. It may also be an
amplitude effect, since the peak of the two-tone signal stays about 10 dB below the single-tone
saturation level.

2. Pulses with a single fone following a two-tone interval. These are the second pulses in
Fig.s 4.22 and 4.23. They behave similarly to the first pulses. During the two-tone interval, growth
and phase advance are suppressed, and sidebands are generated. As soon as the second tone is
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Figure 4.25. A fourth CBVA pu]se pair asin Fig. 4. 22 In this case, the upper-frequency
tone at 3770 Hz is turned on and off slowly.

turned off, the remaining signal grows, shows phase advance, and triggers. Triggering occurs after
a wrap-up of 1.5 rev, or at the end of the pulse, whichever is reached first. Again, it makes no
difference whether the remaining tone is the upper or lower one—growth begins at the remaining
frequency, and phase advance starts off from the phase maintained during the two-tone interval.

3. Pulses with an amplitude ramp following a two-fone interval Now we will consider the
second pulses in Fig.s 4.24 and 4.25. These pulses start with 1 s of two-tone signal. Each component
is stable in phase, shows no growth (at least after the first 100 ms), and generates sidebands. Three
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upper and three lower SIdebands at 20 Hz spacing can be seen in Fig. 4.24.

After one second, the amplitude of one input component is attenuated at a rate of 20 dB/s, and
this produces some very interesting effects. Nothing happens until the amphtude of this component
has decreased 3 or 4 dB. Then both input components show a gradual phase advance. By the time
the variable component is about 10 dB below the'constant one, the phase advance has peaked at
- about 3/4 rev. The phase then stabilizes and remains relatively steady for the rest of the pulse,
even though the input amplitude of the variablé component continues to decréase to —20 dB. This
3/4 rev phase advance affects all signal components to some degree though it may affect the variable
input component. the most. '

At the same time as the phase advance occurs, the total output magnitude grows about 5 dB
above its equal-input level and remains there during the last 0.5 s of the pulse. This level is still
roughly 10 dB below the saturation level seen during the one-tone intervals in Fig.s 4.22 and 4.23 (it’s
a bit higher in Fig. 4.24, a bit lower in Fig. 4.25).- Some components seem to grow more than others
as the variable input component is turned down. The biggest growth occurs on that component
- which lies just above the constant-amplitude input tone. If this is the first upper sideband (the

lower input tone is being decreased while the upper one is constant), it may become the strongest
component during the last 0.5 s of the pulse. If the first component above the constant input tone
is the variable one itself (as in Fig. 4.25), we have the paradoxical situation where that component
- whose input amplitude is attenuated becomes the strongest component in the output.
At the end of the pulse there is termination triggering. The emission generated has the same
~ amplitude as those terminal emissions generated at the end of the single-tone pulse segments, but
is not as strong as the pre-termination emissions on the single-tone pulses. '

4. Pulses with an amplitude ramp preceding a two-fone interval. These are the first two pulses
in Fig.s 4.24 and 4.25. Here the constant-amplitude tone, which is initially 20 dB stronger than the
variable one, shows growth and phase advance during the first 200 ms. The growth and advance are

sﬁppressed however, compared to single-tone pulses. The phase advance is only about 1 rev-and

the amplitude does not quite reach saturation.
After the first 200 ms, sidebands appear and gradually the signal settles down to a period of
phase coherenée much like that during the amplitude decrease in the pulses discussed above. Dhring

this interval,” which lasts approximately until amplitude parity is reached, phases are somewhat

(3/4 rev) advanced from their initial (and final equal-input) values. The strongest component is
again the one above the constant input tone. (In other similar pulses in this record, the second
higher component is often the biggest.) ‘

Finally, during the last second, the system sel;tles down to the phase coherence and sidebands

seen in all the equal-amplitude two-tone signals. At the end of the pulse there is no phase wrap-up

and no appreciable termination triggering.

Figure 4.26 shows these last two pulses in more detail. Note that the steady-state phase during
the equal-input interval at the end of the pulse is not exactly the same as the initial phase of the
growing constant-amplitude component, but is slightly advanced from it. (Similar advances occur in
the first pulses in Fig.s 4.22 and 4.23, but are somewhat obscured by the larger and more irregular
phase drifts due to duct motion.) That is, even though two-tone transmissions suppréss ternporal
growth, there seems to be a small phase advance at the output of the interaction region compared
to the input. This may be indirect evidence of steady-state signal amplification. On the other hand,
lacking an absolute phase reference, we cannot be sure that the steady-state suppressed phase is not
the actual phase of the input signal. In this case, what we really see is a transient lag in phase at the
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Figure 4.26. A closeup look at the first CBVA pulses in Fig.s 4.24 and 4.25. Rapid
growth and phase advance begins on the stronger component, but is scon arrested as the
other input fone is turned on. Noie, in the steady-state growth-suppressed state at the end
of the pulses, that the output phase is still slightly advanced compared to the input signal.
The advance is about (.18 rev in the first case, and 0.13 rev in the second.

beginning of the pulse, perhaps like those predicted by some of the theoretical models meniioned in
Sec. 4.1. I'm not sure how this ambiguity can be resolved.

Summary of Growth Suppression by Multi-Component Signals.

1. Compeonents in multiple-frequency signals mutunally suppress each other’s growth and triggering
‘when their spacing is 10-50 Hz. Peak suppression occurs with 20 Hz spacing. Suppressed signals
generate additional phase-coherent sidebands at multiples of their spacing.

2. Phase behavior can be used as well as the rates of growth and triggering to monitor mutual
interactions between signal components. Relative phase can distinguish between those cases
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where some growth occurs but components remain phasé-co_herent {the AM pulses with 50 Hz
modulation in Fig. 4.21) and those where components behave independently.

3. The steady-state phase of each component in a two-tone signal is slightly advanced, say 0.15 rev,
from the initial phase a one-tone signal has before growth begins. This may be indirect evidence
of the linear amplification of two-tone signals. = '

4. If one component of a two-tone input signal is 10-20 dB lower in amplitude than the other,
both components may show an additional phase advance of about.3/4 rev with respect to the
equal-input case, and a slight increase in total amplitude. Suppression weakens, but the output
signal is still phase-coherent.

5. The strongest output component from an unequal-amplitude two-tone input signal is usually
the one immediately above the frequency of the larger input tone. This will be the first upper
sideband if the upper input tone is the largest. If the input signal has a weak upper tone and
strong lower tone, the upper tone may paradoxically be stronger at the output.

6. A well-suppressed pulse triggers no emissions. This may be because there is not enough phase
advance accumulated through the interaction region, or it may be due to the decreased output
amplitude. However, an unequal-amplitude (20 dB difference) two-tone signal, possibly because
of the 3/4 rev phase advance allowed, can show termination triggering as stron'g as that of a
single-tone signal.

* 4.5.2 Entrainment of Emissions by Idler Pulses

Figure 4.27 shows an f-1 spectrogram and a gray-scale plot of the ULF75 transmission described in
Section 4.1. The 0.5 s pulses at 4500 Hz show growth in amplitude with a total phase advance of
1.2-1.3 rev, 60 Hz sidebands, a BLI at the end of each pulse, and a faller. The interesting feature
here is the behavior of the faller. From 1417 to 1418 in this record there are many examples of
entrainment of the faller by one of the 50 ms idler pulses at 4100 Hz. The entrainment is always by

the middle idler pulse of the five pulses at 4100 Hz, which starts 250 ms after the end of the 4500 Hz.

pulse. Spectrograms show entrainment as usually resulting just in enhancement of the amplitude of
the idler pulse. The faller hits the front edge of the middle idler pulse and this pulse becomes much
stronger than the two preceding or following it. The faller may stop once it hits the idler, or it may
continue for, say, 100 Hz below the idler. However, in some cases, as with the pulses in Fig. 4.27,
the middle idler pulse becomes so strong that it generates a second faller at its trailing edge. In this
case the faller from above seems to hit the idler pulse, have some of its energy entrained for 50 ms,
then be released again at the end of the idler pulse when it falls for as much as another 200-300 Hz.

The enlarged gray-scale plot in the middle of Figure 4.28 shows.in more detail what happens
when the last faller in Fig. 4.27 hits an idler pulse. The top plot shows the magnitude and phase
of the 4100 Hz idler pulses themselves. Whenever entrainment occurs in this record, the middle
(third) idler pulse at 4100 Hz is typically stronger (by 14 dB in Fig. 4.28) than the four pulses
on either side of it, and from 0.1 to 0.4 rev advanced in phase with respect to them (0.25 rev in

" Fig. 4.28). Note in Fig. 4.28 that a small amount of growth occurs, as the peak amplitude of the .

entraining pulse is several dB larger than either the faller or the unaffected idler pulses (or their

sum}. For comparison, the bottom plot in Fig. 4.28 shows a gray-scale phase plot of a synthetic

signal made up of a ramp falling at 3200 Hz/s to simulate the faller, and some 50 ms pulses at 4100
. and 4000 Hz to simulate the idler. The idler pulses were made 10 dB lower in amplitude than the
ramp to approximate the ratio of amplitudes seen in the real signal. The point to notice is that the
two synthetic signals combine linearly, as expected. There is a little beating when the ramp crosses

Prev—-—ry
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Figure 4.27. Half-second pulses at 4500 Hz from Siple showing entrainment of terminal -
fallers by 50 ms idler pulses. When the falling emission intersects the third of the five
4100 Hz idler pulses, it causes that pulse to be larger in amplitude and advanced in phase
compared to its neighbors. A second faller is triggered at the end of the third idler pulse.
(Gray-scale phase plot BW = 80 Hz, Pypan = 1 rev.)

the middle 4100 Hz pulse, but there are no non-linear effects such as the entrainment and relatively
constant phase advance, or the amplification; seen in the real signal. '

As well as being amplified, the middle idler pulse also lasts longer than its neighbors. In
Fig. 4.28 the entraming pulse 1s about 80 ms long compared to the 50 ms duration of the others.
This is because the entraining pulse is so strong that it triggers a small faller and so lasts about
30 -ms longer than the transmitted signal. If a faller is released at the end of the idler pulse in the
ULF75 program, it appears to separate after a very small phase wrap-up (0.12 rev in Fig. 4.28).
The magnitudes and phases of the two idler pulses following the entraining pulse are exactly the
same as the two idler pulses which preceded it; the entrainment has no apparent lasting effect. In a
few cases where a second faller is released from the end a 4100 Hz idler pulse, it is seen to fall and
itself become entrained by the fourth 4000 Hz idler pulse, giving a small amplification and phase
advance to that pulse. For comparison, the synthetic data in the bottom of Fig. 4.28 does not show
2 lengthening of the middle idler pulse, nor a second faller. The first faller passes through the idler
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Figure 4.28. Details of the entrainment of the last faller in Fig. 4.27 (BW = 80 Hz,
Pspan = 1 rev in all plots). The magnitude-phase plot at top shows the 4100 Iz idler pulses.
The middle pulse has been amplified by 14 dB and advanced in phase an average of 0.25 rev
compared to its neighbors due to entrainment of the faller. The middle pulse continues for
80 ms; after the 50 ms input signal ends the phase wraps up an additional 0.12 rev as a
faller is generated. The middle gray-scale plot shows the entrainment and the second faller
graphically. For comparison, the bottom gray-scale plot shows synthetic signals—a ramp
falling at —3200 Hz/s plus 4100/4000 Hz idler pulses at a level 10 dB lower. Intersecting
signals combine linearly and no amphﬁcat:on phase advance, pulse stretchmg, or second
faller are seen. :
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pulses unaffected.

