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[1] In a recent paper (Inan et al., 2003) a method of remediating enhanced energetic
electron fluxes in the radiation belt was proposed in which injection of VLF whistler mode
waves from spacecraft within the radiation belts would dramatically increase the pitch
angle scattering of the relativistic electrons and cause these particles to be rapidly lost from
the belts, thereby mitigating the flux enhancement. The VLF wave transmitting system
discussed by Inan et al. (2003) involves electric dipole antennas. One of the most
important characteristics of such an antenna is the current distribution along the length of
the dipole, since it is this current which ultimately determines the amount of VLF power
which can be radiated from the antenna into the plasma. In past work it has been
assumed without proof that the dipole current has a triangular distribution. In the present
work we determine the dipole antenna current distribution from first principles,
constructing an integral equation of the Hallén type relating the current distribution to the
wave vector potential. In this development it is assumed that the length of the thin
cylindrical dipole antenna is small compared to the wavelength of whistler mode waves
which propagate parallel to the Earth’s magnetic field Bo. In the case of the dipole
antenna oriented parallel to Bo, it is found that the assumption of a triangular current
distribution is reasonable for antenna lengths up to hundreds of meters. For the case of the
antenna perpendicular to Bo, it is found that the current decays exponentially along the
antenna from the feed points to the antenna ends. In this case we find the conditions
under which a triangular current distribution is still a reasonable approximation. We also
give the conditions under which the quasi-static model of Balmain (1964) reasonably
describes the electric fields associated with the dipole antenna.
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1. Introduction

[2] One of the important components of space weather
is the relativistic electron population of the radiation
belts. During periods of magnetic disturbance the en-
hanced flux of these particles can seriously threaten the
growing number of civilian and military assets in space.
The vulnerability of these assets continually increases as
the trend toward smaller spacecraft results in less radi-
ation protection and the trend toward smaller chips
results in less effective radiation hardening.
[3] In a recent paper [Inan et al., 2003], it was

proposed that in situ injection of VLF whistler mode

waves from electric dipole antennas on spacecraft within
the radiation belts would dramatically increase the pitch
angle scattering of the relativistic electrons and cause
these particles to be rapidly lost from the belts, thereby
mitigating the flux enhancement. In order to assess the
number of spacecraft-based VLF transmitters necessary
to achieve the proposed mitigation it is necessary to
determine the maximum VLF electromagnetic power
that can be radiated by a typical spacecraft system using
electric dipole antennas. One of the most important
factors in this determination is the current distribution
along the length of the dipole, since it is this current
which ultimately determines the amount of VLF power
which can be radiated from the antenna into the plasma.
[4] At the present time there is very little known in

general about the current distribution of dipole antennas
at VLF frequencies in a magnetoplasma such as the
magnetosphere. Much of the past work concerning the
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characteristics of dipole antennas in a magnetoplasma
has proceeded by first assuming a current distribution,
usually triangular, and then determining, for example, the
input impedance, radiation resistance, and radiation pat-
tern of the antenna. However, the accuracy of the
triangular current assumption has never been established.
Numerous references concerning early work on this topic
can be found in work by Balmain [1972, 1979], Wang
and Bell [1969], and Wang [1970].
[5] In a uniform dielectric medium, one can reasonably

approximate the current distribution along a center
driven, thin dipole antenna through the relation [King
et al., 2002, chapter 1]

I sð Þ ’ Io
sin bd h� jsjð Þ

sin bdh
ð1aÞ

where h is the antenna half-length, bd = w
ffiffiffiffi
�d

p
/c = 2p/l is

the wave number for waves of frequency w which
propagate in the medium, l is the wavelength of the
waves, �d is the relative dielectric constant, c is the
velocity of light in free space, and s is the distance along
the antenna measured from the current input terminals at
s = 0. If the antenna length is small compared to the
wavelength of the radiated waves, then (bdh)

2 � 1 and
the sinusoidal terms can be approximated by their
arguments and (1a) becomes the triangular current
distribution

I sð Þ ¼ Io 1� jsj
h

� �
ð1bÞ

[6] If h is fixed in (1a), I(s) depends only upon the
unique wavelength l = 2p/bd which is possessed by all
propagating waves of frequency w in the medium,

independent of their direction of propagation. This cir-
cumstance is quite different in a magnetized plasma such
as the magnetosphere, since this medium is anisotropic
for electromagnetic waves, and the wavelength of these
waves depends strongly upon their direction of propa-
gation. Since there is no unique wavelength in this
medium, it is not clear that the current distribution along
an in situ dipole antenna can be reasonably described by
relations such as (1a) or (1b). Furthermore, if it is
possible, what is the value for the wavelength that should
be used in (1a)?
[7] The variation of l at VLF frequencies in the

plasmasphere results from the variation of the refractive
index n(y) as the angle y between the propagation vector
k and the Earth’s magnetic field Bo is changed. In
Figure 1 we plot n(y) for a typical VLF whistler mode
wave (assuming a cold plasma) as a function of y. The
plot shows a cross section of the refractive index surface,
which is a surface of revolution generated by rotating the
refractive index plot around the Bo direction. The refrac-
tive index n increases monotonically as a function of
y and extends asymptotically toward infinity along the
resonance cone surface at the resonance cone angle y =
yr.
[8] Figure 2 shows l(y) for whistler mode waves of

5 kHz frequency whose refractive index is similar to that
shown in Figure 1. For waves propagating directly along
Bo, l ’ 3 km, while for waves propagating at angles y
close to yr, l 	 0. The lower limit is an artifact of the
assumption that the plasma is cold. Finite temperature
effects generally prevent the wavelength from approach-
ing zero. Extensive spacecraft observations of these very
short wavelength whistler mode waves, also commonly
known as quasi-electrostatic lower hybrid waves, indi-

Figure 1. Plot of the whistler mode refractive index as
a function of the angle between the k vector and the
Earth’s magnetic field. The direction of the group
velocity for any whistler mode wave propagating at
any wave normal angle y is given by the direction of the
normal to the refractive index surface at that point.