Discussion. According to the Helliwell [1967] model, rising and falling emissions are generated
in an interaction region which is downstream or upstream; respectively, from the equator. Helliwell
and Katsufrakis [1978] note that entrainment occurs too rapidly to be explained by the drift of
this region from the location of the emission to the location where the entraining signal might
resonate, and conclude that the entrained emission continues to be generated in the same place,
but has its slope df /dt changed to that of the entraining signal. This will reduce the length of the
interaction regibn, yet the phase-bunching now provided by the entraining input signal can maintain:
the amplitude of the original oscillation. :

The slope of an emission is determined by the distance S from the equator to the center of the
interaction region, as [Helliwell 1967, Eq. (15)]: ' '

af _ Bdeffreg X/2(1 = AP/ 1+ (- tan® ‘3‘] . (4.4)
dt v (1+2X)? 3

where A = f/fg = f/fHeq. We can invert this, of course, and find the distance from the slope.
The entrained emission in Fig. 4.28 has a slope of df/di = —3200 Hz/s. In Sec. 4.1 we found
the path of the Siple signals in this record to be at L = 4.36, with an equatorial electron density
Neg = 260 electrons/em®. The entraining pulse at 4100 Hz is at a relative frequency of 0.386fzrc,.
Assuming that the dominant electrons have pitch angles of & = 45°, the emission in Fig. 4.28 is
generated by an interaction region at § = —4420 km, or 4420 km upstream (down-wave, or north)
from the equator. This is well beyond the normal equatorial interaction region for constant-frequency
signals. . ' ' ,

The 4100 Hz idler pulses show no growth or phase advance, and presumably undergo no signif-
icant interactions with electrons near the equator. Yet as they cross the equator and approach the
region where the emission is oscillating, these weak signals are able to control that interaction. There
are two important features in Fig. 4.28. First, the entrained signal at the output of the emission
interaction region is phase-locked to the 14 dB smaller controlling input signal, with a relatively
stable phase advance of (.25 rev. This is similar to the phase advance seen on normal growing
signals after an equivalent amount . of growth has taken place. Second, a termination faller occurs
after a small phase wrap-up (0.12 rev) at the end of the controlling signal, just like fallers after short
growing pulses. Both features show that growth occurs in the off-equatorial interaction region very
much as it does on the equator, and point up the sensitivity of all interaction regions to weak signals
on their downstream (wave input) side.

Finally, note in the spectrogram in Fig. 4.27 the slopes of the emissions triggered at the ends
of the 4500 Hz pulses, and how they steepen with time. When each 4500 Hz pulse terminates, its
interaction region is near the equator. It takes about 250 ms to drift upstream the 4420 km needed
to reach a slope of —3200 Hz/s However, each faller released at the end of the entraining idler pulse
reaches this slope almost immediately; the interaction region does not have to drift. This means
that entrainment indeed occurs at the location of the entrained emission. The small phase wrap-up
when the final faller is released shows that even here triggering causes the emission to start with a
positive frequency offset, however brief.
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Figure 4.29. A two-tone LICO1 transmission from Siple showing a whistler precursor.
Shortly before the whistler arrives, the two-tone components at 3950 and 3980 Hz show
amplification and phase advance. Sideband effects are also enhanced. (Gray-scale phase
plot BW = 20 Hz, Pipan =1 rev.)
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4.5.3 Whistler Precursors on Transmitter 'Signals

o v

Figures 4.29, 4.30, and 4.31 show examples of the two-tone LICO1 signal described in Section 3.4
(see also Fig. 2.2). A very interesting event occurs when the Siple signal meets a whistler. The
Siple signal at 3950/3980 Hz is just at the nose frequency of the first whistler components, and
passes through the tops of the whistlers. In several instances it shows considerable amplification
about 1 s before the whistler—a precursor. In each case the amplification lasis for about 15. Good
exa.mplés oceur in this record at 1609:14, 1610:45, 1611:53, 1612:52, 1614:21, and 1615:30, and there
are probably additional, though weaker, events. Fig.s 4.29~4.31 illustrate the last three cases. ‘ : A
The precursors cause the two transmitted tones and their sidebands to grow, usually with a
noticeable phase advance. In most cases the phase advance amounts to, say, 1/3 rev. However, i
in the precursor in Fig. 4.29 the 3950 Hz tone advances 2 revs in 0.5 g (+4 Hz offset), the 3980 B
tone advances 1 rev, and the first upper sideband at 4010 Hz advances about 0.5 rev. After each
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Figure 4.30. A second whistler precursor on a two-tone transmission, as in Fig. 4.29.
The phase advance caused by the precursor is much smaller, only a fraction of a revolution.
The upper transmitied signal at 3980 Hz shows a null in the middle of the precursor.

precursor, the transmitted tones and sidebands decrease in magnitude and phase and resume their

previous behavior. The very slow drifts in phase (less than +0.2 Hz) scen in Fig.s 4.29-31 are the
micropulsation-related effects discussed in Section 3.4 and are not connected with the precursors.

As also mentioned in Sec. 3.4, the LICO1 signal has a group delay of t, = 2.1 5. Whistler
components with that ('iela.y'(the first strong components in Fig. 4.29 with a two-hop time of 4.2 s)
have nose frequencies close to f, = 4000 Hz. Using these values, we found from Park [19_72].3.
path L-value of L = 4.32 and a tube content of Ny = 3.5 x 10'3 electrons/cm?, or equatorial
density N., = 280 electrons/em?, typical of magnetically quiet conditions.

There is a peculiar null in the magnitude of the upper Siple tone in the middle of each precursor.
In Fig. 4.29 this appears as the tone undergoes a phase reversal as if from interference or fading.
Shortly after the null a weak rising emission is triggered. In Fig. 4.30 the nuil occurs without any
marked phase effect, though it seems to precede (trigger?) a burst of growth on the lower tone and
the sidebands. And in Fig. 4.31 the null coincides with a short burst of signal at nearby frequencies,
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Figure 4.31. A third whistler precursor as in Fig. 4.29. This time there is a “postcursor”
shortly after the whistler as well. :

almost like a BLIL

There is also a certain variability in the timing of the precursors from one event to the next. In
Fig. 4.29 the precursor starts 3.1 s after the spheric, 3.3 s in Fig. 4.30, and only 2.6 s in Fig. 4.31, The
corresponding times from the sphieric to the magnitude null are 3.5 s, 3.6 s, and 3.1 8, respectively.
This variability has been noted before by Helliwell [1965, Fig. 7-53.].

In two cases in this record, at 1611:55 and 1615:33, a second amplification event lasting about -
1 5 also oceurs after the whistler, a “postcursor.” At 1611:55 the postcursor starts about 0.8 s after

the first whistler component, or 2.0 s after the precursor. At 1615:33 (Fig. 4.31) the postecursor is
" about 1.4 s after the whistler, or 2.7 s after the precursor. The postcursors may be related to the
precursors, but more likely they represént the entrainment of emissions from the tops of the later
whistler components, and we will not discuss them further.

Discussion. The examples in Fig.s 4.29-4.31 show a definite correlation between whistlers and
effects seen on the transmitted LICO1 signal. The effects are the momentary amplification of the
LICO1 signal accompanied by a phase advance of 0.5 rev or so, and the enhancement of its various
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30 Hz sidebands. We found in the preceeding sections that these effects are the characteristic
features of growth due to cyclotron resonance with energetic electrons. The precursor behavior in -
Fig.s 4.29-4.31 indicates a sudden increase in growth activity. In fact, the growth is stong enough in
Fig. 4.29 that the signal even triggers an emission. Whistler precursors have been observed before
as spontaneous emissions occurring shortly before two-hop whistler echoes [e.g., Helliwell, 1965,
Fig.s 7-52-7.54]. However, as far as [ know, this is the first time precursors have been reported on
a transmitter signal. This case is also unique in that the frequency of the precursor is qmte high
relative to the associated whistler—near the whistler nose frequency.

Various models have been developed to explain precursors. Dowden [1972] explains precursors
as emissions triggered by hybrid whistlers (whistlers which propagate one hop sub-ionospherically
before entering the magnetosphere). Reeve and Boswell [1976] propose that a strong whistler de-
cays parametrically into a backward-moving whistler and a low-frequency ion-acoustic wave. The
backward-moving whistler triggers the precursor. Reeve and Rycroft [1976] postulate that an un-
_ ducted whistler is magnetospherically reflected at the end of its first hop and enters a duct midway
throﬁgh its second hop to trigger a precursor, slightly ahead of the two-hop ducted whistler. These
three studies each assume that conditions are ripe for the growth of an emission, and the point
of each model is to produce a triggering signal that has the right time delay with respect to the
causative spheric and the two-hop whistler. However, to explain Fig.s 4.29-4.31 the problem is not
to find a triggering signal but to find a mechanism that momentarily ‘increases growth activity.
None of these three models can do that. Neither are the LICQO1 precursors due to the entrainment
of a strong triggering signal by the LICO1 input, since the proposed triggering signals all enter
up-wave of the LICO1 interaction region. (The precursdrs are different from the entrained fallers
in Fig. 4.27 because the entrained signal, the fallers in that case, must be caused by growth which
occurs down-wave of the entraining signal, the constant-frequency idler pulses. We could possibly
have entrainment of the LICOI interaction by a triggering signal, but that would be manifest as
a change in the slope df/dt of the received LICO1 signal to that of the triggering signal, which is
not what we see h'ere.) In addition, the parametric decay model of Reeve and Boswell [1976] can be
ruled out because it only works at the low frequency tail of a whistler, not at the nose frequency.

Park and Helliwell [1977] propose a mechanism that starts with a longitudinal resonance in-
teraction between the outgoing whistler and co-streaming energetic electrons. This perturbs the
electron energy distribution. The perturbation then gives rise through cyclotron resonance growth
" to a precursor moving in the opposite direction which arrives before the two-hop whistler echo. They
also propose that power line harmonics prowde a seed signal which is amplified to trigger the pre-
cursor. Tkalcevic [1982] studies the details of the longitudinal interaction, and supports the model
of Park and Helliwell {1977].

Reitveld [1980] studies a particular narrowband type of precursor he calls a “monochromatic
precursor start.” This is a single-frequency signal which lasts for up to 200 ms and may then trigger
the rising emission of typical precursors. He uses phase analysis (phasogram technique) to show
that the frequencies of these signals are not related to harmonic frequencies of the power grid.. He
proposes that a monochromatic precursor may still be triggered from a power line harmonic, but be
offset from it by up to 100 Hz, as many emissions are offset from their triggering signals.

. The longitudinal resonance interaction of the Park and Helliwell [1977] model might explain the
sudden increase in growth activity seen in Fig.s 3.29-3.31. To this extent, our observations support
their model over earlier ones that merely produce triggering signals. However, as for the role of
power line radiation in initiating precursors, our observations have little to say. The precursors we
observed start (and remain, for the most part) at the frequency of the triggering signal. We did
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not observe triggered emissions suddenly beginning up to 100 Hz above the transmitter signal. This
may be because the two-tone LICO1 signal with 30 Hz separation suppresses growth and emission
triggering. A power line harmonic, if there be such, would not be self-suppressed and might be more
likely to trigger an emission, possibly somewhat offset in frequency. On the other hand, it seems to
me as likely that an emission should arise spontanesusly or be triggered by noise, as be triggered by
an unseen power line signal. The real test of power line harmonics as triggers for precursors must be
a statistical analysis of precursor starting frequencies. The only study so far, Reitveld [1980], found
no particular correlation with power line harmonics, either at multiples of 50 or 60 Hz.

4.6 Magnetospheric Line Emissions and Power Line Radiation

Evidence for Power Line Radiation. The concept of power line radiation is that currents at
harmonics of the fundamental power frequency (50 or 60 Hz, depending on country) radiate electro-
magnetic waves, some of which are coupled into the magnetosphere and produce various effects.
Power line radiation (PLR) was first mentioned by Helliwell et al. [1975]. This paper started a
sometimes spirited discussion of the evidence for and against PLR and its possible effects, which
continued in the literature for the next few years. Reviews of PLR and bibliographic references can
be found in Park and Helliwell [1978), Helliwell [1979a], Park and Helliwell [1981], and Park et al.
[1983].

We have already seen signals caused by induction fields from local power lines, as in Fig. 3.4.
These signals are narrowband {x 1 Hz bandwidth), at mainly odd-numbered multiples of the power
{requency, and extend at times to frequencies above 6 kHz. All harmonics are phase-coherent, with
the fundamental component. {Occasionally additional lines are created by rotating machinery; these
lines have their own independent harmonic structure, as in Fig. 4.19.) However, the induction lines
are due to local magnetic fields coupled t6 the loop antenna of the receiver. They demonstrate the
presence of harmonic currents flowing near the receiver, but are not themselves radiated signals.

Little information is available about the power actually radiated by power line harmonic cur-
rents, though it is likely to be on the order of milliwatts or watts rather than kilowatts. Barr
[1979] measured no significant {> 1 #V/m) harmionics above 1.5 kHz from New Zealand power lines,
though he did see a radiated component at 300 Hz from the Benmore DC power line (~ 10 #V/m
at Stewart Island). Yearby et al. [1983), studying harmonic currents in the Newfoundland power

system, estimate a radiated power of 0.05-0.5 4W per transmission line for components in the range

2.7-3.7 kHz. Radiated harmonics from the North American power grid have not themselves been
-seen, and all evidence for the existence of radiated power line harmonics is indirect, based upon their
postulated effects as follows:

1. Emission Cutoff, Enirainment, and Change of Slope. Helliwell et al. [1975] present a record
where emissions triggered by pulses from the Siple transmitter seem to change slope, become
entrained or terminate near the frequency of local induction lines. This is seen as evidence of

. wave-wave interactions between the emissions and magnetospheric signals with components at
the frequencies of the induction lines; that is, PLR.

2. Magnetospheric Line Emissions. These are whistler-mode signals containing notsy (10-30 Hz
'bandwidth) lines roughly equally-spaced in frequency. Helliwell et al. [1975] show a case with
a line separation of roughly 120 Hz, and claim that the frequencies of such lines are usually
offset 20-30 Hz above the local induction lines. They interpret the lines as due to PLR compo-
nents which are amplified during echoing and which may trigger narrowband emissions. They
also note that lines are occasionally seen just below power lines frequencies instead of above
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them; and that lines may drift in frequency, more often up than down, at rates as large as -
50 Hz/min. They show cases of lines with spacings of only 20-30 Hz. Park [1976) states that
lines are often offset 30-50 Hz above induction line frequencies, similar to the offset seen on
emissions triggered by Siple pulses. He finds that magnetospheric lines are strongest during the
recovery phase following a magnetic storm. Park [1977] notes that magnetospheric lines only
‘occur during good whistler-mode echoing, Park and Chang [1978] simulate magnetospheric
lines with a multi-component Siple transmission, and show that amplified lines can be seen at
Roberval with radiated powers from Siple as low as 0.5 W. Matthews and Yearby [1981] find
that magnetospheric lines at Halley Station, Antarctica, have a wide range of spacings from 50
to 90 Hz, with line bandwidths of 20-30 Hz. Line emissions have also been seen on satellites
[Koons et al., 1978; Park and Helliwell, 1981; Bell et al., 1982].

3. Geographic Concentration of Mid-Latitude Chorus. Luette et al. [1977] report that VLF chorus
in the 2-4 kHz band as observed by the OGO-3 satellite tends to be concenirated in longitude
over four industrial areas in the northern hemisphere, presumably because ¢herus elements
are triggered by PLR. Thorne and Tsurutani [1979] and Tsurutani et al. [1979a, 1979b] claim
that the correlation with location found by Luette et al. [1977] was due to statistical errors

cansed by oversampling particular chorus events. They also state that chorus occurs outside
the plasmapause, where triggering from PLR would not be expected {most triggering being
at lower latitudes inside the plasmasphere). They present their own studies of ELF chorus
on OGO-5 and ELF hiss on OGO-6 and find no correlation with longitude. The argument
is continued by Park and Helliwell [1980], Tsurutani and Thorne [1980], Russell [1980], and
Luette et al. [1980]). Bullough and Kaiser [1979] review studies of ELF/VLF signal amplitudes.
made with the Ariel 3 and 4 satellites. They find that signals at 3.2 kHz over North America
in summer are stronger than anywhere else, which may be due to PLR but might also be
correlated with thunderstorms. Park et al. [1981] show that there are two kinds of chorus, one
which occurs outside the plasmapause and is correlated with energetic particle injectioh events,
and the other which cccurs inside the plasmasphere and may be controlled by PLR. If so, the
OGO-3 and OGO-5/6 investigators may be observing and arguing about different phenomena.

4, Initial Frequencies of Whistler Precursors and Chorus. Park and Helliwell [1977] claim that
whistler precursors seem to begin at the frequencies of power line harmonics. Rietveld [1980]
does not find such a correlation. Precursors are discussed above in Sec. 4.5.3. Luette et al. {1979)
report that in about 15% of the cases of chorus seen on QGO-3, individual chorus emissions have

well-defined starting frequéncies. These cluster around harmonics of 50 or 60 Hz, depending.on
geographic location.

5. Weekend Effect. Park and Miller [1979] report that the broadband amplitude of signals from 2
to 4 kHz received at Siple, mostly chorus, is about 30% lower at midday on Sundays compared
to the average at the same time during the rest of the week. They interpret this as due to lower
power demand, and lower PLR, in the conjugate region on Sundays. Thorne and Tsurutani
{1981] claim that the signal at Siple was not chorus but hiss, had little connection to unducted
signal levels in the magnetosphere, and that there is no Sunday effect seen in ELF chorus
(outside the plasmapause) on satellites. Park and Miller [1981] rebut the arguments of Thorne
and Tsurutani [1981]. I note that if there are two kinds of chorus as mentioned above in Item 3,
the parties here are again comparing apples and cranges.

Helliwell et al. [1975] note the limitations of standard spectrum analysis when trying to verify PLR
effects: “The primary problem was our inability to measure frequencies accurately enough. In most
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though there is some low-level natural noise between 2100 and 2300 Hz. At 1305:33.3 a Mini-DIAG

(actually MDIAS-~Miniature-DIAgnostic, Synoptic) signal arrives from the Siplé ‘Transmitter. The

transmission format is shown at the top of the figure in spectrogram form made from a recording of
the transmitter antenna current. The format consists of a two-second pulse at 3000 Hz (including an
amplitude ramp from -10 dBc to full power during the first second), five 200 ms pulses at 3480, 3240,
3000, 2760, and 2520 Hz, two descending ramps from 3480-2520 Hz (the second one at -6 dBc), and
a two-tone pulse at 3480/3500 Hz (with components at -6 dBc).

All Mini-DIAG components at 3240 Hz and below show growth. They trigger intense emissions
on at least three different paths. These emissions, predominately fallers, echo, grow, and generate
new emissions. Activity in Fig. 4.33 is mostly in the band 2100-2600 Hz. The two-hop time for the
strongest echoes at 2300 Hz is about 6.3 s.

There are several important features to note in Fig. 4.33. First, the strong growth and echoing
activity is somewhat restricted in frequency. Note how quickly echoes above 2700 Hz die away. The
later multi-component Siple pulse near 3000 Hz at 1306:03 has almost no echo at all. This is a
common phenomenon—growth often occurs only over a limited bandwidth. Yet within the band
2100-2600 Hz, growth is strong enough to overcome any inherent attenuation and the amplitudes
of echoing .components remain roughly constant.

Second, echoing components tend to spread out in time. Note how the Mini-DIAG ramps and
their emissions, whick have only a few components in the first-hop signal, have a few more in the
third-hop echo, and have become diffused in time by the fifth-hop echo. There are two factors at
work here. One is the effect of emissions, which extend the trailing ends of input signals and make an
echoing element last a little longer each time. The other is coupling between whistler-mode paf,hs.

" This can cause a given element to echo on a different path and then couple back to its original path
with a different delay than signals echoing continuousty on that path. This twinning of echoing
elements spreads and mixes them in time.

Third, as the Mini-DIAG elements echo and diffuse in time, they develop a line structure in

frequency. This occurs both in the sirong patches of activity echoing every 6.3 s, and in the intervals

between where weaker signals, perhaps diffused cross-coupled echoes, exist. In other words, it is
the Mini-DIAG transmission which creates (or becomes) the magnetospheric line emissions. This
‘behavior has been seen before. Helliwell and Katsufrakis [1978, Fig. 5.6) show a case of multipath
whistlers exciting trains of echoes that develop into linés. Two other examples caused by whistlers
are found in Park and Helliwell [1981, Fig.s 4, 5]. o '

The behavior of the magnetospheric lines over time can be seen in Figure 4.34. This is a
compressed spectrogram which shows four minutes of the signals in Fig.s 4.32 and 4.33. Complex
averaging with a time constant of 75,, = 0.1 s was used to decrease the bandwidth of the analysis
filters. - '

During the first minute after the Mini-DIAG transmission, five lines with ~ 45 Hz spacings

develop from 2160 to 2340 Hz. These lines are apparent in the quiet space between the echoing.

emissions and are intensified in the .ech'oes themselves. After the first minute, the lines between
the echoes disappear but those within the echoes remain. As they echo, the emissions spread in

frequency. At the end of Fig. 4.34, line structure extends from 1900 Hz to around 3000 Hz. Some -

of the lines above 2700 Hz may have been started by the later complex Siple pulses between 2750
and 3100 He. = |

During the first two minutes the echoes remain separated from each other by quiet intervals.
~ Toward the end qf Fig. 4.34 the echoes have spread out in time and begun'to merge, though the

6.3 s periodicity is still clearly evident. These echoes continue throughout the rest of the record (to
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Figure 4.33. The development of the magnetospheric lines in Fig. 4.32. Pulses and

decending ramps from a Siple Mini-DIAG transmission initiate a series of multipath echoes
that spread in time, grow preferentially at discrete frequencies, and develop into lines.