Figure 2. Wavelength of a whistler mode wave of
5 kHz frequency as a function of the wavenormal angle
of the wave. In preparing this plot, it was assumed
that the location was near the magnetic equatorial plane
at an altitude of 6000 km, where fo = 450 kHz and fce =
100 kHz.
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cate that their wavelengths are seldom smaller than ’2 m
[Bell et al., 1983; Bell and Ngo, 1988; James and Bell,
1987; Bell and Ngo, 1990; Bell et al., 1991a, 1991b,
1994]. Since the dipole antenna length proposed by Inan
et al. [2003] was roughly 100 m, we have a situation in
which some of the waves of frequency w radiated by the
antenna will possess wavelengths much longer than the
antenna while other radiated waves of frequency w will
possess wavelengths much shorter than the antenna. In
view of the complexity of this system, some method of
determining I(s) from first principles is clearly required.
[9] Our primary goal in the present paper is to con-

struct from first principles integral equations of the
Hallén type [Hallén, 1938] to determine I(s) for two
orientations of the dipole antenna, one parallel to Bo and
one perpendicular to Bo. These equations are developed
in the limit of short wavelengths, ie, for l2 � lo

2, where
lo is the wavelength of whistler mode waves propagating
parallel to Bo. This approach is suggested by the results
of Wang and Bell [1969], who assumed a current
distribution similar to (1b) and found that the major
portion of the radiated power was carried by quasi-
electrostatic whistler mode waves for which l ’ h. This
result suggests that if the antenna length is restricted to
100 m or less, one can reasonably neglect the effects of
the waves with l 
 1 km and consider only the shorter
wavelength quasi-electrostatic waves. Our second goal is
to determine the conditions under which I(s) is approx-
imately triangular in order to judge the applicability of
past work [e.g., Balmain, 1964; Wang and Bell, 1969;
Wang, 1970] in which such distributions were assumed
to apply.
[10] Our third goal is to compare the results of our

model with the results of past workers who used both
electromagnetic and quasi-static models to describe the
fields generated by a dipole antenna. The quasi-static
model is based on a modified form of Poisson’s equation,
and Balmain [1964] was one of the first to apply the
model to a thin electric dipole in a magnetized plasma.
He assumed that the antenna possessed a triangular
current distribution and was short compared to the
characteristic wavelength of the medium. This charac-
teristic wavelength is not defined in the model, but must
be determined through other means [Chugunov, 1968].
With the aid of the quasi-static model, the input imped-
ance of the antenna was defined through concise analytic
formulas, and the predictions of the model were partially
tested in laboratory experiments [Balmain, 1964].
[11] Subsequently, Wang and Bell [1969] and Wang

[1970] studied the same problem with the aim of
establishing the general characteristics of dipole antennas
in the plasmasphere. In contrast to the approximate
quasi-static model of Balmain [1964], Wang’s model
relied on a numerical solution of the full set of Maxwell’s
equations to find the antenna input impedance, assuming

a triangular current distribution. Comparison of the full
wave model with the quasi-static model generally
showed good agreement when the antenna length was
of the order of 10–100 m and the driving frequency lay
in the range: flhr � f � fce, where flhr is the lower hybrid
resonance frequency, defined below, and fce is the elec-
tron gyrofrequency.
[12] Notable advances in the development of the quasi-

static model were achieved by Chugunov [1968], who
considered a wider variety of antenna forms and devel-
oped an integral equation relating the integral of the
unknown antenna surface charge density to known
functions. More recently, Mareev and Chugunov [1987]
have extended the model further by incorporated spatial
dispersion and particle collisions.
[13] It is important to note here that we do not use the

quasi-static model in the present paper. In contrast to the
quasi-static model which makes use of a modified form
of Poisson’s equation, our own model makes use of the
full set of Maxwell’s equations to construct integral
equations for the dipole current distribution. One of the
additional outcomes of our development is that we can
determine the conditions for the applicability of the
quasi-static model in the two cases in which the antenna
is either parallel or perpendicular to the ambient mag-
netic field.

2. Model

[14] Assuming a cold plasma, the electromagnetic
fields produced by an electric dipole antenna in the
plasmasphere operating at the frequency w can be char-
acterized through Maxwell’s equations:

r � E rð Þ ¼ �iwB rð Þ ð2Þ

r � B rð Þ ¼ iw
c2

KE rð Þ þ mo Ja rð Þ ð3aÞ

where E(r) and B(r) are, respectively, the vector electric
and magnetic fields produced by the vector electric
dipole current Ja(r), r is the position vector of the
observation point, and the dielectric tensor K has the
value

K ¼
S iD 0

�iD S 0

0 0 P

0
@

1
A ð3bÞ

where the dielectric constants S, D, and P are the plasma
parameters defined by Stix [1962, p. 10] for a cold
multicomponent plasma. An important feature of the
tensor K is the fact that the diagonal dielectric constant P
is always negative for the frequency range considered by
Inan et al. [2003]. This insures that a refractive index
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resonance cone will exist as long as the other diagonal
dielectric constant S is positive.
[15] For VLF frequencies at locations within the radi-

ation belts the components of K can be simply related to
the local plasma parameters

S ’ f 2o
f 2ce

1� f 2lhr
f 2

� �

D ’ f 2o
ffce

P ’ � f 2o
f 2

ð4Þ

where fo is the local plasma frequency, fce is the local
electron gyrofrequency, f is the wave frequency, flhr ’ffiffiffiffiffiffiffiffiffiffi

fcefcp
p

is the local lower hybrid resonance frequency, fcp
is the local proton gyrofrequency, and it is assumed that
f 2 � fce

2. In the frequency range of interest the dielectric
constants can be ordered according to magnitude:

jPj � D � S

[16] It is useful to introduce the vector potential
function A(r) and the scalar potential f(r) through which
B and E can be defined:

B rð Þ ¼ r � A rð Þ ð5Þ

E rð Þ ¼ �rf rð Þ � iwA rð Þ ð6Þ

[17] Using (5) and (6) in conjunction with (2) and (3)
we arrive at the following relations for the potential
functions in terms of the source functions:

r2A rð Þ þ b2 KA rð Þ � r r � A rð Þð Þ

� iw
c2

K rf rð Þ ¼ �moJa rð Þ ð7Þ

r � K rf rð Þ þ iwr � K A rð Þ ¼ �ra rð Þ=�o ð8Þ

where ra(r) is the charge that appears along the antenna
as a result of spatial variations in Ja(r).
[18] We wish to find the solution of (7) and (8) in order

to set up an integral equation from which we can find the
current distribution I(s) along the antenna. However the
solution of these two equations in configuration space is
difficult because they are coupled second-order partial
differential equations whose solution requires the solu-
tion of a fourth-order partial differential equation. How-
ever, considerable simplification of the equations can be
achieved when they are formulated in the short wave-
length limit, as defined below. We apply this limit only

after we have found the general Fourier k space solutions
to (7) and (8).
[19] To proceed we define the divergence of Awith the

following generalized Lorentz condition:

r � A rð Þ ¼ � iwC1

c2
f ð9Þ

where C1 can be interpreted as an effective relative
dielectric constant. Since only the curl of A(r) is defined
through Maxwell’s equations, the E(r) and B(r) fields do
not depend upon C1. Thus the choice of a value for C1 is
arbitrary. However judicious choice of a value for C1 can
simplify the relations used to find A(r).
[20] It should be noted here that although the relation-

ship given in (9) is useful in the present development,
other relationships may be more efficacious for deter-
mining the scalar potential f(r). For example, in the
place of (9), Balmain [1964] imposed the condition r �
K A(r) = 0 in (8) in order to directly find f(r) for the case
of a short dipole antenna with a triangular current
distribution. This model has been recently been applied
to the case of quasi-electrostatic waves emitted by dipole
antennas in the ionosphere [James, 2000; Chugunov,
2001], as well as the case of Z mode radiation observed
during rocket experiments involving the transmission
and reception of VLF whistler mode waves and HF
waves [Chugunov et al., 2003; James, 2004].
[21] Now eliminating f(r) from (7) with the use of (9)

we obtain

r2A rð Þ þ b2 KA rð Þ � r r � A rð Þð Þ
þ K r r � A rð Þð Þ=C1 ¼ �moJa rð Þ ð10Þ

Applying a spatial Fourier transform to (10), the
equations for the three scalar components of A(r),
Ax(r), Ay(r), and Az(r) can be obtained in complex
notation:

Aþ kð Þ þ kþ k � A kð Þð Þ R=C1 � 1ð Þ
k2 � b2R
	 
 ¼ dþ

k2 � b2R
	 


A� kð Þ þ k� k � A kð Þð Þ L=C1 � 1ð Þ
k2 � b2L
	 
 ¼ d�

k2 � b2L
	 
 ð11Þ

Az kð Þ þ kz k � A kð Þð Þ P=C1 � 1ð Þ
k2 � b2P
	 
 ¼ dz

k2 � b2P
	 


where R, L, and P are parameters defined by Stix [1962,
1992], b = w

c
, dz = moJaz(k), An(k) = Ax(k) + inAy(k), kn = kx +

inky, dn = mo(Jax(k) + inJay(k)), where n = +1, or �1.
[22] With the aid of (11) we can find an expression for

k � A(k):
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k � A kð Þ ¼ C1k
2

g kð Þ

�
k�1dþ1

2 k2 � b2R
	 
þ kþ1d�1

2 k2 � b2L
	 


þ kzdz
k2 � b2P

�
ð12Þ

where

g kð Þ ¼ k2 � b2C1

	 
� k2?R

2 k2 � b2R
	 
þ k2?L

2 k2 � b2L
	 


þ k2z P

k2 � b2P

�

and k?
2 = kx

2 + ky
2. Equations (11) and (12) represent the

general solution for A(k) in terms of the given sources.
The solution for A(r) in configuration space can be
directly obtained through a 3-D inverse Fourier trans-
form of A(k).
[23] We are interested in the case of short wavelength

waves whose wave normals are close to the resonance
cone. For these waves, k2/b2 � jRj, jLj, jPj, and jC1j.
With this in mind, we treat the quantity b2 as a small
expansion parameter and express g(k) as a two term
power series in b2:

g kð Þ ’ Sk2? þ Pk2z � Pb2c ð13Þ

where bc
2 = b2[(RLk

2
?
k2

+ SP(1 +
k2z
k2
))/P + C1(S

k2?
k2

+ P
k2z
k2
)].

The dispersion relationship for the short wavelength
whistler mode waves can be obtained by setting g(k) = 0

in (13). We carry two terms in the expansion of g(k) in
order to provide a propagation constant bc for these
waves. However, in evaluating the remaining expres-
sions it is sufficient to take the leading terms as b �> 0.
These actions lead to the final equation set:

Aþ kð Þ ¼ dþ
k2

� kþ k � A kð Þð Þ R=C1 � 1ð Þ
k2

ð14aÞ

A� kð Þ ¼ d�
k2

� k� k � A kð Þð Þ L=C1 � 1ð Þ
k2

ð14bÞ

Az kð Þ ¼ dz
k2

� kz k � A kð Þð Þ P=C1 � 1ð Þ
k2

ð14cÞ

k � A kð Þ ¼ C1

1
2
k�1dþ1 þ kþ1d�1ð Þ þ kzdz
Sk2? þ Pk2z � Pb2c

ð14dÞ

For simplicity we approximate bc by its value at the

resonance cone angle where
k2?
k2
= P

P�S
,
k2z
k2
= S

S�P
, and bc

2 ’
b2 (RL + PS � 2S2)/(P � S). In terms of the plasma
parameters fo and fce, it can be shown that over the range
of frequencies of interest, (RL + PS � 2S2)/(P � S) ’
2fo

2/fce
2 . Thus bc

2 ’ 2fo
2/fce

2 b2. Since typically fo ’ 450 kHz
and fce ’ 100 kHz, we have typically bc

2 ’ 40b2.

2.1. Integral Equation for Current of Antenna
Parallel to Bo

[24] Figure 3 shows a sketch of the antenna type
considered in the present paper, a symmetric center-
driven linear electric dipole antenna of total length 2h
and radius a. In Figure 3 the antenna axis is assumed to
lie in the x-z plane, and the angle fo represents the angle
between Bo, assumed to lie along the z axis, and the
antenna axis. In the present work we consider the two
cases in which fo = 0 or fo = p/2. When the antenna is
parallel to Bo (fo = 0), the only component of Ja(r) is

Jz(r). In this case it is convenient tochooseC1=S=
1

2
(R+L),

for which the expressions for k � A(k) and Az(k)
become

k � A kð Þ ¼ mo kz Jz kð Þ S
Sk2? þ Pk2z � Pb2c

ð15Þ

and

Az kð Þ ¼ mo Jz kð Þ S
Sk2? þ Pk2z � Pb2c

ð16Þ

where terms of order bc
2/k2 in the numerator of (16) have

been neglected.

Figure 3. Sketch of a symmetric center-driven linear
dipole antenna.
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[25] To find the Green’s function solution for (16), we
introduce the unit source current:

Jz r; r
0ð Þ ¼ d x� x0ð Þd y� y0ð Þd z� z0ð Þ ð17Þ

where x0, y0, and, z0 are the spatial coordinates of the unit
source current. The spatial Fourier transform of (17) has
the value

Jz kð Þ ¼ ei kx x
0þky y

0þkz z
0ð Þ ð18Þ

[26] Using (18) in (16), the inverse Fourier transform
of (16) is readily performed to yield the Green’s function
solution for Az:

Azg r; r0ð Þ ¼ mo
4p

e�ibcRg

Rg

ð19aÞ

where Rg = [�g2(x � x0)2 � g2(y � y0)2 + (z � z0)2]1/2, r
is the position vector of the observation point, r0 is the
position vector of the unit source current, and g2 = jP

S
j. In

(19a) it is assumed that Ra is real, in which case the
relation satisfies the boundary condition that all waves
are outgoing from the source region. In the event that Ra

is purely imaginary, the correct boundary condition is
that the evanescent fields vanish at large distances from
the source. In this case the Green’s function has the form