1311), becoming stronger, more complex in form, and spreading slightly in frequency. By the end

‘of the record the echoes look like typical mid-latitude chorus, except for their line structure.

- Finally, notice that the lines in Fig. 4.34 gr.adua.lly increase in frequency at about 25 Hz/min.
This can best be seen by viewing the page edge-on. The frequencies of the local induction lines
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A second plot was made tracking a magnetospheric line near 2610 Hz. This was done to check
the mutual coherence of the lines, and see if there was any underlying structure such as a 60 Hz
spacing otherwise corrupted by noise. No such structure was scen.

Summary. Magnetospheric line emissions do nbt seem to have any relation to power line har-
monics, at least in the few cases studied. Magnetospheric lines do not fall on the frequencies of
power line harmonics, nor do they have any constant offset from power line harmonics. The fre-
quencies of a set of magnetospheric lines may drift slowly with time (usually upw:ird), at rates of
25 Hz/minute or more. When lines form they do not start at power line harmonics, but develop
over the course of several echoes during which time they may drift in frequency. When lines drift
through the frequencies of power line harmonics they show no enhancement or entrainment at those
frequencies. _ 7

The spacing of magnetospheric line emissions is not exactly 60 or 120 Hz (it’s 45 Hz in Fig. 4.32,
63 Hz in Tig. 4.36), and may well change with time. The lines are noisy, with bandwidths of a few
hertz, and their random variations in instantaneous frequency occur independently. Sometimes two
or more sets of lines are intercalated in frequency. Intercalated lines are mutually frequency-locked,
restricted in movement such that they never drlft through one another, yet they have some freedom
for independent fading and reappearance.

Generation Model of Magnetospheric Line Emissions.” We saw above that there is no necessary
connection between magnetospheric line emissions and power line harmonics. There may be such a
connection in some cases, but we did not see it here. However, we do not need to invoke power line
radiation into the magnetosphere to explain magnetospheric lines. I now describe a model which -
explains the behavior of magnetospheric lines, but is based only on magnetospheric processes:

We saw-in Section 4.5.1 that a signal at a given frequency tends to suppress the growth of signals
at nearby frequencies. This suppression is effective over a range approximately 10-100 Hz above
and below the given signal, depending on conditions. Signals closer than 10 Hz are not suppressed,
though they show modulation due to beating at their difference frequency. Signals separated by
100 Hz or more behave independently. Maximum suppression occurs for signals about 20 Hz apart,
and becomes less at ]argef separations. A weak signal can suppress the temporal growth of another
at least 20 dB stronger, though it may allow some steady-state amplification.

If we assume that the limit of suppression is, say, 60 Hz, then a signal (of whatever origin) in
the magnetosphere will tend to grow only if there is no other signal within 60 Hz of itself. A small
noise element that, by chance, is temporarily stronger than others nearby in frequency, will grow
~and suppress its neighbors, while éllowing other noise elements 60 Hz or more removed to grow
independently. Thus we may expect at any time that a sample of noise (at least if generated along
a single path) will show a comb-like structure in frequency at any given time.

However, unless the state of the noise at a give'n time has some effect on noise that follows after
it, a suppression mechanism that generates a comb structure in frequency will not be sufficient to
generate a line structure that persists in time. That is, even though the spectrum at any given time -
shows a 60 Hz periodicity, combs will appear at diﬂ'el_'eht frequencies at different times. Sich noise
might appear quite random on a spectrogram.

If a noise comb generated at one time can control later noise generation, then we fnay expect
to see spectral lines. We have two preconditions. First, we must have echoing so signal elements
generated at one time come back to affect later events. Second, we need coupling between different
echoing paths. (even if amp]iﬁcation and suppression occurs on only one of them) so there will be a
diffusion of signal elements in time. Echoing without cross-path coupling merely creates a two-hop
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periodicity in the signal. With cross-path coupling, any signal whose frequency changes rapidiy
with time will suppresé_itself as components at different frequencies, following different delays on
different paths, arrive together at the interaction region. The only signal structure that can persist
under these conditions is one whose frequency changes very slowly with time. Thus the comb
structure of amplification caused by frequency suppression {whatever its underlying: mechanism)
and the frequency stability caused by cross-path coupling of echoes together generate lines. )
This model predicts that we will have magnetospheric lines only under the following conditions:

1. We must have multipath echoing,.

2. We must have growth to make up for any path attenuation and keep signal amplitudes from
decaying. However, growth need occur on only one of the echoing paths.

3. We must have suppression.- A signal at a given frequency 'must be ca.pé,ble of suppressing the
growth of nearby signals. The frequency range of suppress:on determines the line spacing of the
emissions.

4. We must have cross-path coupling between echoing paths to provide dispersion in time.

The first condition, multipath echoing, probably always occurs when magnetospheric line emissions
are seen. Park [1977] notes that line emissions (PLR, as he calls them) require good echoing.
Helliwell and Katsufrakis [1978] present a case of multipath whistlers which echo and develop into
lines. Multipath echoing was certainly the case in Figure 4.33 above. The second condition, growth,
almost certainly occurs with line emissions as well. In many casés growth can be seen directly as
chorus elements change form and trigger emissions with each echo. The third condition, suppression,
has not been actively measured during line emission events. However, as far as is known, suppression
always accompanies whistler-mode growth, so we may assume its presence when we see growth. The .
last conditioni, cross-path coupling, is least understood. Smith and Carpenter [1982] think it may
be quite common; at least in the case of whistlers.

Using this model we can also account for intercalated sets of lines. The line sets are generated in
separate regions, each with its own frequency-suppressed growth interaction and cross-path coupled
echoes. If signals from one region are only weakly coupled into a second, then lines generated in the
second region will not be completely suppressed by the first. However, they will be synchronized
in frequency. Since suppression diminishes with increasing frequency separation, lines in the second
region will be forced to be as far away in frequency from the first as possible, where suppréssion isa
minimum. That is, lines in the second spectrum will lie inidway between lines in the ficst. Depending

. on the strength of the coupling between the regions we may see some independent frequency drift

between the two sets of lines, as seems to be the case. Triple sets of intercalated lines, as seen at
1234 in Fig. 4.35, must be due to three generation regions. A test of this model will be to check the
direction of arrival of different sets of lines, or their strengths at different receivers, and show that
different line sets are generated in different regions of the magnetosphere

Future Search for Power Line Radialion. As the reader may have gathered, the evidence for
effects caused by PLR is open to mterpretatlon and is ot universally accepted. I wonder whether or
not 1t really “has been clearly demonstrated that PLR can trigger emissions that strongly interact
with trapped energetic particles in the magnetosphere” {Park and Helliwell, 1980]. The most serious
objection in my mind is that PLR itself has not been observed. Radiated signals surely exist at
some level (since we do see harmonic currents on the ground); but if they are so weak they cannot
be seen, the chain of evidence for proposed effects is weakened as well.




190

There are several problems in trying to observe PLR directly. It is very difficult, if not impossi-
ble, to observe with ground-level receivers in North America because we cannot distinguish between
radiated signals such as PLR and the induction fields of local power line currents. If PLR is weak,
it may well be below the detection threshold of sateilite VLF receivers, and may still be susceptible
to local power-line interference during telemetry. reception and recording. Yet pethaps we could

observe it in the Antarctic. Power generators at Antarctic stations are not as well regulated in

frequency as the North American power grid, and the instantaneous frequency of local interference
in Antarctic VLF recordings should be different from North-American PLR. With phase analysis
it may be possible to separate whistler-mode PLR from local interference. At Siple Station the
generators have occasionally been run at 58 Hz, making the task even easier. Future investigators
mustrre.member, however, that the station and transrnitter generators are often run independently,
" and there may be two sets of local interference lines in Siple recordings.

4.7 Summary of the Characteristics of Whistler-Mode Growth

The following list summarizes various features seen during cyclotron-resonant growth, as observed
mostly with man-made signals from the Siple Station VLF transmitter. Many of these features were
discovered by earlier investigators using f-1 spectrograms or narrowband filters to measure signal
magnitudes, and are described in the literature. Some, those involving observations of the phase or
instantaneous freqﬁency of signals, are the products of phase analysis and are listed here for the first
~time. These new contributions are shown in ifalic type. . :

1. Exponential Growth in Magnitude. The amplitude of a growing pulse typically increases
exponentially with time, at least initially. Growth rates up to 250 dB/s have been observed [Stiles
and Helliwell, 1977). Temporal gfowth usually continues for 20 to 35 dB {if the input signal lasts
long enough), at which point amplitude saturation will occur.

All of the signals shown in this chapter have growih rates well below 250 dB/s. In fact, the
most interesting signals seem to have growth rates on the order of 40 dB/s. This may be a selection
effect. Rapidly-growing signals tend to more turbulent and chaotic behavior, and to oceur in times
of multipath propagation, both of which characteristics make them harder to interpret.

Growth rates are often only approximately exponential. The growth rate is often highest at the
very beginning of a pulse, and may decrease well before saturation is approached. Pulses may show
several episodes of faster and slower growth before saturation is reached.

2. Advance in Relative Phase. The relative phase of a growing signal increases with time,

indicating that the received signal is higher in frequency than when fransmitled. Offsel frequencies

Af = d¢/dt are typically in the range 1-8 Hz Offset frequencies due 1o growth are an order of
magnitude greater than the Doppler shifts due to duct motion, and change much more rapidly.
Phase advance almost invariably accompanies growth. More than a momentary relardation in
phase on a growing signel is never seen. (Phase lag may accompany diminishing signals, but this
is a relatively yncommon phenomenon.] However, when growth rates are very low, the phase may
not advance noticeably until the signal magnitude has grown by 10 dB or so. Phase advance is often
parabolic with time (proportional to 2), especially at the beginning of a pulse, indicating a linearly-
iﬁcreasing frequency offsel. Many pulses show a phase which increases only linearly with time toward
the end {or until triggering occurs), evidence of a limiting value in offset frequency. Phase advance

continues even after the amplitude has saturated.

3. Initial Frequency Offset. Sometimes the phase advance of growth seems to occur at a non-
zero rale even at the beginning of a pulse, showing that the initial ouipul frequency is above that of the
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input signal. For ezample, Fig. 4.3 shows a signal with an initial frequency offset of 1.1 Hz. Some of
the largest initial offsets that have been observed ({.5 Hz) are shown in Fig. 4.4. Unfortunately, the
amplitude at the beginning of a growing signal is weak and its phase plot is correspondingly noisy,
1t is difficult o say ezactly how early a measurable frequency offset can occur. Some pulses show
offsets within the first 80 ms, bul whether the frequency offset is ever non-zero right at the start is
unknown.

4. Saturatlon After a pulse has grown by 20 to 35 dB, growth slows, stops, and the total
signal amplitude remains at a roughly constant level.

5. Magnitude Ripples at Saturation. As a pulse approaches saturation and growth slows,
regularly-spaced ripples in magnitude often develop, indicating the appearance of sidebands. Asso-
ctated ripples in phase also occur bul are often less pronounced.