Azg r; r0ð Þ ¼ i mo
4p

e�bcjRg j

jRgj
ð19bÞ

where jRaj is the absolute value of Ra. With the aid of
(19), we can now find Az in terms of the unknown
antenna current:

Az rð Þ ¼ mo
4p

Z
e�ibcRg

Rg

Jz z
0ð Þds0 ð20Þ

where Jz(r
0) is the antenna surface current density, ds0 is a

surface element containing the antenna current, and it is
understood that the Green’s function in (20) will be (19b)
whenever Ra is purely imaginary.
[27] We now wish to use (20) to construct an integral

equation of the type developed by Hallén [1938]. This
type of integral equation is discussed in detail in a
number of textbooks [e.g., Kraus, 1950; King et al.,
2002]. In order to do this, we first assume that the
antenna is cylindrical and thin, with a length that is
much larger than the radius a of the cylinder, ie, h � a.
This restriction allows us to neglect charge which may
reside on the antenna ends. To proceed we apply the
boundary condition that Ez = 0 on the surface of the

antenna so that I(z) can be linked to Az(r). We can find
Ez(r) from (6):

Ez rð Þ ¼ � @f rð Þ
@z

� iwAz rð Þ ð21Þ

[28] In addition, the inverse Fourier transform of (14d)
can be readily performed to yield the relation

r � A rð Þ ¼ @Az rð Þ
@z

[29] Making use of the above relations, Ez can be
expressed in terms of Az alone:

iwS
c2

Ez rð Þ ¼ @2Az rð Þ
@z2

þ b2sAz rð Þ ð22aÞ

where bs
2 = b2S. On the surface of the antenna, Ez = 0,

except in the gap between the antenna elements where
the driving voltage Vo is applied. Thus (22a) can be
written

� iwS
c2

Vod zð Þ ¼ @2Aza rð Þ
@z2

þ b2s Aza rð Þ ð22bÞ

where Aza(r) is the value of Az(r) on the antenna surface.
If we now assume that Aza(r) is cylindrically symmetric
about the z axis, it will be a function of z alone and the
solution to (22b) is

Aza zð Þ ¼ �i
bs
w

bo cosbszþ
1

2
Vo sinbsjzj

� �
ð23Þ

where in (23) the symmetry condition has been imposed:
Aza(z) = Aza(�z).
[30] The next step is to evaluate (20) on the antenna

surface. For simplicity we assume that the source points
are located along the z0 axis, while the observation points
are located on the wire surface. This approximation
simplifies the integral equation and is commonly used
in constructing integral equations for the current flow
along dipole antennas in air [King et al., 2002]. On the
antenna surface we let x = a sin a and y = a cos a and
assume that the surface current density Jz(z

0) is uniformly
distributed around the wire, and thus independent of a at
any point z0. With these actions (20) becomes

Aza zð Þ ¼ mo
4p

Z h

�h

e�ibcRa z;z0ð Þ

Ra z; z0ð Þ I z0ð Þdz0 ð24Þ
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where Ra(z, z
0) = [�g2a2 + (z � z0)2]1/2, a is the antenna

radius, and h is the antenna half-length.
[31] We can now combine (23) and (24) to form an

integral equation for the antenna current:

mo
4p

Z h

�h

e�ibcRa z;z0ð Þ

Ra z; z0ð Þ I z0ð Þdz0 ¼ Aza zð Þ ð25Þ

where bo is a constant which is determined from the
condition that the current vanishes at the antenna end
points and the quantity Aza(z) is defined in (23).
[32] It is clear from the definition of Ra(z, z0) that

the integrand on the left hand side of (25) becomes
arbitrarily large for any given value of z when the
condition obtains:

z0 ¼ z� a g ð26Þ

[33] This singularity occurs because of the resonance
cone in the whistler mode refractive index (see Figure 1).
All the waves whose wave vectors k lie near the
resonance cone will propagate in the direction perpen-
dicular to the resonance cone. This direction, referred to
the z axis, is the direction indicated by (26).
[34] To proceed, we form a difference kernel, Kd(z, z

0),
in (25) by subtracting from both sides the integral:

H hð Þ ¼ mo
4p

Z h

�h

e�ibcRa h;z0ð Þ

Ra h; z0ð Þ I z0ð Þdz0

[35] This action results in the expression

mo
4p

Z h

�h

Kd z; z0ð ÞI z0ð Þdz0 ¼ Aza zð Þ � H hð Þ ð27aÞ

where

Kd z; z0ð Þ ¼ e�ibcRa z;z0ð Þ

Ra z; z0ð Þ � e�ibcRa h;z0ð Þ

Ra h; z0ð Þ ð27bÞ

[36] The left hand side of (27a) is identically equal to 0
when z = h. This boundary condition allows us to solve
for the constant bo contained in Aza(z) in terms of H and
Vo. This leads to the final equation for the current
distribution:

mo
4p

Z h

�h

Kd z; z0ð ÞI z0ð Þdz0 ¼ i
Vobs
2w

sin bs h� jzjð Þ
cos bsh

� 1� cos bsz
cos bsh

� �
H hð Þ ð28Þ

[37] The most important characteristics of the differ-
ence kernel Kd(z, z

0), as given in (27b) and (28), arise
from the first term: e�ibcRa(z,z

0)/Ra(z, z
0). The denominator

of this term is purely real when jz �z0j 
 ag and purely
imaginary when jz � z0j � ag. At points where jz � z0j =
ag, the term possesses integrable singularities. For typ-
ical plasmaspheric applications, g 	 10–50, the dipole
antenna wire radius generally lies in the range a 	 1 mm
to 1 cm, and the antenna half-length lies in the range h 	
20–100 m. Thus for a given value of z, Ra(z, z

0) will be
imaginary only over a distance Dz0 along the antenna of
at most 	50 cm, which is small compared to h.
[38] The term Ra(z, z

0)�1 is plotted in Figure 4. The
unit distance D s along the antenna is Ds = ag. It is
assumed that z = 5. The function is purely imaginary
over the small range: 1 
 jz0 � 5j, and purely real else
where.It can be seen that this term is large only in the
regions where z ’ z0. Thus to first order Ra(z, z0)�1

resembles the delta function, Cod (z � z0), where Co is a
complex constant. In this case the distribution of I(z0)
along the antenna will closely resemble the distribu-
tion given on the right hand side of (28). This
result is interesting since it suggests that the current
distribution is predominantly determined by the
diagonal dielectric constant S in the dielectric tensor
K, since bs = w

ffiffiffi
S

p
/c.

[39] Equation (28) can be employed in general to find
I(z) using known methods [King et al., 2002], once the
values of bc, bs, g, h, and w are specified. Thus our
primary goal of finding a method to determine I(z) from
first principles has been achieved.
[40] An equation similar to (25) was derived by

Chugunov [1969] for the case of a thin cylindrical dipole
antenna in a general uniaxial medium. The magneto-
spheric plasma has the characteristics of a uniaxial
medium at a finite number of frequencies below the
proton gyrofrequency where the Stix [1992] plasma
parameter D vanishes. In this case the only finite

Figure 4. Amplitude of Green’s function as a function
of the normalized distance along the antenna.
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components of the dielectric tensor K are the diagonal
terms S and P. In general it can be expected that the
uniaxial approximation would be reasonable if jDj � jSj
and jDj � jPj. The uniaxial approximation does not
directly apply in the present work, because over the
frequency range of interest jSj � jDj. However, the fact
that (25) is similar to the integral equation of Chugunov
[1969] suggests that in the short wavelength limit the
magnetospheric plasma resembles a uniaxial medium for
a dipole antenna oriented parallel to Bo.
2.1.1. Applicability of Triangular Current
Distribution and Quasi-Static Model
[41] To fulfill our secondary goal, we can nowmake use

of (28) to determine the conditions under which the current
distribution can be approximated by a triangular current
similar to (1b). It is clear that the right hand side of (28)
can be reduced to a triangular distribution in z whenever
(bsh)

2� 1. If we assume that fo = 450 kHz, fce = 100 kHz,
and f = 5 kHz, then bsh’ 5h � 10�4. A choice of h = 200 m
results in the value (bsh)

2 ’ 10�2. Thus the choice of
a triangular current distribution for the antenna would
appear to be reasonable up to antenna total lengths of at
least 2h’ 400 m. A triangular distribution may also apply
to even greater lengths; however it must be kept in mind
that our derivation of (28) was carried out under the
assumption that the antenna is small compared to the
longest wavelengths of the waves radiated by the antenna,
which are approximately 3 km when f ’ 5 kHz.
[42] We can also use (28) to find the conditions under

which quasi-static models, such as that of Balmain
[1964], can reasonably be used to describe the electric
field of the antenna. These models should be applicable
as long as the wave phase variation along the antenna is
small; ie, when (bcRa)

2 � 1 in (27b) and (28). In most
practical cases we expect that a2g2 � h2. In this case the
maximum value of Ra(z, z

0) is Ra(z, z
0) = 2h. As shown

previously, bc
2 ’ 2b2fo

2/fce
2. Thus the restriction can be

written: 8h2b2fo
2/fce

2 � 1. The maximum value of the ratio
fo/fce occurs in the magnetic equatorial plane near L ’ 4
where fo/fce ’ 14. If we now assume f = 5 kHz and h =
50 m, we have 8h2b2f o

2 /f ce
2 ’ 0.04. Thus the quasi-static

model should apply well for this particular antenna
orientation.
2.1.2. Antenna Input Impedance
[43] If (28) is valid, it should yield the correct input

impedance of the antenna. To test this relationship, we
can compare the predictions of (28) with the results of
Balmain [1964], Wang and Bell [1969], and Wang
[1970]. In these studies a triangular current distribution
was assumed, implying (bsh)

2 � 1, and we have seen
above that (bcRa)

2 � 1 for typical antenna lengths.
Applying these limits to (28), we arrive at the relation

mo
4p

Z h

�h

Kd z; z0ð ÞI z0ð Þdz0 ¼ i
Vobs
2w

bs h� jzjð Þ ð29Þ

where now

Kd z; z0ð Þ ’ 1

Ra z; z0ð Þ �
1

Ra h; z0ð Þ ð30Þ

[44] Following the procedure outlined by King et al.
[2002, chapter 2], it can be shown that the first-order
solution to (29) is given by the expression

I zð Þ ¼ 2piVo

Zo�
bs h� jzjð Þ ð31aÞ

where Zo =
ffiffiffiffiffiffiffiffiffiffiffi
mo=�o

p
is the impedance of free space and

� ¼
Z h

�h

1� jz0j
h

� �
Kd 0; z0ð Þdz0 ð31bÞ

[45] Carrying out the straightforward integration in
(31b), it is found that

� ¼ piþ 2 log
2h

ga

� �
� 1

� 

ð31cÞ

where it is assumed that log
2h

ga

� �
� 1.

[46] From the preceding we can determine the antenna
input impedance for the parallel antenna:

Zin ¼ Vo=I 0ð Þ ¼ Rrk þ iXk

where Rr is the radiation resistance of the antenna and X
is the reactance of the antenna, given by the expressions

Rrk ¼
Zo

2bhS
ð32aÞ

Xk ¼ � Zo

pbhS
log 2h=gað Þ � 1½ � ð32bÞ

[47] As discussed in section 3, (32a) and (32b) are
identical to the leading term of the value for Zin obtained
by the full wave solution for a triangular current distri-
bution. In addition, they also agree well with the pre-
dictions of the quasi-static model [Balmain, 1964]. This
gives confidence that the integral equation (28) derived
in the short wavelength limit contains the essential
physics of the radiation process.

2.2. Integral Equation for Current of Antenna
Perpendicular to Bo

[48] As a second example we consider a dipole antenna
oriented along the x axis, perpendicular to Bo, with
current Jx(r). It can be seen from Figure 1 that whistler
mode waves in the frequency range of interest cannot
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propagate directly perpendicular to Bo. However, the
resonance cone angle for f 	 5 kHz waves is yr 	
87�. Thus waves can propagate in the medium with their
wave normals very close to the perpendicular direction,
and it is not clear if the current flow along the antenna
will take the form of propagating waves or evanescent
waves.
[49] To investigate this case, we choose C1 = 2(P � S)

and then drop terms of order R/P and L/P in (11) on the
grounds that in magnetospheric applications at VLF
frequencies, jR/Pj, jL/Pj � 1. The expressions for
Ax(k), Ay(k), Az(k), and k � A(k) then become

Ax kð Þ ¼ moJx kð Þ
k2

1þ 2k2x P � Sð Þ
Sk2? þ Pk2z � Pb2c

" #
ð33aÞ

Ay kð Þ ¼ moJx kð Þ
k2

2 P � Sð Þkxky
Sk2? þ Pk2z � Pb2c

ð33bÞ

Az kð Þ ¼ moJx kð Þ
k2

2S � Pð Þkxkz
Sk2? þ Pk2z � Pb2c

ð33cÞ

k � A kð Þ ¼ moJx kð Þ 2kx P � Sð Þ
Sk2? þ Pk2z � Pb2c

ð33dÞ

[50] We note that in (33), kx = k? cos q and ky = k? sin
q. The RMS value of kx

2 can be found by averaging over q
to yield hkx2irms =

1

2
k?
2 . For simplicity, in (33a) we

replace kx
2 by its RMS value and group terms to arrive

at the result

Ax kð Þ ¼ moJx kð Þ P

Sk2? þ Pk2z � Pb2c
ð34Þ

where terms of order bc
2/k2 have been neglected in the

numerator.
[51] In addition to (34), we will need the three follow-

ing equations:

Ex rð Þ ¼ � @f rð Þ
@x

� iwAx rð Þ ð35aÞ

r � A rð Þ ¼ � 2iw P � Sð Þ
c2

f ð35bÞ

r � A rð Þ ¼ 2 1� S=Pð Þ @Ax rð Þ
@x

ð35cÞ

where (35c) can be deduced from (33d) and (34).