6. Band-Limited Impulse. At the end of a pulse an amplitude transient often occurs, known
as a band-limited impulse (BLI). Energy appears briefly in a short spheric-like event at frequencies
up to 100 Hz above and below the pulse frequency. The BLI is usually asymmetric, with more
energy above than below. A BLI may also appear at the beginning of a pre-termination emission,
though such emissions are often so noisy that it is hard to distinguish an initial BLI from 1mpulswe
noise of the emission itself. _

When a termination BLI is especially strong, it may appear as a brief interval of signal at a
well-defined frequency above that of the growing pulse. The transition in frequency from the pulse
to the BLI may take place instantaneously {< 2.5 ms).

7. Termination Triggered Emission. Following the BLI at the end of a transmitted pulse,
the output signal is often found to continue in a self-sustaining magnetosphetic oscillation or emission.
" The emission typically starts 30100 He above the frequency of the inpui signal and may last for a
second or two. Emissions are “risers” or “fallers” as they rise or fall in frequency after the end of
the input signal. Termination emissions are usually fallers. Even a pulse exhibiting only very weak
growth can trigger a faller. Risers are only seen when growth and phase advance are well along by
the end of the pulse. Even when a BLI is absent, the transilion from. the Jrequency of the growing
signal to the offset frcquency of the emission may be almost inslantaneous, taking as little as a few
milliseconds.
The amplitude of a termination emission immediately after the end of the pulse is approximately
the same as that of the growing pulse just before the end, though the emission may grow or decay
rapidly from then on.

8. Pre-Termination Triggered Emission. If the phase of a¢ growing pulse has time to
advance aboul two or three revolutions before the end of the input signal, a pre-termination emisston .
will be generated. These emissions are always risers; fallers are never generated in the middle of a
growing signal.

Immediately after the emission is triggered, there may sometimes be a brief interval (say, 100 ms)
during which the signal at the input frequency is suppressed below its initial value. It is not known
how common this effect is. It is possible that it always occurs but is observed only when not masked
by signals on other paths. '

After the ernission separates and any post—triggering suppression has passed, conditions are
reset such that the signal begins to grow and edvance in phase all over again, almost as if the input
had just been turned on. Subsequent periods of growih start from the same phase and a.pproxlma.tely
the same amplltude as that of the initial signal.
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9. Spontaneous Sidebands. The magnitude and phase ripples at saturation indicate side-
bands—some of the pulse energy appears at one or more nearby frequencies from 10 (possibly less)
to 100 Hz both above and below the transmitted signal. When multiple sidebands are scen they
are usually phase-coherent with each other—they are offset from the input signal by multiples of
some common frequency and are harmonically reluted. When one sideband dominates, others at
subkarmonic frequencies may be seen. Sidebands often occur at frequencies very close to 60 Hz,
but whether this is due to magnetospheric signals such as power line radiation or to low-level hum
modulation at the transmitter is undecided.

10. Two-Tone Sidebands. Sidebands are created when two equal-amplitude signals are
transmitted with a separation from 10 to 50 Hz. That is, the received signal contains not only
the two input components but equally-spaced sidebands offset by multiples of the input separation.
Each beal in a two-lone signel may act as a minialure pulse, showing growth and phase advance,
and iriggering a brief termination emission. H owever, the growing pulses remain phase-locked to the
input such that coherent sidebands are generated. Sidebands occur both above and below the input
signals, though the ones above are usually stronger. They may be seen as much as 100 Hz from the

input frequencies.

H two input tones are of unequal amplitude, the strongest stdeband is usually the first component

above the stronger input tone. If a two-tone input has a strong lower tone and weak upper one, the
upper input frequency may paradoxically be the strongest component at the receiver. The relative
amplitudes of different sidebands may change with time; prefiminary evidence suggests there may be

small phase changes essociated with this.

11. Suppression by Nearby Signals. Two-tone signals with separations from 10 to 50 Hz

suppress each other’s growth and emission triggering. These are also the separations where two-tone .

* sidebands are generated. Signals separated by less than 10 Hz behave as single tones, though with

" growth and emissions modulated at the beat frequency. The greatest suppression occurs with a
separation of 20 Hz. At slightly larger separaiions, some amplification may occur though components
remain phase coherent. At separailions of 100 Hz or thore, lwo input signals behave independently,
showing separale growth and phase advance.

Completely suppressed signals show a slight (fractional-revolution} phase advance over the initial
phase of a single-tone signal, evidence of amplification. As the amplitude of one component of a two-
tone signal is decreased 20 dB with respect to the other, suppressioﬁ weakens, all output components
advance in phase by about (.75 rev and increase slightly in magnitude, but they still remain phase-

coherent.

12. Change in Growth Activity with Time. Growth rates, frequency offsets, and the
strength of sidebands and emissions may change from pulse to pulse over the course of a few seconds
or tens of seconds. Pre-termination emissions {always risers) and termination risers are common
when activity is high, while termination fallers are more common at lower levels of activity. When
activity is very high, signals may become very noisy and turbulent, probably because of an increase
in the number of paths supporting growth.

When activity changes over the course of a few minutes such that both growing and non-growing
pulses can be seen at a given frequency, the growing signals seem to start at the amplitude of the

non-growing signals.
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5; SUMMARY AND RECOMMENDATIONS

5.1 Summary

This thesis describes a new data analysis system which has been developed to measure the phase of
recorded VLF signals, primarily whistler-mode signals from the VLF transmitter at Siple Station,
Antarctica. Phase information has not been generally available in the past because ordinary spec-
trum analyzers cannot correct for timing and frequency errors in tape-recorded data. Knowing the
phases of signal components as well as their magnitudes doubles the amount of spectral information.
Phase information is not always easy to interpret; but when it is, as with coherent signals from
VLF transmitters, we gain an entirely new perspective from which to view signal behavior. Some
signal characteristics, such as the radial motions of whistler-mode ducts caused by electric fields.
in the magnetsophere, have been studied before but can now be measured more accurately with
phase analysis. Some characteristics, such as the behavior of triggered emissions at the moment of
separation, can be seen in greater detail than was possible with older methods. Many characteristics
are seen here for the first time, such as the initial frequency offset of a growing pulse, the phase
coherence of suppression, and the phase-locking of entrainment.

Method. In Chapter 2 we described the new analysis systemn and the algorithms used to process
tape-recorded data, with an emphasis on those used to recomstruct signal phase information. - A
constant-frequency pilot tone is recorded along with the data in the field. We play back the field
tape and digitize it in the laboratory. The phase of the pilot tone gives the data time at each
sample, and the frequency of the pilot tone tells us the data rate (relative tape speed) at that point.
We calculate the windowed discrete Fourier transform (DFT) of overlapping segments of sampled
data. We correct for frequency shifts in the sampled data due to rate errors by linear interpolation
between points in the DFT spectrum. This gives a new spéctrum whose synthesized filters are at
fre(iuencies as originally recorded, ensuring that signal components are properly filtered.. Linear
interpolation has a small effect on the magnitude response of the synthesized filters, but has no
effect on their phase response. Finally, if ¢(t) is the phase at data time ¢ of the output of a spectral
filter whose passband is centered at frequency fo, we calculate the relative phase of the filtered signal -
as ¢ret(t) = @(t) — 2n fot, the phase of the signal relative to a reference oscillator at frequency fo.
This corrects for tape timing errors and puts the phase information in an easily interpreted form.

Non-Growing Signals. In Chapter 3 we examined sub-ionospheric signals from VLF communica-
tions transmitters. Phase information allows us to identify the modulation and stability of different
transmitter signals. A presumed Soviet transmitter at 19550/19600 Hz showed curiously poor phase
stability.

We examined the phase of the sub-ionospheric signal from the S}ple transmitter as received
at South Pole Station and saw phase changes due to Trimpi events—the precipitation of energetic
. electrons into the 1onosphere caused by whistlers. However, noise in the reconstructed phase of
the best of signals is still around 1 gs rms. This is too much allow us to detect Trimpi events on
lower-latitude paths, where perturbations are typically 1 us or less. This noise is partially due to
errors during analysis, and may be improved in future systems. _

Whistler-mode signals from the Siple transmitter are sometimes received at the conjugate station
in Roberval, Quebec, without any of the distortions caused by cyclotron-resonant growth. These
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signals have the fidelity of sub-ionospheric signals, but reveal changes in the phase length of their
magnetospheric path. Calculations show that some of this change is due to plasma flux between
the ionosphere and magnetosphere, but that most must be from radial motion of the whistler-mode
ducts caused by east-west electric fields mapped up into the magnetosphere. Phase measurements
can supplement previous methods of measuring duct motion based on Doppler frequency shift or
whistlers. o -

" A continuous non-growing whistler-mode signal was studied, the eleven-minute two-tone LICO1
transmission of 9/2/83. Signal phase was measured every (.25 s, corrected for errors due to fading,

and compared to the H and D components of the earth’s magnetic field measured near the receiver.’

Spectrograms of the phase delay and magnetic field showed strikingly similar features, with phase
features preceeding magnetic features by 20 to 30 seconds. A cross-correlation plot between phase
delay and D showed a bipolar signature which was interpreted as caused by relatively brief Pec 3
micropulsations traveling as Alfvén waves from equator to ground. Similar correlations have been
seen before between Doppler shift and resonant-line micropulsations, but this is the first example
where resolution has been good enough to see transient events, disturbances which occupy only a
fraction of the field line length at any given time.

Growing Signals. The most interesting features of whistler-mode signals are those caused by
cyclotron-resonance interactions between the wave and energetic electrons streaming in the opposite
* direction. These interactions cause temporal growth, the triggering of emissions, sidebands on two-
tone sigﬁals, and other related phenomena. In Chapter 4, phase analysis uncovered several new
grou;th—associated features, including the following: : S

1. The relative phase of a growing pulse advances with time, meaning that the frequency of the
received signal is higher than when transmitted. The phase advance is often parabolic with
time, indicating a linear increase in offset frequency. This phase behavior is 2 major constraint
on models of wave-particle interactions. Sometimes growing pulses show a frequency offset of
several hertz even at their beginning, a completely unexpected feature. '

2. Termination emissions, those which occur at the end of a growing pulse, are found to begin at

a frequency above that of the pulse, itself a few hertz above the input signal. This is true of
fallers, emissions which fall in frequency, as well as risers. The change from the frequency of
‘the growing pulse to that of the emission may occur very rapidly, in'a few milliseconds or less.
Phase analysis has let us see instantaneous frequen.cy changes that are unobservable by other
methods. '

3. If the phase of a growing wave has time to advance sufficiently, a pre-termination emission,
always a riser, will be triggered. Three revolutions seems to be the maximum phase wind-up
which can be tolerated in the interaction region before this instability sets in. After each pre-
termination erission separates, the signal is found to start regrowing with the same phase and
approximately the same amplitude it had at the beginning; that is, with the presumed phase
and amplitude of the input signal. , '

4. The beats between components. in two-ione signals with separations of 10 to 50 Hz are found
to behave like a series of isolated- pulses, each pulse showing an increase In magnitude and
a corresponding advance in telative phase. However, the initial phase of each growing beat
remains locked to the input signal, such that sidebands in the output are harmonically-related
and phase-coherent.