[52] Using (34) and (35) we can express Ex(r) in terms
of Ax(r):

�
ib2p
w

Ex rað Þ ¼ @2

@x2
Ax rað Þ � b2pAx rað Þ ð36Þ

where bp
2 = b2jPj, and the position vector ra represents

points on the antenna surface. We assume that Ax(ra) is
symmetric about the x axis and thus is a function of x
alone. In this case since on the surface of the antenna we
have Ex(x) = �Vod(x), the solution of (36) takes the form

Ax xð Þ ¼ �
ibp
w

bo coshbpx�
1

2
Vo sinhbpjxj

� �
ð37Þ

[53] If we now define a unit source current along the x
axis equal to the right hand side of (18), the inverse
Fourier transform of Ax(k) can be readily performed to
yield the Green’s function solution for Ax(r):

Axg r; r0ð Þ ¼ mo
4p

P

S

e�ibcRg

Rg

ð38aÞ

where it is assumed that Rg is purely real. When Rg is
purely imaginary, the Green’s function takes the form

Axg r; r0ð Þ ¼ i mo
4p

P

S

e�bcjRg j

jRgj
ð38bÞ

where jRgj is the absolute value of Rg.
[54] It can be seen that the Green’s function for Ax is

linearly proportional to the Green’s function for Az given
in (19). However the actual values for Rg are quite
different. With the aid of (38), an expression for Ax(r)
can be found in terms of the unknown antenna surface
current:

Ax rð Þ ¼ mo
4p

P

S

Z
e�ibcRg

Rg

Jx r0ð Þds0 ð39Þ

where it is understood that the Green’s function in (39)
will be (38b) whenever Rg is purely imaginary.
[55] To evaluate Ax(r) on the surface of the perfectly

conducting antenna wire oriented along the x axis, we
introduce polar coordinates in which the polar angle is
measured about the x axis and y = a sin f and z = a cos
f. In this system we find

Rg ¼ �g2 x� x0ð Þ2�g2 a sinfð Þ2þ a cosfð Þ2
h i1=2

ð40Þ
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[56] Since g � 1, it can be seen that Rg will be purely
imaginary for almost all values of jx � x0j except for a
narrow range of values for f and jx � x0j for which

a2 cosf2

g2

 a2 sinf2 þ x� x0ð Þ2

[57] Taking into account the fact that Rg is primarily
purely imaginary, the expression for Ax(r) can be written

Ax rð Þ ¼ �i
mo
8p2

g

Z 2p

0

Z h

�h

e�bcgRa

Ra

Jx x0ð Þdx0df ð41Þ

where

Ra ¼ x� x0ð Þ2þ a sinfð Þ2� a cosfð Þ2=g2
h i1=2

[58] It can be seen that the Green’s function in (41)
now represents, for the most part, evanescent waves
rather than propagating waves.
[59] Combining (41) and (37) we arrive at the integral

equation

mog
8p2

Z 2p

0

Z h

�h

e�bcgRa

Ra

I x0ð Þdx0df

¼
bp
w

bo coshbpx�
1

2
Vo sinhbpjxj

� �
ð42Þ

[60] From the form of (42) it can be seen that to first
order I(x) consists of current waves whose amplitudes
decrease exponentially as they propagate along the
antenna. The waves decay as e�bpjxj. By definition bp =
b
ffiffiffiffiffiffi
jPj

p
, and thus the distribution of the current is deter-

mined by the value of P, the second diagonal element of
the dielectric tensor given by (3b).
[61] To find a solution for (42) we first form the

difference kernel, Kd(x, x0), by subtracting from both
sides of (42) the integral:

H hð Þ ¼ mog
8p2

Z 2p

0

Z h

�h

e�bcgRa h;x0ð Þ

Ra h; x0ð Þ I x0ð Þdx0df

[62] This action results in the expression

mog
4p

Z h

�h

Kd x; x0ð ÞI x0ð Þdx0 ¼ iAx xð Þ � H hð Þ ð43Þ

where Ax(x) is defined in (37), and where

Kd x; x0ð Þ ¼
Z 2p

0

e�bcgRa x;x0ð Þ

Ra x; x0ð Þ � e�bcgRa h;x0ð Þ

Ra h; x0ð Þ

� 

df
2p

[63] The left hand side of (43) is identically equal to 0
when x = h. This condition allows us to solve for the
constant bo in terms of Vo and H(h). This leads to the
final equation:

mog
4p

Z h

�h

Kd x; x0ð ÞI x0ð Þdx0 ¼
bpVo

2w
sinhbp h� jxjð Þ

coshbph

� H hð Þ 1�
coshbpx
coshbph

 !

ð44Þ

[64] Equation (44) can be employed in general to find
I(x) using known methods [King et al., 2002], once the
values of bc, bp, g, h, and w are specified. Thus our
primary goal of finding a method to determine I(x) from
first principles has been achieved.
2.2.1. Applicability of Triangular Current
Distribution and Quasi-Static Model
[65] To fulfill our secondary goal, we can now make

use of (44) to determine the conditions under which the
current distribution can be approximated by a triangular
current similar to (1b). It is clear that the right hand side
of (44) can be reduced to a triangular distribution in x
whenever (bph)

2 � 1. Since bp ’ wo/c,where wo is the
local angular plasma frequency, the current distribution
will be approximately triangular only if (woh/c)

2 � 1.
The parameter wo varies from 	107/s at 600 km altitude
to 	2 � 106/s at 6000 km altitude. This implies that the
assumption of a triangular current distribution is appro-
priate only if h is substantially less than 30 m at 600 km
altitude and substantially less than 150 m at 6000 km
altitude. Furthermore the use of antennas exceeding these
lengths is not productive, since the current moment
cannot be significantly increased by increasing h.
[66] We can also use (44) to find the conditions under

which quasi-static models, such as that of Balmain
[1964], can reasonably be used to describe the electric
field of the antenna. These models should be applicable
as long as the wave attenuation along the antenna is
small; ie, when (bcgRa)

2 � 1 in (44). Since the maxi-
mum value of Ra(x, x

0) is Ra(x, x
0) = 2h, the condition for

the applicability of the quasi-static model can be written:
(2bchg)

2 � 1. For a practical constraint, let us set the
limit as (2bchg)

2 � 0.1. Given this constraint, we can
define the maximum allowable value of h as: hm ’ 0.15/
bcg. From the definitions of bc and g it can be shown that

bcg =
ffiffiffi
2

p
bp/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2lhr=f

2

q
, an expression essentially

independent of f when f 2 � flhr
2 . Making use of the

definition of the product bcg, the constraint can be

written: hm ’ 0.1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2lhr=f

2

q
/bp. If we now assume

that f 2 � flhr
2 , then at 600 km altitude with wo ’ 107/s we
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find that hm ’ 3 m, while at 6000 km altitude with wo ’
2 � 106/s, hm ’ 15 m. In the event that f ’ flhr, the value
of hm will be even smaller. For example If we assume
that f = 1.1flhr, then at 6000 km altitude hm ’ 1 m. Thus
the quasi-static model would appear to be applicable to
the perpendicular antenna only over a much smaller
range of antenna lengths than was the case for the
parallel antenna.
2.2.2. Antenna Input Impedance
[67] If (44) is valid, it should yield the correct input

impedance of the antenna. To test this relationship, we
can compare the predictions of (44) with the results of
Balmain [1964], Wang and Bell [1969], and Wang
[1970]. In these studies a triangular current distribution
was assumed, implying (bph)

2 � 1. To proceed we
assume that (bph)

2 � 1 and approximate the hyperbolic
functions in (44) by the relations: sinhbp(h � jxj) ’ bp(h
� jxj), coshbph ’ 1, and coshbpx ’ 1. This action leads
to the expression

mog
4p

Z h

�h

Kd x; x0ð ÞI x0ð Þdx0 ¼
b2pVo

2w
h� jxjð Þ ð45Þ

[68] Again, following the procedure outlined by King
et al. [2002, chapter 2], it can be shown that the first-
order solution to (45) is given by the expression

I xð Þ ¼ 2pVo

Zog�
bp h� jxjð Þ ð46aÞ

where

� ¼
Z h

�h

1� jx0j
h

� �
Kd 0; x0ð Þdx0 ð46bÞ

[69] The maximum value of the argument of the
exponential functions in (46b) is bcgh. Equation (46b)
can be evaluated analytically in both the quasi-static
limit, for which (bcgh)

2 � 1, and in the electromagnetic
limit, for which (bcgh)

2 � 1. If (bcgh)
2 � 1, we can

closely approximate the exponentials by the two term
Taylor series: e�x ’ 1 � x. With this action, the
integrations in (46b) become straightforward and it is
found that

�qs ¼ 2 log
2h

a

� �
� 0:8

� 

� i tan�1 1

g

� �
ð46cÞ

where it is assumed that log
2h

a

� �
� 1. Equation (46c)

represents the predictions of our model in the quasi-static

limit. On the other hand, for (bcgh)
2 � 1 we have the

electromagnetic limit for which (46b) becomes

�em ’ 2 log
2h

a

� �
� log bcghð Þ

� 

� i tan�1 1

g

� �
ð46dÞ

where it is assumed that log
2h

a

� �
� 1, and (bcga)

2 � 1.

[70] From the preceding we can find the antenna input
impedance for the perpendicular dipole:

Zin ¼ Vo=I x ¼ 0ð Þ ¼ Rr? þ iX?

where

Rr?qs ¼
Zo

phb
ffiffiffiffiffiffiffiffiffi
jPjS

p log
2h

a

� �
� 0:8

� 

ð47aÞ

Rr?em ’ Zo

phb
ffiffiffiffiffiffiffiffiffi
jPjS

p log
2h

a

� �
� log bcghð Þ

� 

ð47bÞ

X? ¼ � Zo

phb
ffiffiffiffiffiffiffiffiffi
jPjS

p arctan
1

g

� �
ð47cÞ

where (47a) applies when (bcgh)
2 � 1, (47b) applies

when (bcgh)
2 � 1, and where terms of order 1/g2 in the

denominators of (47) have been neglected.
[71] Equations (47) have been developed under the

assumption that the refractive index n(y) extends to large
values for wave normals near the resonance cone, as
depicted in Figure 1. This situation occurs for f 
 flhr.
However n(y) also extends to large values as y ! p/2
for f slightly below flhr where the condition (bcgh)

2 � 1
still applies. In this frequency range we can still apply
(44), but we need to take into account the fact that the
dielectric constant S in (3b) is negative in this frequency
range, and thus the ratio P/S is now positive. Equation
(44) can be readily modified for the new frequency range
by substituting the product ig for each g that appears in
(44). This change results in the expression

moi g
4p

Z h

�h

Kd2 x; x0ð ÞI x0ð Þdx0 ¼
bpVo

2w
sinhbp h� jxjð Þ

coshbph

� H2 hð Þ 1�
coshbpx
coshbph

 !

ð48Þ
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where

Kd2 x; x0ð Þ ¼
Z 2p

0

e�ibcgRa2 x;x0ð Þ

Ra2 x; x0ð Þ � e�ibcgRa2 h;x0ð Þ

Ra2 h; x0ð Þ

� 

df
2p

Ra2 x; x0ð Þ ¼ x� x0ð Þ2þ a sinfð Þ2þ a cosfð Þ2=g2
h i1=2

H2 hð Þ ¼ moig
8p2

Z 2p

0

Z h

�h

e�ibcgRa h;x0ð Þ

Ra h; x0ð Þ I x0ð Þdx0df

where g =
ffiffiffiffiffiffiffiffiffi
P=S

p
.

[72] It can be seen from (48) that Ra2(x, x
0) is always

real and positive, and that there are no singularities
associated with the kernel Kd2(x, x

0).
[73] We wish to find the antenna input impedance from

(48) for the case of a triangular current distribution. We
assume that (bph)

2 � 1 on the right hand side of (48) and
proceed exactly as described in the text following (44),
first calculating the function � and then the antenna
input impedance Zin. We calculate � in both the quasi-
static limit, for which (bcgh)

2 � 1, and the electromag-
netic limit, for which (bcgh)

2 � 1. Following this
procedure we arrive at the results

Rr?qs ¼ 0 ð49aÞ

X?qs ¼
Zo

pbh
ffiffiffiffiffiffi
PS

p log
2h

a

� �
� 0:8

� 

ð49bÞ

Rr?em ¼ Zo

2bh
ffiffiffiffiffiffi
PS

p ð49cÞ

X?em ¼ Zo

pbh
ffiffiffiffiffiffi
PS

p log
2h

a

� �
� log bcghð Þ

� 

ð49dÞ

where it is assumed in (49a) and (49b) that (bcgh)
2 � 1,

and it is assumed in (49c) and (49d) that (bcgh)
2 � 1 and

(bcga)
2 � 1. Equations (49a) and (49b) essentially

represent the quasi-static solution for the input impe-
dance. It can be seen from (49a) that the quasi-static
model fails to predict a finite value for the radiation
resistance when f < flhr. On the other hand, when f < flhr
and (bcgh)

2 � 1, our electromagnetic model predicts a
finite value for Rr? and a smaller value for X?, as given
in (49c) and (49d).
[74] As discussed below, the values of Rr? and X? in

(47) and the value of Rr? in (49a) are very close to the
leading terms of the values calculated in the full-wave
solutions of Wang and Bell [1969] and Wang [1970].
This gives confidence that the integral equation (44)

derived in the short wavelength limit contains the essen-
tial physics of the radiation process.