5. Multiple sidebands forming about single-frequency signals are often phase-coherent, with com-
ponents at harmonics, and sometimes sub-harmonics, of the predominant offset frequency.
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There seem to be frequent cases of such sidebands with offset frequencies very close to 60 Hz,
the frequency of the North American power grid. However, whether these are due to the radi-
ation of power line harmonics into the magnetosphere or to low-level hum modulation at the
transmitter is still undecided.

6. Mutual growth suppression occurs when signals at nearby frequencies decrease each other’s
temporal growth and emission triggering rates. Suppression can now be monitored by its phase
effects as well. The coherence bandwidth, the range of signal frequencies over which waves can
resonate with the same energetic electrons, is found to be about 50 Hz, similar to-previous
estimates. The steady-state phase of each component in a suppressed two-tone signal is slightly .
advanced from the initial phase of a one-tone signal before growth, indirect evidence of the linear

_ ampliﬁcation of the two-tone signal. When one component in a two-tone signal is reduced by
20 dB, suppression weakens and all received components may show a constant phase advance
of about 3/4 rev, yet remain phase-coherent. '

7. Entrainment occurs when a weak whistler-mode signal changes the df /df characteristic of a free-
running emission and captures it. Examination of the entrainment of falling emissions by weak
50 ms idler pulses shows that the pulses gain control of the emission interaction region where

1t exists, well down-wave of the equator. Yet even here we see phase advance accompanying
growth, and fallers with fermination phase wrap-up, just as al the equator,

8. Whistler precursors are observed on a transmitted signal, the first time this has been seen.
Phase analysis demonsirates the precursors are caused by a rapid increase in growth activity, l
and not merely the presence of a triggering signal as postulated by several previous studies.

9. Magnetospheric line emissions are found to be unconnected with possible power line signals.
They are explained as due to natural magnetospheric growth, cornbined with the effects of
suppression, multipath propagation, and coupling between different paths.

The phenomena described above must be only a sampling of those that phase analysis can uncover;
I think we have just scratched the surface. I have analyzed very few records in which there was
not something new and interesting. One of the purposes of this report has been to present as many
examples of phase behavior as possible, since so little has been available. The other is to stimulate
a general interest in phase analysis, and spur some reader to carry the process a little further.
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5.2 Improvements to Field Station Equipment

Digital Recording in the Field. The biggest improvement we can make to data analysis will
be to record broadband data digitally in the field. This will eliminate the tape wow and flutter
problems that make phase analysis so difficult. In.fact, future researchers will probably regard the
techniques I've developed to cope with tape timning errors as being of historical interest only. In the
past, digital recording entailed such a great penalty in tape cost over analog recording that it was
prohibitive to use it except in limited cases. For instance, the 800 bpi digital tape in the digital
analysis system holds 6.5 minutes of sampled data per reel, compared to 90 minutes on an analog
tape for approximately the same cost. However, digital recording techniques have been advancing
rapidly, and it will soon be feasible, if not cheaper and easier, to record digitally. Analog decks are

- also becoming harder to maintain as they reach obsolescence.

We have done some digital recording on an experimental basis already, using a PCM converter

together with a video cassette tape recorder. This has reduced wow and flutter problems consider-
- ably, though it has not eliminated them. There is still some low-frequency wow with phase excursions
around 30 ps due apparently to variations in tape speed. (The average speed is controlled quite
accurately through a servo loop, but there are small variations about this average. On playback,
data samples are converted as they are read instead of being buffered and converted at a constait
rate.) This system, using 16-bit analog-to-digital conversion, has also given us recordings with the
highest fidelity and largest dynamic range yet achieved.
_ I envision that systems in the near future will use DAT (Digital Audio Tape) machines. These
record high-fidelity sampled data using helical-scan heads like the video cassette recorders, but have
smaller tape cartridges. (They are not marketed in the U.S. at the moment because of unresolved
concerns about copyright infringement, but should be available soon.) Optical disk technology is also
advancing rapidly, and this may be an alternative recording medium. Both DAT and optical disks
will encourage the development of desktop analysis systems since they will eliminate the tedious
step of sampling and digitizing the analog tape.

Instrument to Phase-Track Two-Tone LICO1 Signals. The LICOL1 signal analyzed in Sec. 3.4
showed how whistler-mode phase delay can be used to monitor magnetic field line disturbances at
the equator as well as on the ground, where magnetic observations are now made. {Satellites can also
measure the magnetic field at altitude, of course, but at L = 4 they don’t allow lengthy observation
at any one place.) This technique promises lots of exciting results. However, extracting the phase
delay information in the LICO1 signal from the broadband sampled data was a great deal of work.
Data sampled at 25600 samples/sec produced four measurements of phase delay every second. This
is clearly an inefficient process. ‘ ‘ :

This is one case where a special-purpose instrument in the field is better than a general-purpose
analysis system. We need to develop an instrument that can track the phase of LICO1-like signals,
correct for differential fading as in Eq. (3.12), and produce a low-rate output that can be sampled and
recorded along with the magnetometer data at field stations. If the instriament also produced some
measure of signal bandwidth, which increases with growth activity, we could monitor that as well.
This need not be a complicated machine, and could be restricted to a particular carrier frequency
and tone separation. Uniess custom-made narrowband crystal filters can be used, sampling and
processing by one of the new digital signal processing (DSP) chips (such as the TI TMS320 series)
is probably the best approach.

We are currently developing a new generation of phase-measuring receivers to monitor VLF -

communications and navigation transmitters to detect. Trimpi events. Measuring the phase effects
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of Trimpi events is not much different from measuring the phase of whistler-mode LICOI signals,
and- a similar design might work in both cases.

5.3 Improvements to the Analysis Algorithms

Using Proportional Clipping During Spectrum Normalizing. One of the easiest improvements to
the analysis algorithms will be to introduce proportional clipping during the normalizing procedure
in Sec. 2:5.7. Normalizing is performed on points in the interpolated spectrum to compensate for
halving (scaling) during the FFT, filter gain changes with transform size and window order, and in
order to set the overall processing gain. Normalizing is done independently on the real and imaginary
values at each point. During normalizing, each point is clipped so its value cannot exceed +32767 to
prevent arithmetic overflow. Unfortunately, clipping real and imaginary points separately introduces
phase distortion as well as amplitude distortion. Phase angles tend to concentrate around 45°, 135°,
225°, or 315° (those angles whose tangents are +1).

We should really use proportional clipping, where the stronger component is clipped to £32767
and the other component is reduced by the same factor so their ratio {(and phase angle) remains
constant. I think this will reduce the phase noise introduced by spherics, particularly when averaging.

Development of a Betier Phase Estimator in the Pilot Tone Tracker. Some of the phase noise
seen on a given sighal is due to noise within the passband of the analysis filter for that component
and cannot be avoided. Some of it, however, is due to noise in the filter used to track the pilot

' tone, since errors in measuring pilot tone phase become errors'in data time, and hence errors in the

relative phase of all signals. This is especially aggravating when the desired signal is strong and -

clean, yet the pilot tone is embedded in heavy spheric activity, or was recorded at too low a level.
Most of the phase errors in this case will be pilot tone errors. _

Yet, as we saw in Fig. 2.4, the phase of a typical pilot tone has a simple structure, with most
of the variations (and perhaps almost all, if spherics did not interfere with our measurements) due
to two penodac components: the rotations of the capstan and the supply idler. I think phase noise
would improve markedly in many cases if we used an adaptwe filter to estimate the pilot tone phase.
Since the phases of only two periodic components at known frequencies (which are, however, different
in different tapes) are involved, the filter would not have to be very complicated.

Equelizing the Anti- Aliasing Filter. A small source of phase efror is due to distortion in the
anti-aliasing filter as given by Eq. (2.10). Because the phase delay of the filter is not constant with
frequency, tape speed variations lead to differential phase variations between the pilot tone and
signal components. These errors are probably small in most cases, on the order of 1 ys or less.
However, if we implement an adaptive filter to measure the pilot tone phase as proposed above,
we may decrease other processing errors to the point where filter distortion becomes important,
especially when looking for small phase changes as in Trimpi events. In this case it will be necessary
to reduce the distortion caused by the filter. 1 think a very simple digital all- -pass phase equalizer
could decrease distortion to insignificant levels. :

Ideal Frequency Interpolatz'on for Synihesized Filters. As shown in Sec. 2.5.5, we use linear
interpolation between points in the DFT spectrum to correct for frequency shifts due to Ea.pe speed
errors, and also to place analysis filters at desirable frequencies. Given the discrete windowed
spectrum {Sr} and the current data rate 7, we calculate the interpolated spectral point U; at data

frequency f as _ :
U; = (1—-p)S + PS4 . (2.43)




198

where k is an integer, and p an interpolation offset in the range 0 < p < 1, such that f = (k+p)NT/7.
Linear interpolation works well enough but has the disadvantage of changing the passband shape
of the analysis filters slightly, depending on the value of p. In some future system where data are
sampled in the field, we won’t have to worry about unshifting the spectrum to correct for rate errors.

However, it will still be useful to pI'a.ce analysis filters at arbitrary frequencies to match particular

signal components. Is there some way of interpolating that preserves the filtér shape?
_ The answer may be yes. We can calculate the value of the discrete windowed spectrum at an
arbltrary frequency f = (k+ p)NT/F as*

U: = N_ls —j2x(k+p—m)(1—1/N) sin[x(k +p—m)] ' 5.1
T Z me N sinfx(k + p— m)/N] : (6-1)

m=0

The value U; now represents the output of a filter at frequency f whose passband is exactly the
same as the filters in the original spectrum {Si} (including the effects of passband ahasmg) The
shape and center-frequency gain are now independent of interpolation offset p-

Equation (5.1) looks more complicated that it is. Remember that windowing reduces the side-
lobe response of the DFT filters. Using the usual 3rd-order window, we see in Fig. 2.6 that the main
lobe of the filter is about 6/NT (six bins) wide, and all responses outside this lobe are at —72 dB or
less. We only need to use the six terms Sy_a,.-.,Sk43 in Eq. (5.1) to capture all the signal in the
main-lobe responses of the windowed filters. The error in interpolated filter response from omitting
the other Sy, terms is proportional to the signal in the sidelobes of the other windowed filters, and.

is too small to matter. In fact, using only four central terms might be more than adequate. The
exponential phase and sine factors in Eq. (5.1) would have to be approximated in some fashion to

simplify the calculation, of course.

Narrow-Band Analysis Using Trenslation and Decimation. One of the limitations of therpresent

digital analysis system is that the FFT routine can transform at most N = 2048 real data points.

. With the usnal 10.6 kHz sampled data, this means the mirimum analysis filter bandwidth is 20 Hz
with the 3rd-order window (1.6/NT). We cannot process data with narrower filter bandwidths
without reducing the sampling rate and the total analyzed bandwidth. We could play back the tape
at, say, twice normal speed, digitizing only the bottom 5.3 kHz of the data, and then use 10 Hz
filiers. But this approach only works if both the signals being analyzed and the pilot tone are in the
sampled bandwidth; that is, below 5.3 kHz. We can also fudge a bit by using complex averaging, but
narrowing the filters in this way doesn’t give a very sharp passband, and makes the filter impulse
response distinctly asymmetrical in time (see Sec. 2.5.7).