3. Comparison With Past Work

[75] In the event that the antenna current, Ja(r), is a
known quantity, then (2) and (3) can be solved using
three dimensional Fourier spatial transforms in order to
find the E and B fields produced by the antenna current
as well as the radiation resistance and reactance of the
antenna. The solutions are expressed as integrals over
the Fourier k space. Such solutions have been found in
the past [Wang and Bell, 1969; Wang, 1970] for the case
in which the antenna is assumed to have a triangular
current distribution similar to (1b).
[76] Given a triangular current distribution, the radia-

tion resistance and reactance of the antenna is found to
be a function of the angle between the dipole antenna
axis and the local direction of the Earth’s magnetic field
Bo. The leading terms of the predicted radiation resis-
tance and reactance for the two cases in which the
antenna axis is either parallel to Bo or perpendicular to
Bo are given by the expressions [Wang and Bell, 1969;
Wang, 1970]

Rrk ¼
Zo

2h bS
ð50aÞ

Xk ¼ � Zo

p hbS
log

2h

ga

� �
� 1

� 

ð50bÞ

Rr? ¼ Zo

phb
ffiffiffiffiffiffiffiffiffi
jPjS

p log
2h

a

� �
� 1

� 

ð50cÞ

Rr? ¼ Zo

phb
ffiffiffiffiffiffiffiffiffi
jPjS

p log
2h

a

� �
� log bcgh=

ffiffiffi
2

p� �� 


ð50dÞ

X? ¼ � Zo

phb
ffiffiffiffiffiffiffiffiffi
jPjS

p arctan
1

g

� �
ð50eÞ

Rr? ¼ Zo

2bh
ffiffiffiffiffiffi
PS

p ð50f Þ

where (50a) and (50b) apply when (hbc)
2 � 1, (50c)

applies when (bcgh)
2 � 1, (50d) is obtained from

equation (B3) of Wang and Bell [1969] in the limit
(bcgh)

2 � 1 with f > flhr, and (50f) is obtained from
equation (B1) of Wang and Bell [1969] in the limit
(bcgh)

2 � 1 with f < flhr.
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[77] It can be seen that (50a) agrees well with (32a),
and that (50b) agrees well with (32b). Also (50c) agrees
well with (47a), (50d) agrees well with (47b), and (50e)
agrees well with (47c). Furthermore (50a), (50b), (50c),
and (50e) agree well with results of the quasi-static
model [Balmain, 1964]. It is noteworthy that the quasi-
static model predicts Rr? = 0 for f < flhr. This comes
about because in the quasi-static model bcgh � 0, and
when f < flhr, the kernel Kd2(x, x

0) is always real, and the
input reactance is then always purely imaginary. The
close agreement between the values of the dipole input
impedance calculated from the full set of Maxwell’s
equations and from our integral equations, (28) and
(44), gives confidence that the integral equations contain
the essential physics of the electromagnetic wave radia-
tion process.

4. Summary and Discussion

[78] Working in the short wavelength limit, we have
constructed two integral equations from first principles
from which the current distribution can be found for an
electric dipole antenna in a magnetized plasma oriented
either parallel or perpendicular to the ambient magnetic
field Bo. We have applied these equations to the case in
which the dipole antenna is located at high altitudes
within the Earth’s radiation belts. We have found that
although for a fixed VLF frequency the antenna will
radiate waves with wavelengths ranging from kilometers
to meters, the antenna current distribution depends pri-
marily upon the diagonal elements of the dielectric
tensor. In the case in which the antenna is parallel to
Bo, the diagonal dielectric constant S determines the
wavelength of the current waves along the antenna. In
the case in which the antenna is perpendicular to Bo, the
diagonal dielectric constant P determines the decay
constant of the evanescent current waves along the
antenna.
[79] We have found that the assumption of a triangular

current distribution such as (1b) for the parallel antenna
appears reasonable for all antenna lengths for which the
short wavelength limit applies. On the other hand, for the
perpendicular antenna it was found that the triangular
current assumption was reasonable only when the total
antenna length was substantially less than 60 m at 600 km
altitude and substantially less than 300 m at 6000 km
altitude. Furthermore the use of antennas with total lengths
exceeding these limits was not constructive since the
dipole moment of the antenna cannot be significantly
increased by increasing the antenna length.
[80] Using the integral equations, we have calculated

the input impedance of the antenna parallel to Bo for the
case in which the dipole length was significantly smaller
than the wavelength of the current waves along the
antenna and found that it agreed closely with the leading

terms of the input impedance for a triangular current
distribution calculated from the full set of Maxwell’s
equations as expressed in (50a) and (50b). We have also
calculated the input impedance of the antenna perpen-
dicular to Bo for the case in which the dipole length was
significantly smaller than the reciprocal of the spatial
decay constant of the evanescent current waves along the
antenna and found that it agreed closely with the leading
terms of the input impedance for a triangular current
distribution calculated from the full set of Maxwell’s
equations, as expressed in (50c), (50d), (50e), and (50f).
This close correspondence of results gives confidence
that the integral equations derived in the short wave-
length limit contain the essential physics of the radiation
process.
[81] Comparing our results for the antenna input im-

pedance with the predictions of the quasi-static model
[Balmain, 1964], it was found that in the case of the
antenna parallel of Bo the two methods were in good
agreement for all antenna lengths for which the integral
equation of (28c) was applicable. In the case of the
antenna perpendicular to Bo, our results suggest that the
quasi-static model can reasonably describe the antenna
input impedance only when the total antenna length is
less than 30 m at 6000 km altitude and less than 6 m at
600 km altitude.
[82] The extension of our method to the case in which

the dipole is oriented at some angle with respect to Bo

other than 0� or 90� is straightforward, but the integral
equations for the antenna current are much more com-
plicated. We were able to obtain a relatively simple
integral equation for the dipole current because of our
choice of C1 = S for the parallel dipole, and our choice of
C1 = 2(P � S) for the perpendicular dipole. The current
of a dipole oriented at some intermediate angle with
respect to Bo can be decomposed into currents along both
the parallel and perpendicular directions. However,
although there are two current components, we can choose
only a single value for C1. Since jP � Sj � jSj, no single
choice ofC1 appears to lead to Green’s functions as simple
as (19) or (38) for both Az and Ax.
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