The maximum transform size was fixed at N = 2048 because of the limited memory a.va.xlable
in the system computer. It was not feasible to use larger data arrays and still fit everything into
core at once. Memory is cheap in modern computers, and the next analysis system will surely allow
much larger transforms and narrower filters. However, this is only a partial solution. In most cases
when narrow filters would be useful, only a very small part of the total digitized bandwidth is going
to be analyzed. Instead of synthesizing filters t,hroﬁghout.' the input bandwidth, it may be better to
filter the sampled signal to reduce its bandwidth (by translation and low-pass filtering), decimate

* To show this, evaluate the discrete windowed spectrum U; = Sp(0, f) in Eq. (2.15) as a sum
of terms z,wy,, remembering that the window samples w,, are zero except for n = 0,1, ... N -1
Expand zpw, as a sum in Si from Eq. (2.41). Reverse the order of summation, and evaluate the
sum of exponentials using Eq. (A.3). S B
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it (reduce the number of samples), and then proceed with spectrum analysis. This would produce
a zoom function, much like that used on the SD-350 analyzer. Filtering and decimation is a fairly
straightforward process, but special care must be taken to measure and preserve the pilot tone rate
and time infbrmation for later frequency and phase corrections. The time error could be corrected

* during translation, but frequency ma.gmﬁcaf.lon to correct the rate error would still have to be done
by spectral interpolation. '

Chirp Z-Transform Algorithm for Resampling. An alternative method to correct for rate and
time errors is through resampling—interpolating between data samples to construct a new sequence - .
whose samples are uniformly spaced in data time rather than in laboratory time. This new sequence
represents the samples that would have been taken if we had digitized signals in the field. All tape
timing errors are removed, and we can filter, translate, and otherwise process the data without
worrying about frequency and phase errors.

Resampling would also useful when very long data segments are analyzed (in order to make very
narrow filters). Spectral filter interpolation to unshift data frequencies caused by rate errors only
takes out the average error in a given segment. If the segment contains one or more cycles of tape
flutter, there will be some residual frequency modulation in the data that will not be removed and

- will appear as low-level signal modulation at the flutter frequency. Resampling would allow us to
reconstruct short segments of data, removing rate errors that change from one segment to another;
and then concatenate these segments to make a larger data sequence free from flutter modulation.

Assurne we have an origmal waveform z(t). We record it, play it back, and sample it, hoping to
obtain a series of samples &, = z(nT}. However, because of rate and time errors we actually obt.a.m
a series of samples of the form

Um = z(mrT — E) o (5. 2)
We will assume that the data rate r and the time error £ are approximately constant for some
interval around ¢ = 0, though they really vary from segment to segment. To reconstruct the desired

- samples z, around n = 0 we interpolate as follows [e.g., Papoulis, 1962, Eq. (3-77)]:

- bl sinfw(n/r T —m
(D)= 3 g Slrln/r /1T —m)

5.3
i w(nfr+£/rT — m) (5.3)
In practice, we would approximate z, by
1 Nf2
En=— S HkYkA’“B"" : ' (5.4)
k=-N/2
where } . ;
go—4Lb if —N/2 <k <N/2,
T 1/2, ifk=4N/2,
N-1
Y = Z yme-anZ?rmklN,
m=0
A= ejEIE/NrT,
B = ej27r[Nr'
This gives ‘ :
. - NZ—I N sinfr(n/r +£/vT — m)] (5.5)

N tan[n(n/r +£/rT — m)/N].

R X,
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The value £, only approximates x, because of, first, the use of a finite sum; and second, the
approximation sin(z)}/z = sin(z)/N tan(x/N). We must choose N as large as possible (yet smaller
than any flutter period to be removed) to meet the first condition, and use only Z, for N near the
center of the interval [0, N — 1] to meet the second. Equation (5.4} is best calculated using the chirp
z-transform algorithm, as shown in Appendix C. This involves calculating three forward and one
inverse Fourier transforms, which can be done using the FFT algorithm. _

Resampling using the chirp z-transform was actually my first approach to correcting tape timing
errors, before I settled on spectral interpolation. Unfortunately, it involved too much computation,
given the power of the Eclipse 5/230 computer, and took too long. With the advent of DSP chips
that can perform very fast Fourier transforms, resampling may now be a viable approach.

The Modified Moving-Window Methed of Spéctrum Analysis. The standard method of spec-

trum analysis, where signal magnitudes are shown as functions of frequency and time by means of
spectrograms, is known as the moving-window (or hopping-window) method. There is an extension
of this method called the modified moving-window method, developed by Kodera et al. [1976, 1978].
The modified method improves the spectrogram by using signal phases to refine the positions in
the f¢ plane where speciﬁc‘signa.l elements are to be plotted. This method has not been used at
Stanford in VLF studies, but might be valuable in some future system.

The standard moving-window spectrogram gives us a fuzzy picture of the underlying signal
structure. For instance, in the spectrogram of an impulse we don’t see an infinitely sharp vertical
_ line but rather a vertical bard, faint at the edges and darker in the middle, with a width equal to
the duration of the weighting function w(z). Similasly, the spectrogram of a constant-frequency tone
of infinite duration is not a sharp horizontal line but a fuzzy line, densest at the proper frequency
to be sure, but whose width reflects the passband width of the synthesized filters. (We're ignoring
the additional uncertainties involved in sampling the £ plane only on a lattice of pbints. For
this discussion we assume the spectrogram is the product of an unlimited number of filters spaced
arbitrarily closely in frequency whose outputs are measured and plotted arbitrarily often.} The limit
to resolution is the uncerfainty principle At - Af =z 1; the risetime and bandwidth of an analysis
filter define the size and shape of the area of achievable resolution in the f-t plane.

We saw in Section 1.3 that we could use signal phése information to measure the instantaneous
frequency f of a signal with an accuracy limited only by the signal-to-noise ratio, as long as we knew
there were no competing signal components at nearby frequencies. We used this technique with VLF
signals, plotting their phases to find their instantaneous frequencies. The modified moving-window
method also uses this information, as follows: We look at the change in phase with time of the
output of a filter, say at center frequency fy. Suppose we measure an instantaneous frequency of
fa. With the modified method, instead of plotting the signal as a patch of gréy proportional to
its magnitude at frequency fy in the f-f plane, we plot it at the measured frequency f,. Instead of
plotting only on a lattice of points we can plot at the exact frequencies measured.

. The modified moving-window method goes a step further and measures the instantaneous fime
of a signal component as
1 94(t, /)

2n 9f (5.8)

i=
in analogy to Eq. (1.8). This makes sense if we remember the discussion in Sec. 1.2 about how
the time of occurrence of a signal element is translated into a winding up of the spectral phase
as a function of frequency. Here we measure the helicity of the spectrum to find the time. (The
calculation is actually made as a finite difference approximation between the outputs of adjacent

e e
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filters, like Eq. (1.9).) Now we can plot a signal element at both its precise time and frequency in
the f-¢ plane, which are not necessarily the center time of the window or the center frequency of the
filter.

The modified method seems promising for VLF studies. I think it will be especially useful when
we need to know both the time and frequéncy of signal elements as accurately as péssible, such as
when using whistlers to measure the latitude and electron content of whistler-mode paths. It will
not have as much to say in those cases where phase per se, rather than frequency, is important, as
when identifying coherent signals.

Other Output Formats. The plotting routines need to be expanded to allow other types of
output formats. Overlapping-trace A-scans would be a useful format, for instance. This would be
similar to the current A-scan format, except that the step size from one trace to the next would
be less than the maximum allowed displacement of the trace. This may cause successive traces to
overlap at frequencies where signal intensity is changing rapidly. These regions can be left as is, or
masking may be used to delete hidden lines. If the plots are made with frequency i mcrea.smg to the
right and time increasing downward, the format is called a waterfall display, and is very popular in
vibration analysis circles. An overlapping-trace A-scan format was not implemented in the current
system because calculating the output requires saving the last several spectra, and there was not
enough memory available to do this. In a future systern this will not be a problem.

A similar overlapping format would be useful with magnitude plots. In this case, the magnitudes
of a set of filters at different frequencies are plotted in a series of traces as continuous functions of
time, the converse of the A-scan plot. If the deflection of each trace was greater than their spacing
in frequency, strong signals could overlap weaker ones from adjacent filters. Again, masking can be
used to blank out hidden lines. The direction of deflection can also be tilted from the frequency axis
to give the plot a three-dimensional look.

Ability to Analyze More C’amplicaied Signals. One of the limitations of the present approach

to phase a,nalysié is that we can only easily interpret the phase of constant-frequency or slowly- .

 varying signals. There is a ticed to be able to plot the relative phase of frequency ramps, say. In
principle this should not be difficult. The rate of change df/dt of a transmitted ramp is known,
and it is only necessary to use a phase reference signal with the same frequency characteristic, and
interpolate analysis filters which change in frequency with time. Plotting the results will be a little
more difficult. We could have a frequency scale which rotates through a range of values at the same
rate as the ramp, in which case the phase of a ramp would plot as a horizontal line whose vertical
position depends on the starting time of the ramp. Or, perhaps more sensibly, we could plot in a
series of diagonal bands (with the df /dt slope of the ramp), so the phase of a coherent ramp would
be a straight diagonal line. The phase of a linearly-propagating ramp should be a very sensitive

- measure of dispersion. We may also be able to separate close muitipath components through phase
ramps.

The next step after this will be to design a procedure to analyze the phase of whlstlers This
might be similar to the phase-ramp technique, but use a reference frequency (and sweeping filters)
whose rate of change follows a given whistler dispersion. This would allow us to make very accurate
measurements of nose frequency and group (or phase) delay, and rhight show second-order dispersion
effects caused by the length of the sub-ionospheric path or magnetospheric ions.

Another step, and I speculate a bit here, will be to develop an algorithm which changes the
f-t plane into a nose-frequency group-delay or fu-t, plane. This algorithm would take a digitized
waveform, and by caleulating the autocorrelation of components at a given frequency vs. time
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delay, and the dispersion in these correlations, .could generate a plot where density at a given
point is proportional to the signal intensity on a given whistler-mode path. I can imagine, at least
conceptually, how this might be accomplished by a brute-force attack, but the important question is
whether or not there is a fast algorithm for it, like the FF'T algorithm which facilitates the calculation
of f-t épectrograms. If such an algorithm could be devised (or even a slow one} we might answer
some basic questions about the origin of chorus and hiss, and use them and other noisy signals for
cold-plasma diagnostics much as we use whistiers. That is, since chorus contains echoing whistler-
mode elements, we should be able to correlate successive echoes and determine the path(s) of the

signal.

5.4 The Next Generation of Analysis Systems

Personal Workstation for Fase of Access. The ‘current digital analysis system occupies two
equipment racks, with a separate printer and terminal, in its own room in the ERL building at
Stanford. Next door is the room containing our analog spectrum analyzers, which take up a dozen
‘racks. To use either of these systems involves working in a building separate from the one where
most of the VLF Group have their offices. It requires many hours of hands-on training. The actual
analysis is tedious. To produce hard-copy plots from the analog analyzers requires wet-chemical

processing of photographic paper or film, and must be left to the system operator. Faculty members

rarely have the time to spectrum analyze data, even though they may be very interested in the
results. There are several steps we can take to improve this situation. .

Nearly everyone in the VLF group has a terminal in his office and regularly uses a computer,
either a personal computer or one of the Space, Telecommunications, and Radioscience Laboratory’s
mainframe computers. The next logical step for data processing is to provide everyone who wants
one his own spectrum analysis system. This should be a desk-top machine, a personal workstation.

I think such a machine can be developed around a personal computer. The same system could also

perform the other tasks personal computers are now used for, such as word processing.

Use of Pre-Digitized Data and Denser Media. One requirement for the personal analysis system
will be a cheap and compact way to store the signals to be analyzed. Analog tape recorders are
so large and expensive that it is not practical to have one for each workstation, The answer will
be to have a central facility (perhaps operated in conjunction with our analog analyzers) where

selected intervals of analog tapes are sampled and digitized. The sampled signals can be recorded -

on magnetic tape cartridges, DAT tapes, or optical disks. Each workstation will have a cartridge,
DAT, or optical disk player, which are much smaller and (when they become consumer items in the
near future) cheaper than analog recorders. Later on, when we record sampled data directly in the
field, the digitizing problem will take care of itself and each investigator can have direct access to
field recordings. '

It will be important to use a medium capable of storing more data than the digital tape in the
current system. A minimum requirement might be 100 megabytes per recording. This represents a
bit over 40 minutes of 10.6 kHz data as presently used (12-bit samples at a rate of 25600 per second).

Hardware Tailored for Signal Analysis—DSP Chips. Another requirement for a workstation
analysis system is a real-time analysis rate of at least a few kilohertz. That is, one second of, say,
3 kHz data should not take more than one second to process and display. Anything much slower
becomes too tedious to use. Real-time analysis to 10 kHz would be a good goal.

This processing speed cannot be attained with current personal computers by themselves. For

-example, the IBM PC/AT is only slightly more powerful than the Data General Eclipse S/230
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used in the bresent digital analysis System, whose real-time rate is about 1 kjs. However, there
are several companies making boards that plug into personal computers, which yge digital signal

even for phase analysis.

Color Graphics for Increased Dynamic Range of Specirograms. All the spectrum analysis we
Performed up to 1985 was in black and white. We are Just starting to make color Spectrograms.
Color brings certain advantages, ang color graphics should be Part of any futyre system. One of the
advantages of coldr, Particularly jn specirograms, is-that it allows more information to be displayed .
In a given area.

are available with 256 colors, and would pe much bhetter, Even larger palettes can be found, but
more than 25§ is probably Unnecessary. Of course, besides g color graphics display, we need some

value. Qur perception of color has three dimensions since color can vary in hue (wavelength or tint),
saturation (bandwidtp or purity), and intensity (brigl_ltness) at the same time.  This presents the’
Possibility of encoding both relative phase and magnitude iy 5 Spectrogram, say phase by hue and
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APPENDIX A.
DFT OF A COSINE WAVE

Section 2.5.3 uses an explicit expression for the discrete Fourier transform of a sequence {za}
representing samples of a cosine function. The expression is denved as follows:
Let

' k
2n = o(nT) = Acos[pg + 27 fo(nT —t9)], where fy = ——1-;-—%_‘2, and {3 = _I%Z (A1)
We have
: N-1 N-1 .
Xi =3 wae 2N = N A coslgo + 2a(k + g} (n/N — 1/2)]e=F2mEIN
n=0 n=0
A N-1 ) N 1
=3 Z I lpot2x(k+a)(n/N=1/ D] —j2mnkIN | Z eil=go—2x(k4q)(n/N-1/2)] e—sznk/N
n=0 n=0
A N-1 PR
2 Zej[qﬁow:rk 7g+2xng/N] 4+ = Z: P;[—¢o+:rk+1rq—-27m(2k+q)/N]
n=0 n={
N-1 A ' N-1 ,
-2 A ilgo—rkmq] jerng/N 4 il-dotmE+mg] 7 2mn(2k+g)/N
¢ Zf: e +5e g e . (A.2) .
Now the sum of a geometric progression is given by
N-1
oo
n=0
from which we find -
E 6;2::’113/1\’ — sm(?ra) ;wa(l—l/N}_ - (A3)

sin(wa/N) )
Finally, using Eq. (A.3) in (A.2) we have the desired resuli

x, = A 80T igemiangn) , A sin(mg) ej[;¢u_wk+zrk/1v+nq/1v]

2 sm(frq/N) " 2 sin[n(2k + ¢)/N]
_ f‘_N_ sm(?rq) eilBo—xk] | ,—~iwg/N sin(mg/N) - ei[—20o+27k/N+mq/N] (A 4)
2 Nsin(wg/N) sin[m(2k + q)/N] :

We can also derive Eq. (A.4) from Eq. (2.16), evaluating Sp{mT, f) at mT = 0 and f=hfh=
k/NT, where the Fourier transform of z(t) is given by

+00 '
X(f) :/ a':(-t)e_”“f‘dt - g(é(f + fo) +5(f _ fo)]ej[%f/fn—zxfto] (A.5)
and where '
: sm(ﬁrfNT) —ixf(N=1)
WD ()= SlI‘l(TI’fT) i (A.6)

1s the discrete Fourier transform of the weighting sequence w, given by Eq. {2.19).
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APPENDIX B.

RATIO OF WHISTLER-MODE PHASE AND GROUP DELAYS

The refractive index z, plasma frequency fy, gyrofrequency fx, and phase delay ¢, are given
by Equations (3.5)—(3.9), which are repeated here for convenience:

_ fi ]1/2 o fn
e T (35)
¢ N 1y 1/2 3/2
Iy =g Lome] = 8.98N/2 [Hz-m3/? (3.6)
. B
fu = zm‘; =2.80 x 10°B [Hz/T] (3.7)
1 1 1 fn ‘ ‘
= [ —ds=— dsst = | —r———r .
tp Svpds .c'/sp 5 c_/sfll'?(f;;—f)lﬂds (3.8)

The phase delay is the time it would take a given wavefront to propagate from the signal source
to the receiver. For a continuous signal at a constant frequency it is the number of wavefronts of
signal between the source and the receiver divided by the frequency. While we can see changes in
phase delay at the receiver (as changes in relative signal phase), the total delay is not usually an
observable quantity. '

The group delay {4 is the time it takes signal energy to propagate from source to receiver. This’
is the time delay between the transmission and reception of a short pulse, for example, and s an
observable quantity. The group refractive index pg is given by

d ‘ Sufn
By = Ef(fn“) ~ 2 (for — F)302

(B.1)

and the group delay ¢, is then

R S S o [ SHIN |
o= [t S g e ®

where v, is the groﬁp velocity. The phase velocity can be expressed in terms of the group velocity as

Wi

Up : mvg. (B3)

Note that for frequencies well below the gyrofrequency‘ the phase velocity is half the group velocity.*
For signals well below the equatorial gyrofrequency fr., we will have v, = v, /2 everywhere in the

. * Different waves show different types of dispersion. At the beach one may be disappointed to see
a large wave seemn to diminish as it approaches the shore, and then be surprised by the unexpected
size of the one following it. Surface waves in water have a phase velocity which decreases with
frequency and is greater than the group velocity. Individual wave crests move faster than (and peter
out in front of) an approaching wave packet.
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magnetosphere (since fx is lowest at the equator), and we expect that the phase delay ¢, will be twice -

the group delay t,. At higher frequencies the difference is not as great. When the signal frequency .

is half the equatorial gyrofrequency (signals higher than this will not propagate in a whistler-mode

duct) the ratio of phase velocity to group velocity will be as large as possible everywhere, and the
phase delay will be closest to the group delay. - '

If we knew the relationship between t, and t, for an actual whistler-mode path then we might .

be able to estimate the phase delay even if it isn’t directly observable. This Appendix will present
the results of calculations of #, and #, derived using a standard model of the magnetosphere. We
will find that the ratio of phase to group delay, t,/t4, for a signal at a frequency f, is a function
only of the ratio f/fme, and is independent of the particular latitude or tube content of the path,
at least for typical conditions inside the plasmapause.

~ The calculations presented here are a small extension of the work by Park [1972], who calculated
the group delay ¢, as a function of frequency for various path latitudes and electron densities in order
to determine L and N7 from the nose whistler parameters f, (nose frequency) and ¢, (nose group
delay). Park adopted a model for the electron density N as a function of distance along the path,
and then integrated Eq. (B.2) numerically to find ¢;. I have repeated his calculations and also
integrated Eq. (3.8) to-find ¢, as well. '

A dipole magnetic field is assumed, and the path § is assumed to follow a field line with
specified Mcllwain parameter L = rqq/rg, where r; is the radial distance to the top of the field line
at the equator, and where r¢ = 6370 km is the radius of the earth. Delay times are calculated only
for the magnetospheric part of the path, which is assumed to be from an altitude of 1000 km, or
radial distance r, = 7370 km, in one hemisphere to a similar altitude in the opposite hemisphere.
(Neglecting propagation through the ionosphere introduces a relatively small error). The integrations
of Eq.s (3.8) and (B.2) are carried out in {r, ¢) codrdinates, where r is the radius and ¢ the latitude
of a point along the path 5. The equations can be written as

g In ds
tp = E/o flﬂ(fH _ f)lf? % d¢ (B.4)
and ‘ _
1 (% fufn ds
b= | . (B3)
. where ‘

b1 = arccos(\/r1/roL) ' . (B.6)

is the latitude of the end of the path at 1000 km altitude, and where

% = roLcos¢ (1 -+ 3sin® $)1/2. (B.7)

" Note that we have used the approximation for large i shown in Eq. (3.5). The gyrofrequency fr at
a point along the path is given by

Fir = Freg(ro/r)(1 + 3sin® $)1/2, (B
v&;here

frreq = 8.736 x 10%/L7 [Hz] - (B9
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Figure B.1. Whistler-mode group delay t, and phase delay f, for a path at L=4(60°
geomagnetic latitude) assuming an equatorial electron density of Neg = 300 electrons/ cm?.
"The group delay (signal travel time) shows the typical whistler curve. The minimim group
delay occurs at the whistler nose frequency fn = 0.37 fHeq, or at 5050 Hz for this path.
The phase delay (wavefront travel time) is longer than the group delay at all frequencies

" up to half the equatorial gyrofrequency, the maximum frequency for a ducted signal.

is the equatorial gyrofrequency for the path, and where

r=roLcos® . : (B.10)

is the radius of a point on the path, given its latitude ¢. _

The plasma frequency fn is found from the local electron density N using Eq. (3.6). The .
electron density model I have used is Park’s DE-1 diffusive equilibrium model which was adapted
from Angerami [1966]. This assumes a plasma with a uniform temperature T = 1600 °K and
a composition at 1000.km altitude consisting of 90% O, 8% H¥, and 2% Het. An equatorial

electron density N., is specified, and the electron density along the path is then found from

1/2
Tby G exp(=2/H) | -
E?:l Ei exP(_ch/Hi) ! N (Bll)

where &; is the relative conceniration and H; is the scale height of a given ion, and where

N:Neq

2
T

2
z=r — ——

;jh (r? cos? ¢ — r} cos® ¢1) . {B.12)
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